SemaLookup.cpp revision d07474bba02aed4874589b96c85acd79219a1336
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/LangOptions.h"
22#include "llvm/ADT/STLExtras.h"
23#include <set>
24
25using namespace clang;
26
27/// MaybeConstructOverloadSet - Name lookup has determined that the
28/// elements in [I, IEnd) have the name that we are looking for, and
29/// *I is a match for the namespace. This routine returns an
30/// appropriate Decl for name lookup, which may either be *I or an
31/// OverloadeFunctionDecl that represents the overloaded functions in
32/// [I, IEnd).
33///
34/// The existance of this routine is temporary; LookupDecl should
35/// probably be able to return multiple results, to deal with cases of
36/// ambiguity and overloaded functions without needing to create a
37/// Decl node.
38template<typename DeclIterator>
39static Decl *
40MaybeConstructOverloadSet(ASTContext &Context,
41                          DeclIterator I, DeclIterator IEnd) {
42  assert(I != IEnd && "Iterator range cannot be empty");
43  assert(!isa<OverloadedFunctionDecl>(*I) &&
44         "Cannot have an overloaded function");
45
46  if (isa<FunctionDecl>(*I)) {
47    // If we found a function, there might be more functions. If
48    // so, collect them into an overload set.
49    DeclIterator Last = I;
50    OverloadedFunctionDecl *Ovl = 0;
51    for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
52      if (!Ovl) {
53        // FIXME: We leak this overload set. Eventually, we want to
54        // stop building the declarations for these overload sets, so
55        // there will be nothing to leak.
56        Ovl = OverloadedFunctionDecl::Create(Context,
57                                         cast<ScopedDecl>(*I)->getDeclContext(),
58                                             (*I)->getDeclName());
59        Ovl->addOverload(cast<FunctionDecl>(*I));
60      }
61      Ovl->addOverload(cast<FunctionDecl>(*Last));
62    }
63
64    // If we had more than one function, we built an overload
65    // set. Return it.
66    if (Ovl)
67      return Ovl;
68  }
69
70  return *I;
71}
72
73/// @brief Constructs name lookup criteria.
74///
75/// @param K The kind of name that we're searching for.
76///
77/// @param RedeclarationOnly If true, then name lookup will only look
78/// into the current scope for names, not in parent scopes. This
79/// option should be set when we're looking to introduce a new
80/// declaration into scope.
81///
82/// @param CPlusPlus Whether we are performing C++ name lookup or not.
83Sema::LookupCriteria::LookupCriteria(NameKind K, bool RedeclarationOnly,
84                                     bool CPlusPlus)
85  : Kind(K), AllowLazyBuiltinCreation(K == Ordinary),
86    RedeclarationOnly(RedeclarationOnly) {
87  switch (Kind) {
88  case Ordinary:
89    IDNS = Decl::IDNS_Ordinary;
90    if (CPlusPlus)
91      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
92    break;
93
94  case Tag:
95    IDNS = Decl::IDNS_Tag;
96    break;
97
98  case Member:
99    IDNS = Decl::IDNS_Member;
100    if (CPlusPlus)
101      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
102    break;
103
104  case NestedNameSpecifier:
105  case Namespace:
106    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
107    break;
108  }
109}
110
111/// isLookupResult - Determines whether D is a suitable lookup result
112/// according to the lookup criteria.
113bool Sema::LookupCriteria::isLookupResult(Decl *D) const {
114  switch (Kind) {
115  case Ordinary:
116  case Tag:
117  case Member:
118    return D->isInIdentifierNamespace(IDNS);
119
120  case NestedNameSpecifier:
121    return isa<TypedefDecl>(D) || D->isInIdentifierNamespace(Decl::IDNS_Tag);
122
123  case Namespace:
124    return isa<NamespaceDecl>(D);
125  }
126
127  assert(false && "isLookupResult always returns before this point");
128  return false;
129}
130
131/// @brief Moves the name-lookup results from Other to this LookupResult.
132Sema::LookupResult
133Sema::LookupResult::CreateLookupResult(ASTContext &Context,
134                                       IdentifierResolver::iterator F,
135                                       IdentifierResolver::iterator L) {
136  LookupResult Result;
137  Result.Context = &Context;
138
139  if (F != L && isa<FunctionDecl>(*F)) {
140    IdentifierResolver::iterator Next = F;
141    ++Next;
142    if (Next != L && isa<FunctionDecl>(*Next)) {
143      Result.StoredKind = OverloadedDeclFromIdResolver;
144      Result.First = F.getAsOpaqueValue();
145      Result.Last = L.getAsOpaqueValue();
146      return Result;
147    }
148  }
149
150  Result.StoredKind = SingleDecl;
151  Result.First = reinterpret_cast<uintptr_t>(*F);
152  Result.Last = 0;
153  return Result;
154}
155
156Sema::LookupResult
157Sema::LookupResult::CreateLookupResult(ASTContext &Context,
158                                       DeclContext::lookup_iterator F,
159                                       DeclContext::lookup_iterator L) {
160  LookupResult Result;
161  Result.Context = &Context;
162
163  if (F != L && isa<FunctionDecl>(*F)) {
164    DeclContext::lookup_iterator Next = F;
165    ++Next;
166    if (Next != L && isa<FunctionDecl>(*Next)) {
167      Result.StoredKind = OverloadedDeclFromDeclContext;
168      Result.First = reinterpret_cast<uintptr_t>(F);
169      Result.Last = reinterpret_cast<uintptr_t>(L);
170      return Result;
171    }
172  }
173
174  Result.StoredKind = SingleDecl;
175  Result.First = reinterpret_cast<uintptr_t>(*F);
176  Result.Last = 0;
177  return Result;
178}
179
180/// @brief Determine the result of name lookup.
181Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const {
182  switch (StoredKind) {
183  case SingleDecl:
184    return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound;
185
186  case OverloadedDeclFromIdResolver:
187  case OverloadedDeclFromDeclContext:
188    return FoundOverloaded;
189
190  case AmbiguousLookup:
191    return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects;
192  }
193
194  // We can't ever get here.
195  return NotFound;
196}
197
198/// @brief Converts the result of name lookup into a single (possible
199/// NULL) pointer to a declaration.
200///
201/// The resulting declaration will either be the declaration we found
202/// (if only a single declaration was found), an
203/// OverloadedFunctionDecl (if an overloaded function was found), or
204/// NULL (if no declaration was found). This conversion must not be
205/// used anywhere where name lookup could result in an ambiguity.
206///
207/// The OverloadedFunctionDecl conversion is meant as a stop-gap
208/// solution, since it causes the OverloadedFunctionDecl to be
209/// leaked. FIXME: Eventually, there will be a better way to iterate
210/// over the set of overloaded functions returned by name lookup.
211Decl *Sema::LookupResult::getAsDecl() const {
212  switch (StoredKind) {
213  case SingleDecl:
214    return reinterpret_cast<Decl *>(First);
215
216  case OverloadedDeclFromIdResolver:
217    return MaybeConstructOverloadSet(*Context,
218                         IdentifierResolver::iterator::getFromOpaqueValue(First),
219                         IdentifierResolver::iterator::getFromOpaqueValue(Last));
220
221  case OverloadedDeclFromDeclContext:
222    return MaybeConstructOverloadSet(*Context,
223                           reinterpret_cast<DeclContext::lookup_iterator>(First),
224                           reinterpret_cast<DeclContext::lookup_iterator>(Last));
225
226  case AmbiguousLookup:
227    assert(false &&
228           "Name lookup returned an ambiguity that could not be handled");
229    break;
230  }
231
232  return 0;
233}
234
235/// @brief Retrieves the BasePaths structure describing an ambiguous
236/// name lookup.
237BasePaths *Sema::LookupResult::getBasePaths() const {
238  assert((StoredKind == AmbiguousLookup) &&
239         "getBasePaths can only be used on an ambiguous lookup");
240  return reinterpret_cast<BasePaths *>(First);
241}
242
243/// @brief Perform unqualified name lookup starting from a given
244/// scope.
245///
246/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
247/// used to find names within the current scope. For example, 'x' in
248/// @code
249/// int x;
250/// int f() {
251///   return x; // unqualified name look finds 'x' in the global scope
252/// }
253/// @endcode
254///
255/// Different lookup criteria can find different names. For example, a
256/// particular scope can have both a struct and a function of the same
257/// name, and each can be found by certain lookup criteria. For more
258/// information about lookup criteria, see the documentation for the
259/// class LookupCriteria.
260///
261/// @param S        The scope from which unqualified name lookup will
262/// begin. If the lookup criteria permits, name lookup may also search
263/// in the parent scopes.
264///
265/// @param Name     The name of the entity that we are searching for.
266///
267/// @param Criteria The criteria that this routine will use to
268/// determine which names are visible and which names will be
269/// found. Note that name lookup will find a name that is visible by
270/// the given criteria, but the entity itself may not be semantically
271/// correct or even the kind of entity expected based on the
272/// lookup. For example, searching for a nested-name-specifier name
273/// might result in an EnumDecl, which is visible but is not permitted
274/// as a nested-name-specifier in C++03.
275///
276/// @returns The result of name lookup, which includes zero or more
277/// declarations and possibly additional information used to diagnose
278/// ambiguities.
279Sema::LookupResult
280Sema::LookupName(Scope *S, DeclarationName Name, LookupCriteria Criteria) {
281  if (!Name) return LookupResult::CreateLookupResult(Context, 0);
282
283  if (!getLangOptions().CPlusPlus) {
284    // Unqualified name lookup in C/Objective-C is purely lexical, so
285    // search in the declarations attached to the name.
286
287    // For the purposes of unqualified name lookup, structs and unions
288    // don't have scopes at all. For example:
289    //
290    //   struct X {
291    //     struct T { int i; } x;
292    //   };
293    //
294    //   void f() {
295    //     struct T t; // okay: T is defined lexically within X, but
296    //                 // semantically at global scope
297    //   };
298    //
299    // FIXME: Is there a better way to deal with this?
300    DeclContext *SearchCtx = CurContext;
301    while (isa<RecordDecl>(SearchCtx) || isa<EnumDecl>(SearchCtx))
302      SearchCtx = SearchCtx->getParent();
303    IdentifierResolver::iterator I
304      = IdResolver.begin(Name, SearchCtx, !Criteria.RedeclarationOnly);
305
306    // Scan up the scope chain looking for a decl that matches this
307    // identifier that is in the appropriate namespace.  This search
308    // should not take long, as shadowing of names is uncommon, and
309    // deep shadowing is extremely uncommon.
310    for (; I != IdResolver.end(); ++I)
311      if (Criteria.isLookupResult(*I))
312        return LookupResult::CreateLookupResult(Context, *I);
313  } else {
314    // Unqualified name lookup in C++ requires looking into scopes
315    // that aren't strictly lexical, and therefore we walk through the
316    // context as well as walking through the scopes.
317
318    // FIXME: does "true" for LookInParentCtx actually make sense?
319    IdentifierResolver::iterator
320      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
321      IEnd = IdResolver.end();
322    for (; S; S = S->getParent()) {
323      // Check whether the IdResolver has anything in this scope.
324      for (; I != IEnd && S->isDeclScope(*I); ++I) {
325        if (Criteria.isLookupResult(*I)) {
326          // We found something.  Look for anything else in our scope
327          // with this same name and in an acceptable identifier
328          // namespace, so that we can construct an overload set if we
329          // need to.
330          IdentifierResolver::iterator LastI = I;
331          for (++LastI; LastI != IEnd; ++LastI) {
332            if (!S->isDeclScope(*LastI))
333              break;
334          }
335          return LookupResult::CreateLookupResult(Context, I, LastI);
336        }
337      }
338
339      // If there is an entity associated with this scope, it's a
340      // DeclContext. We might need to perform qualified lookup into
341      // it.
342      // FIXME: We're performing redundant lookups here, where the
343      // scope stack mirrors the semantic nested of classes and
344      // namespaces. We can save some work by checking the lexical
345      // scope against the semantic scope and avoiding any lookups
346      // when they are the same.
347      // FIXME: In some cases, we know that every name that could be
348      // found by this qualified name lookup will also be on the
349      // identifier chain. For example, inside a class without any
350      // base classes, we never need to perform qualified lookup
351      // because all of the members are on top of the identifier
352      // chain. However, we cannot perform this optimization when the
353      // lexical and semantic scopes don't line up, e.g., in an
354      // out-of-line member definition.
355      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
356      while (Ctx && Ctx->isFunctionOrMethod())
357        Ctx = Ctx->getParent();
358      while (Ctx && (Ctx->isNamespace() || Ctx->isRecord())) {
359        // Look for declarations of this name in this scope.
360        if (LookupResult Result = LookupQualifiedName(Ctx, Name, Criteria))
361          return Result;
362
363        if (Criteria.RedeclarationOnly && !Ctx->isTransparentContext())
364          return LookupResult::CreateLookupResult(Context, 0);
365
366        Ctx = Ctx->getParent();
367      }
368    }
369  }
370
371  // If we didn't find a use of this identifier, and if the identifier
372  // corresponds to a compiler builtin, create the decl object for the builtin
373  // now, injecting it into translation unit scope, and return it.
374  if (Criteria.Kind == LookupCriteria::Ordinary) {
375    IdentifierInfo *II = Name.getAsIdentifierInfo();
376    if (Criteria.AllowLazyBuiltinCreation && II) {
377      // If this is a builtin on this (or all) targets, create the decl.
378      if (unsigned BuiltinID = II->getBuiltinID())
379        return LookupResult::CreateLookupResult(Context,
380                            LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
381                                                S));
382    }
383    if (getLangOptions().ObjC1 && II) {
384      // @interface and @compatibility_alias introduce typedef-like names.
385      // Unlike typedef's, they can only be introduced at file-scope (and are
386      // therefore not scoped decls). They can, however, be shadowed by
387      // other names in IDNS_Ordinary.
388      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
389      if (IDI != ObjCInterfaceDecls.end())
390        return LookupResult::CreateLookupResult(Context, IDI->second);
391      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
392      if (I != ObjCAliasDecls.end())
393        return LookupResult::CreateLookupResult(Context,
394                                                I->second->getClassInterface());
395    }
396  }
397  return LookupResult::CreateLookupResult(Context, 0);
398}
399
400/// @brief Perform qualified name lookup into a given context.
401///
402/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
403/// names when the context of those names is explicit specified, e.g.,
404/// "std::vector" or "x->member".
405///
406/// Different lookup criteria can find different names. For example, a
407/// particular scope can have both a struct and a function of the same
408/// name, and each can be found by certain lookup criteria. For more
409/// information about lookup criteria, see the documentation for the
410/// class LookupCriteria.
411///
412/// @param LookupCtx The context in which qualified name lookup will
413/// search. If the lookup criteria permits, name lookup may also search
414/// in the parent contexts or (for C++ classes) base classes.
415///
416/// @param Name     The name of the entity that we are searching for.
417///
418/// @param Criteria The criteria that this routine will use to
419/// determine which names are visible and which names will be
420/// found. Note that name lookup will find a name that is visible by
421/// the given criteria, but the entity itself may not be semantically
422/// correct or even the kind of entity expected based on the
423/// lookup. For example, searching for a nested-name-specifier name
424/// might result in an EnumDecl, which is visible but is not permitted
425/// as a nested-name-specifier in C++03.
426///
427/// @returns The result of name lookup, which includes zero or more
428/// declarations and possibly additional information used to diagnose
429/// ambiguities.
430Sema::LookupResult
431Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
432                          LookupCriteria Criteria) {
433  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
434
435  if (!Name) return LookupResult::CreateLookupResult(Context, 0);
436
437  // If we're performing qualified name lookup (e.g., lookup into a
438  // struct), find fields as part of ordinary name lookup.
439  if (Criteria.Kind == LookupCriteria::Ordinary)
440    Criteria.IDNS |= Decl::IDNS_Member;
441
442  // Perform qualified name lookup into the LookupCtx.
443  DeclContext::lookup_iterator I, E;
444  for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I)
445    if (Criteria.isLookupResult(*I))
446      return LookupResult::CreateLookupResult(Context, I, E);
447
448  // If this isn't a C++ class or we aren't allowed to look into base
449  // classes, we're done.
450  if (Criteria.RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx))
451    return LookupResult::CreateLookupResult(Context, 0);
452
453  // Perform lookup into our base classes.
454  BasePaths Paths;
455  Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx)));
456
457  // Look for this member in our base classes
458  if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx),
459                     MemberLookupCriteria(Name, Criteria), Paths))
460    return LookupResult::CreateLookupResult(Context, 0);
461
462  // C++ [class.member.lookup]p2:
463  //   [...] If the resulting set of declarations are not all from
464  //   sub-objects of the same type, or the set has a nonstatic member
465  //   and includes members from distinct sub-objects, there is an
466  //   ambiguity and the program is ill-formed. Otherwise that set is
467  //   the result of the lookup.
468  // FIXME: support using declarations!
469  QualType SubobjectType;
470  int SubobjectNumber = 0;
471  for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
472       Path != PathEnd; ++Path) {
473    const BasePathElement &PathElement = Path->back();
474
475    // Determine whether we're looking at a distinct sub-object or not.
476    if (SubobjectType.isNull()) {
477      // This is the first subobject we've looked at. Record it's type.
478      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
479      SubobjectNumber = PathElement.SubobjectNumber;
480    } else if (SubobjectType
481                 != Context.getCanonicalType(PathElement.Base->getType())) {
482      // We found members of the given name in two subobjects of
483      // different types. This lookup is ambiguous.
484      BasePaths *PathsOnHeap = new BasePaths;
485      PathsOnHeap->swap(Paths);
486      return LookupResult::CreateLookupResult(Context, PathsOnHeap, true);
487    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
488      // We have a different subobject of the same type.
489
490      // C++ [class.member.lookup]p5:
491      //   A static member, a nested type or an enumerator defined in
492      //   a base class T can unambiguously be found even if an object
493      //   has more than one base class subobject of type T.
494      ScopedDecl *FirstDecl = *Path->Decls.first;
495      if (isa<VarDecl>(FirstDecl) ||
496          isa<TypeDecl>(FirstDecl) ||
497          isa<EnumConstantDecl>(FirstDecl))
498        continue;
499
500      if (isa<CXXMethodDecl>(FirstDecl)) {
501        // Determine whether all of the methods are static.
502        bool AllMethodsAreStatic = true;
503        for (DeclContext::lookup_iterator Func = Path->Decls.first;
504             Func != Path->Decls.second; ++Func) {
505          if (!isa<CXXMethodDecl>(*Func)) {
506            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
507            break;
508          }
509
510          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
511            AllMethodsAreStatic = false;
512            break;
513          }
514        }
515
516        if (AllMethodsAreStatic)
517          continue;
518      }
519
520      // We have found a nonstatic member name in multiple, distinct
521      // subobjects. Name lookup is ambiguous.
522      BasePaths *PathsOnHeap = new BasePaths;
523      PathsOnHeap->swap(Paths);
524      return LookupResult::CreateLookupResult(Context, PathsOnHeap, false);
525    }
526  }
527
528  // Lookup in a base class succeeded; return these results.
529
530  // If we found a function declaration, return an overload set.
531  if (isa<FunctionDecl>(*Paths.front().Decls.first))
532    return LookupResult::CreateLookupResult(Context,
533                        Paths.front().Decls.first, Paths.front().Decls.second);
534
535  // We found a non-function declaration; return a single declaration.
536  return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first);
537}
538
539/// @brief Performs name lookup for a name that was parsed in the
540/// source code, and may contain a C++ scope specifier.
541///
542/// This routine is a convenience routine meant to be called from
543/// contexts that receive a name and an optional C++ scope specifier
544/// (e.g., "N::M::x"). It will then perform either qualified or
545/// unqualified name lookup (with LookupQualifiedName or LookupName,
546/// respectively) on the given name and return those results.
547///
548/// @param S        The scope from which unqualified name lookup will
549/// begin.
550///
551/// @param SS       An optional C++ scope-specified, e.g., "::N::M".
552///
553/// @param Name     The name of the entity that name lookup will
554/// search for.
555///
556/// @param Criteria The criteria that will determine which entities
557/// are visible to name lookup.
558///
559/// @returns The result of qualified or unqualified name lookup.
560Sema::LookupResult
561Sema::LookupParsedName(Scope *S, const CXXScopeSpec &SS,
562                       DeclarationName Name, LookupCriteria Criteria) {
563  if (SS.isSet())
564    return LookupQualifiedName(static_cast<DeclContext *>(SS.getScopeRep()),
565                               Name, Criteria);
566
567  return LookupName(S, Name, Criteria);
568}
569
570/// @brief Produce a diagnostic describing the ambiguity that resulted
571/// from name lookup.
572///
573/// @param Result       The ambiguous name lookup result.
574///
575/// @param Name         The name of the entity that name lookup was
576/// searching for.
577///
578/// @param NameLoc      The location of the name within the source code.
579///
580/// @param LookupRange  A source range that provides more
581/// source-location information concerning the lookup itself. For
582/// example, this range might highlight a nested-name-specifier that
583/// precedes the name.
584///
585/// @returns true
586bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
587                                   SourceLocation NameLoc,
588                                   SourceRange LookupRange) {
589  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
590
591  BasePaths *Paths = Result.getBasePaths();
592  if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) {
593    QualType SubobjectType = Paths->front().back().Base->getType();
594    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
595      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
596      << LookupRange;
597
598    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
599    while (isa<CXXMethodDecl>(*Found) && cast<CXXMethodDecl>(*Found)->isStatic())
600      ++Found;
601
602    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
603
604    return true;
605  }
606
607  assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes &&
608         "Unhandled form of name lookup ambiguity");
609
610  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
611    << Name << LookupRange;
612
613  std::set<ScopedDecl *> DeclsPrinted;
614  for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end();
615       Path != PathEnd; ++Path) {
616    ScopedDecl *D = *Path->Decls.first;
617    if (DeclsPrinted.insert(D).second)
618      Diag(D->getLocation(), diag::note_ambiguous_member_found);
619  }
620
621  delete Paths;
622
623  return true;
624}
625