SemaLookup.cpp revision dc4f60d18e4a519c37756a4d52fc2b9fb5d0ec80
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/LangOptions.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/StringMap.h"
35#include "llvm/Support/ErrorHandling.h"
36#include <limits>
37#include <list>
38#include <set>
39#include <vector>
40#include <iterator>
41#include <utility>
42#include <algorithm>
43
44using namespace clang;
45using namespace sema;
46
47namespace {
48  class UnqualUsingEntry {
49    const DeclContext *Nominated;
50    const DeclContext *CommonAncestor;
51
52  public:
53    UnqualUsingEntry(const DeclContext *Nominated,
54                     const DeclContext *CommonAncestor)
55      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
56    }
57
58    const DeclContext *getCommonAncestor() const {
59      return CommonAncestor;
60    }
61
62    const DeclContext *getNominatedNamespace() const {
63      return Nominated;
64    }
65
66    // Sort by the pointer value of the common ancestor.
67    struct Comparator {
68      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
69        return L.getCommonAncestor() < R.getCommonAncestor();
70      }
71
72      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
73        return E.getCommonAncestor() < DC;
74      }
75
76      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
77        return DC < E.getCommonAncestor();
78      }
79    };
80  };
81
82  /// A collection of using directives, as used by C++ unqualified
83  /// lookup.
84  class UnqualUsingDirectiveSet {
85    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
86
87    ListTy list;
88    llvm::SmallPtrSet<DeclContext*, 8> visited;
89
90  public:
91    UnqualUsingDirectiveSet() {}
92
93    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
94      // C++ [namespace.udir]p1:
95      //   During unqualified name lookup, the names appear as if they
96      //   were declared in the nearest enclosing namespace which contains
97      //   both the using-directive and the nominated namespace.
98      DeclContext *InnermostFileDC
99        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
100      assert(InnermostFileDC && InnermostFileDC->isFileContext());
101
102      for (; S; S = S->getParent()) {
103        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
104          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
105          visit(Ctx, EffectiveDC);
106        } else {
107          Scope::udir_iterator I = S->using_directives_begin(),
108                             End = S->using_directives_end();
109
110          for (; I != End; ++I)
111            visit(*I, InnermostFileDC);
112        }
113      }
114    }
115
116    // Visits a context and collect all of its using directives
117    // recursively.  Treats all using directives as if they were
118    // declared in the context.
119    //
120    // A given context is only every visited once, so it is important
121    // that contexts be visited from the inside out in order to get
122    // the effective DCs right.
123    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
124      if (!visited.insert(DC))
125        return;
126
127      addUsingDirectives(DC, EffectiveDC);
128    }
129
130    // Visits a using directive and collects all of its using
131    // directives recursively.  Treats all using directives as if they
132    // were declared in the effective DC.
133    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
134      DeclContext *NS = UD->getNominatedNamespace();
135      if (!visited.insert(NS))
136        return;
137
138      addUsingDirective(UD, EffectiveDC);
139      addUsingDirectives(NS, EffectiveDC);
140    }
141
142    // Adds all the using directives in a context (and those nominated
143    // by its using directives, transitively) as if they appeared in
144    // the given effective context.
145    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
146      llvm::SmallVector<DeclContext*,4> queue;
147      while (true) {
148        DeclContext::udir_iterator I, End;
149        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
150          UsingDirectiveDecl *UD = *I;
151          DeclContext *NS = UD->getNominatedNamespace();
152          if (visited.insert(NS)) {
153            addUsingDirective(UD, EffectiveDC);
154            queue.push_back(NS);
155          }
156        }
157
158        if (queue.empty())
159          return;
160
161        DC = queue.back();
162        queue.pop_back();
163      }
164    }
165
166    // Add a using directive as if it had been declared in the given
167    // context.  This helps implement C++ [namespace.udir]p3:
168    //   The using-directive is transitive: if a scope contains a
169    //   using-directive that nominates a second namespace that itself
170    //   contains using-directives, the effect is as if the
171    //   using-directives from the second namespace also appeared in
172    //   the first.
173    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
174      // Find the common ancestor between the effective context and
175      // the nominated namespace.
176      DeclContext *Common = UD->getNominatedNamespace();
177      while (!Common->Encloses(EffectiveDC))
178        Common = Common->getParent();
179      Common = Common->getPrimaryContext();
180
181      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
182    }
183
184    void done() {
185      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
186    }
187
188    typedef ListTy::const_iterator const_iterator;
189
190    const_iterator begin() const { return list.begin(); }
191    const_iterator end() const { return list.end(); }
192
193    std::pair<const_iterator,const_iterator>
194    getNamespacesFor(DeclContext *DC) const {
195      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
196                              UnqualUsingEntry::Comparator());
197    }
198  };
199}
200
201// Retrieve the set of identifier namespaces that correspond to a
202// specific kind of name lookup.
203static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
204                               bool CPlusPlus,
205                               bool Redeclaration) {
206  unsigned IDNS = 0;
207  switch (NameKind) {
208  case Sema::LookupOrdinaryName:
209  case Sema::LookupRedeclarationWithLinkage:
210    IDNS = Decl::IDNS_Ordinary;
211    if (CPlusPlus) {
212      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
213      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
214    }
215    break;
216
217  case Sema::LookupOperatorName:
218    // Operator lookup is its own crazy thing;  it is not the same
219    // as (e.g.) looking up an operator name for redeclaration.
220    assert(!Redeclaration && "cannot do redeclaration operator lookup");
221    IDNS = Decl::IDNS_NonMemberOperator;
222    break;
223
224  case Sema::LookupTagName:
225    if (CPlusPlus) {
226      IDNS = Decl::IDNS_Type;
227
228      // When looking for a redeclaration of a tag name, we add:
229      // 1) TagFriend to find undeclared friend decls
230      // 2) Namespace because they can't "overload" with tag decls.
231      // 3) Tag because it includes class templates, which can't
232      //    "overload" with tag decls.
233      if (Redeclaration)
234        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
235    } else {
236      IDNS = Decl::IDNS_Tag;
237    }
238    break;
239
240  case Sema::LookupMemberName:
241    IDNS = Decl::IDNS_Member;
242    if (CPlusPlus)
243      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
244    break;
245
246  case Sema::LookupNestedNameSpecifierName:
247    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
248    break;
249
250  case Sema::LookupNamespaceName:
251    IDNS = Decl::IDNS_Namespace;
252    break;
253
254  case Sema::LookupUsingDeclName:
255    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
256         | Decl::IDNS_Member | Decl::IDNS_Using;
257    break;
258
259  case Sema::LookupObjCProtocolName:
260    IDNS = Decl::IDNS_ObjCProtocol;
261    break;
262
263  case Sema::LookupAnyName:
264    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
265      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
266      | Decl::IDNS_Type;
267    break;
268  }
269  return IDNS;
270}
271
272void LookupResult::configure() {
273  IDNS = getIDNS(LookupKind,
274                 SemaRef.getLangOptions().CPlusPlus,
275                 isForRedeclaration());
276
277  // If we're looking for one of the allocation or deallocation
278  // operators, make sure that the implicitly-declared new and delete
279  // operators can be found.
280  if (!isForRedeclaration()) {
281    switch (NameInfo.getName().getCXXOverloadedOperator()) {
282    case OO_New:
283    case OO_Delete:
284    case OO_Array_New:
285    case OO_Array_Delete:
286      SemaRef.DeclareGlobalNewDelete();
287      break;
288
289    default:
290      break;
291    }
292  }
293}
294
295#ifndef NDEBUG
296void LookupResult::sanity() const {
297  assert(ResultKind != NotFound || Decls.size() == 0);
298  assert(ResultKind != Found || Decls.size() == 1);
299  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
300         (Decls.size() == 1 &&
301          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
302  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
303  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
304         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
305                                Ambiguity == AmbiguousBaseSubobjectTypes)));
306  assert((Paths != NULL) == (ResultKind == Ambiguous &&
307                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
308                              Ambiguity == AmbiguousBaseSubobjects)));
309}
310#endif
311
312// Necessary because CXXBasePaths is not complete in Sema.h
313void LookupResult::deletePaths(CXXBasePaths *Paths) {
314  delete Paths;
315}
316
317/// Resolves the result kind of this lookup.
318void LookupResult::resolveKind() {
319  unsigned N = Decls.size();
320
321  // Fast case: no possible ambiguity.
322  if (N == 0) {
323    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
324    return;
325  }
326
327  // If there's a single decl, we need to examine it to decide what
328  // kind of lookup this is.
329  if (N == 1) {
330    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
331    if (isa<FunctionTemplateDecl>(D))
332      ResultKind = FoundOverloaded;
333    else if (isa<UnresolvedUsingValueDecl>(D))
334      ResultKind = FoundUnresolvedValue;
335    return;
336  }
337
338  // Don't do any extra resolution if we've already resolved as ambiguous.
339  if (ResultKind == Ambiguous) return;
340
341  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
342  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
343
344  bool Ambiguous = false;
345  bool HasTag = false, HasFunction = false, HasNonFunction = false;
346  bool HasFunctionTemplate = false, HasUnresolved = false;
347
348  unsigned UniqueTagIndex = 0;
349
350  unsigned I = 0;
351  while (I < N) {
352    NamedDecl *D = Decls[I]->getUnderlyingDecl();
353    D = cast<NamedDecl>(D->getCanonicalDecl());
354
355    // Redeclarations of types via typedef can occur both within a scope
356    // and, through using declarations and directives, across scopes. There is
357    // no ambiguity if they all refer to the same type, so unique based on the
358    // canonical type.
359    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
360      if (!TD->getDeclContext()->isRecord()) {
361        QualType T = SemaRef.Context.getTypeDeclType(TD);
362        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
363          // The type is not unique; pull something off the back and continue
364          // at this index.
365          Decls[I] = Decls[--N];
366          continue;
367        }
368      }
369    }
370
371    if (!Unique.insert(D)) {
372      // If it's not unique, pull something off the back (and
373      // continue at this index).
374      Decls[I] = Decls[--N];
375      continue;
376    }
377
378    // Otherwise, do some decl type analysis and then continue.
379
380    if (isa<UnresolvedUsingValueDecl>(D)) {
381      HasUnresolved = true;
382    } else if (isa<TagDecl>(D)) {
383      if (HasTag)
384        Ambiguous = true;
385      UniqueTagIndex = I;
386      HasTag = true;
387    } else if (isa<FunctionTemplateDecl>(D)) {
388      HasFunction = true;
389      HasFunctionTemplate = true;
390    } else if (isa<FunctionDecl>(D)) {
391      HasFunction = true;
392    } else {
393      if (HasNonFunction)
394        Ambiguous = true;
395      HasNonFunction = true;
396    }
397    I++;
398  }
399
400  // C++ [basic.scope.hiding]p2:
401  //   A class name or enumeration name can be hidden by the name of
402  //   an object, function, or enumerator declared in the same
403  //   scope. If a class or enumeration name and an object, function,
404  //   or enumerator are declared in the same scope (in any order)
405  //   with the same name, the class or enumeration name is hidden
406  //   wherever the object, function, or enumerator name is visible.
407  // But it's still an error if there are distinct tag types found,
408  // even if they're not visible. (ref?)
409  if (HideTags && HasTag && !Ambiguous &&
410      (HasFunction || HasNonFunction || HasUnresolved)) {
411    if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
412         Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
413      Decls[UniqueTagIndex] = Decls[--N];
414    else
415      Ambiguous = true;
416  }
417
418  Decls.set_size(N);
419
420  if (HasNonFunction && (HasFunction || HasUnresolved))
421    Ambiguous = true;
422
423  if (Ambiguous)
424    setAmbiguous(LookupResult::AmbiguousReference);
425  else if (HasUnresolved)
426    ResultKind = LookupResult::FoundUnresolvedValue;
427  else if (N > 1 || HasFunctionTemplate)
428    ResultKind = LookupResult::FoundOverloaded;
429  else
430    ResultKind = LookupResult::Found;
431}
432
433void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
434  CXXBasePaths::const_paths_iterator I, E;
435  DeclContext::lookup_iterator DI, DE;
436  for (I = P.begin(), E = P.end(); I != E; ++I)
437    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
438      addDecl(*DI);
439}
440
441void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
442  Paths = new CXXBasePaths;
443  Paths->swap(P);
444  addDeclsFromBasePaths(*Paths);
445  resolveKind();
446  setAmbiguous(AmbiguousBaseSubobjects);
447}
448
449void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
450  Paths = new CXXBasePaths;
451  Paths->swap(P);
452  addDeclsFromBasePaths(*Paths);
453  resolveKind();
454  setAmbiguous(AmbiguousBaseSubobjectTypes);
455}
456
457void LookupResult::print(llvm::raw_ostream &Out) {
458  Out << Decls.size() << " result(s)";
459  if (isAmbiguous()) Out << ", ambiguous";
460  if (Paths) Out << ", base paths present";
461
462  for (iterator I = begin(), E = end(); I != E; ++I) {
463    Out << "\n";
464    (*I)->print(Out, 2);
465  }
466}
467
468/// \brief Lookup a builtin function, when name lookup would otherwise
469/// fail.
470static bool LookupBuiltin(Sema &S, LookupResult &R) {
471  Sema::LookupNameKind NameKind = R.getLookupKind();
472
473  // If we didn't find a use of this identifier, and if the identifier
474  // corresponds to a compiler builtin, create the decl object for the builtin
475  // now, injecting it into translation unit scope, and return it.
476  if (NameKind == Sema::LookupOrdinaryName ||
477      NameKind == Sema::LookupRedeclarationWithLinkage) {
478    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
479    if (II) {
480      // If this is a builtin on this (or all) targets, create the decl.
481      if (unsigned BuiltinID = II->getBuiltinID()) {
482        // In C++, we don't have any predefined library functions like
483        // 'malloc'. Instead, we'll just error.
484        if (S.getLangOptions().CPlusPlus &&
485            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
486          return false;
487
488        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
489                                             S.TUScope, R.isForRedeclaration(),
490                                             R.getNameLoc());
491        if (D)
492          R.addDecl(D);
493        return (D != NULL);
494      }
495    }
496  }
497
498  return false;
499}
500
501/// \brief Determine whether we can declare a special member function within
502/// the class at this point.
503static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
504                                            const CXXRecordDecl *Class) {
505  // Don't do it if the class is invalid.
506  if (Class->isInvalidDecl())
507    return false;
508
509  // We need to have a definition for the class.
510  if (!Class->getDefinition() || Class->isDependentContext())
511    return false;
512
513  // We can't be in the middle of defining the class.
514  if (const RecordType *RecordTy
515                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
516    return !RecordTy->isBeingDefined();
517
518  return false;
519}
520
521void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
522  if (!CanDeclareSpecialMemberFunction(Context, Class))
523    return;
524
525  // If the default constructor has not yet been declared, do so now.
526  if (!Class->hasDeclaredDefaultConstructor())
527    DeclareImplicitDefaultConstructor(Class);
528
529  // If the copy constructor has not yet been declared, do so now.
530  if (!Class->hasDeclaredCopyConstructor())
531    DeclareImplicitCopyConstructor(Class);
532
533  // If the copy assignment operator has not yet been declared, do so now.
534  if (!Class->hasDeclaredCopyAssignment())
535    DeclareImplicitCopyAssignment(Class);
536
537  // If the destructor has not yet been declared, do so now.
538  if (!Class->hasDeclaredDestructor())
539    DeclareImplicitDestructor(Class);
540}
541
542/// \brief Determine whether this is the name of an implicitly-declared
543/// special member function.
544static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
545  switch (Name.getNameKind()) {
546  case DeclarationName::CXXConstructorName:
547  case DeclarationName::CXXDestructorName:
548    return true;
549
550  case DeclarationName::CXXOperatorName:
551    return Name.getCXXOverloadedOperator() == OO_Equal;
552
553  default:
554    break;
555  }
556
557  return false;
558}
559
560/// \brief If there are any implicit member functions with the given name
561/// that need to be declared in the given declaration context, do so.
562static void DeclareImplicitMemberFunctionsWithName(Sema &S,
563                                                   DeclarationName Name,
564                                                   const DeclContext *DC) {
565  if (!DC)
566    return;
567
568  switch (Name.getNameKind()) {
569  case DeclarationName::CXXConstructorName:
570    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
571      if (Record->getDefinition() &&
572          CanDeclareSpecialMemberFunction(S.Context, Record)) {
573        if (!Record->hasDeclaredDefaultConstructor())
574          S.DeclareImplicitDefaultConstructor(
575                                           const_cast<CXXRecordDecl *>(Record));
576        if (!Record->hasDeclaredCopyConstructor())
577          S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
578      }
579    break;
580
581  case DeclarationName::CXXDestructorName:
582    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
583      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
584          CanDeclareSpecialMemberFunction(S.Context, Record))
585        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
586    break;
587
588  case DeclarationName::CXXOperatorName:
589    if (Name.getCXXOverloadedOperator() != OO_Equal)
590      break;
591
592    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
593      if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
594          CanDeclareSpecialMemberFunction(S.Context, Record))
595        S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
596    break;
597
598  default:
599    break;
600  }
601}
602
603// Adds all qualifying matches for a name within a decl context to the
604// given lookup result.  Returns true if any matches were found.
605static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
606  bool Found = false;
607
608  // Lazily declare C++ special member functions.
609  if (S.getLangOptions().CPlusPlus)
610    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
611
612  // Perform lookup into this declaration context.
613  DeclContext::lookup_const_iterator I, E;
614  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
615    NamedDecl *D = *I;
616    if (R.isAcceptableDecl(D)) {
617      R.addDecl(D);
618      Found = true;
619    }
620  }
621
622  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
623    return true;
624
625  if (R.getLookupName().getNameKind()
626        != DeclarationName::CXXConversionFunctionName ||
627      R.getLookupName().getCXXNameType()->isDependentType() ||
628      !isa<CXXRecordDecl>(DC))
629    return Found;
630
631  // C++ [temp.mem]p6:
632  //   A specialization of a conversion function template is not found by
633  //   name lookup. Instead, any conversion function templates visible in the
634  //   context of the use are considered. [...]
635  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
636  if (!Record->isDefinition())
637    return Found;
638
639  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
640  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
641         UEnd = Unresolved->end(); U != UEnd; ++U) {
642    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
643    if (!ConvTemplate)
644      continue;
645
646    // When we're performing lookup for the purposes of redeclaration, just
647    // add the conversion function template. When we deduce template
648    // arguments for specializations, we'll end up unifying the return
649    // type of the new declaration with the type of the function template.
650    if (R.isForRedeclaration()) {
651      R.addDecl(ConvTemplate);
652      Found = true;
653      continue;
654    }
655
656    // C++ [temp.mem]p6:
657    //   [...] For each such operator, if argument deduction succeeds
658    //   (14.9.2.3), the resulting specialization is used as if found by
659    //   name lookup.
660    //
661    // When referencing a conversion function for any purpose other than
662    // a redeclaration (such that we'll be building an expression with the
663    // result), perform template argument deduction and place the
664    // specialization into the result set. We do this to avoid forcing all
665    // callers to perform special deduction for conversion functions.
666    TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
667    FunctionDecl *Specialization = 0;
668
669    const FunctionProtoType *ConvProto
670      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
671    assert(ConvProto && "Nonsensical conversion function template type");
672
673    // Compute the type of the function that we would expect the conversion
674    // function to have, if it were to match the name given.
675    // FIXME: Calling convention!
676    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
677    QualType ExpectedType
678      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
679                                            0, 0, ConvProto->isVariadic(),
680                                            ConvProto->getTypeQuals(),
681                                            false, false, 0, 0,
682                                    ConvProtoInfo.withCallingConv(CC_Default));
683
684    // Perform template argument deduction against the type that we would
685    // expect the function to have.
686    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
687                                            Specialization, Info)
688          == Sema::TDK_Success) {
689      R.addDecl(Specialization);
690      Found = true;
691    }
692  }
693
694  return Found;
695}
696
697// Performs C++ unqualified lookup into the given file context.
698static bool
699CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
700                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
701
702  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
703
704  // Perform direct name lookup into the LookupCtx.
705  bool Found = LookupDirect(S, R, NS);
706
707  // Perform direct name lookup into the namespaces nominated by the
708  // using directives whose common ancestor is this namespace.
709  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
710  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
711
712  for (; UI != UEnd; ++UI)
713    if (LookupDirect(S, R, UI->getNominatedNamespace()))
714      Found = true;
715
716  R.resolveKind();
717
718  return Found;
719}
720
721static bool isNamespaceOrTranslationUnitScope(Scope *S) {
722  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
723    return Ctx->isFileContext();
724  return false;
725}
726
727// Find the next outer declaration context from this scope. This
728// routine actually returns the semantic outer context, which may
729// differ from the lexical context (encoded directly in the Scope
730// stack) when we are parsing a member of a class template. In this
731// case, the second element of the pair will be true, to indicate that
732// name lookup should continue searching in this semantic context when
733// it leaves the current template parameter scope.
734static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
735  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
736  DeclContext *Lexical = 0;
737  for (Scope *OuterS = S->getParent(); OuterS;
738       OuterS = OuterS->getParent()) {
739    if (OuterS->getEntity()) {
740      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
741      break;
742    }
743  }
744
745  // C++ [temp.local]p8:
746  //   In the definition of a member of a class template that appears
747  //   outside of the namespace containing the class template
748  //   definition, the name of a template-parameter hides the name of
749  //   a member of this namespace.
750  //
751  // Example:
752  //
753  //   namespace N {
754  //     class C { };
755  //
756  //     template<class T> class B {
757  //       void f(T);
758  //     };
759  //   }
760  //
761  //   template<class C> void N::B<C>::f(C) {
762  //     C b;  // C is the template parameter, not N::C
763  //   }
764  //
765  // In this example, the lexical context we return is the
766  // TranslationUnit, while the semantic context is the namespace N.
767  if (!Lexical || !DC || !S->getParent() ||
768      !S->getParent()->isTemplateParamScope())
769    return std::make_pair(Lexical, false);
770
771  // Find the outermost template parameter scope.
772  // For the example, this is the scope for the template parameters of
773  // template<class C>.
774  Scope *OutermostTemplateScope = S->getParent();
775  while (OutermostTemplateScope->getParent() &&
776         OutermostTemplateScope->getParent()->isTemplateParamScope())
777    OutermostTemplateScope = OutermostTemplateScope->getParent();
778
779  // Find the namespace context in which the original scope occurs. In
780  // the example, this is namespace N.
781  DeclContext *Semantic = DC;
782  while (!Semantic->isFileContext())
783    Semantic = Semantic->getParent();
784
785  // Find the declaration context just outside of the template
786  // parameter scope. This is the context in which the template is
787  // being lexically declaration (a namespace context). In the
788  // example, this is the global scope.
789  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
790      Lexical->Encloses(Semantic))
791    return std::make_pair(Semantic, true);
792
793  return std::make_pair(Lexical, false);
794}
795
796bool Sema::CppLookupName(LookupResult &R, Scope *S) {
797  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
798
799  DeclarationName Name = R.getLookupName();
800
801  // If this is the name of an implicitly-declared special member function,
802  // go through the scope stack to implicitly declare
803  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
804    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
805      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
806        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
807  }
808
809  // Implicitly declare member functions with the name we're looking for, if in
810  // fact we are in a scope where it matters.
811
812  Scope *Initial = S;
813  IdentifierResolver::iterator
814    I = IdResolver.begin(Name),
815    IEnd = IdResolver.end();
816
817  // First we lookup local scope.
818  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
819  // ...During unqualified name lookup (3.4.1), the names appear as if
820  // they were declared in the nearest enclosing namespace which contains
821  // both the using-directive and the nominated namespace.
822  // [Note: in this context, "contains" means "contains directly or
823  // indirectly".
824  //
825  // For example:
826  // namespace A { int i; }
827  // void foo() {
828  //   int i;
829  //   {
830  //     using namespace A;
831  //     ++i; // finds local 'i', A::i appears at global scope
832  //   }
833  // }
834  //
835  DeclContext *OutsideOfTemplateParamDC = 0;
836  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
837    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
838
839    // Check whether the IdResolver has anything in this scope.
840    bool Found = false;
841    for (; I != IEnd && S->isDeclScope(*I); ++I) {
842      if (R.isAcceptableDecl(*I)) {
843        Found = true;
844        R.addDecl(*I);
845      }
846    }
847    if (Found) {
848      R.resolveKind();
849      if (S->isClassScope())
850        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
851          R.setNamingClass(Record);
852      return true;
853    }
854
855    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
856        S->getParent() && !S->getParent()->isTemplateParamScope()) {
857      // We've just searched the last template parameter scope and
858      // found nothing, so look into the the contexts between the
859      // lexical and semantic declaration contexts returned by
860      // findOuterContext(). This implements the name lookup behavior
861      // of C++ [temp.local]p8.
862      Ctx = OutsideOfTemplateParamDC;
863      OutsideOfTemplateParamDC = 0;
864    }
865
866    if (Ctx) {
867      DeclContext *OuterCtx;
868      bool SearchAfterTemplateScope;
869      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
870      if (SearchAfterTemplateScope)
871        OutsideOfTemplateParamDC = OuterCtx;
872
873      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
874        // We do not directly look into transparent contexts, since
875        // those entities will be found in the nearest enclosing
876        // non-transparent context.
877        if (Ctx->isTransparentContext())
878          continue;
879
880        // We do not look directly into function or method contexts,
881        // since all of the local variables and parameters of the
882        // function/method are present within the Scope.
883        if (Ctx->isFunctionOrMethod()) {
884          // If we have an Objective-C instance method, look for ivars
885          // in the corresponding interface.
886          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
887            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
888              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
889                ObjCInterfaceDecl *ClassDeclared;
890                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
891                                                 Name.getAsIdentifierInfo(),
892                                                             ClassDeclared)) {
893                  if (R.isAcceptableDecl(Ivar)) {
894                    R.addDecl(Ivar);
895                    R.resolveKind();
896                    return true;
897                  }
898                }
899              }
900          }
901
902          continue;
903        }
904
905        // Perform qualified name lookup into this context.
906        // FIXME: In some cases, we know that every name that could be found by
907        // this qualified name lookup will also be on the identifier chain. For
908        // example, inside a class without any base classes, we never need to
909        // perform qualified lookup because all of the members are on top of the
910        // identifier chain.
911        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
912          return true;
913      }
914    }
915  }
916
917  // Stop if we ran out of scopes.
918  // FIXME:  This really, really shouldn't be happening.
919  if (!S) return false;
920
921  // Collect UsingDirectiveDecls in all scopes, and recursively all
922  // nominated namespaces by those using-directives.
923  //
924  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
925  // don't build it for each lookup!
926
927  UnqualUsingDirectiveSet UDirs;
928  UDirs.visitScopeChain(Initial, S);
929  UDirs.done();
930
931  // Lookup namespace scope, and global scope.
932  // Unqualified name lookup in C++ requires looking into scopes
933  // that aren't strictly lexical, and therefore we walk through the
934  // context as well as walking through the scopes.
935
936  for (; S; S = S->getParent()) {
937    // Check whether the IdResolver has anything in this scope.
938    bool Found = false;
939    for (; I != IEnd && S->isDeclScope(*I); ++I) {
940      if (R.isAcceptableDecl(*I)) {
941        // We found something.  Look for anything else in our scope
942        // with this same name and in an acceptable identifier
943        // namespace, so that we can construct an overload set if we
944        // need to.
945        Found = true;
946        R.addDecl(*I);
947      }
948    }
949
950    if (Found && S->isTemplateParamScope()) {
951      R.resolveKind();
952      return true;
953    }
954
955    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
956    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
957        S->getParent() && !S->getParent()->isTemplateParamScope()) {
958      // We've just searched the last template parameter scope and
959      // found nothing, so look into the the contexts between the
960      // lexical and semantic declaration contexts returned by
961      // findOuterContext(). This implements the name lookup behavior
962      // of C++ [temp.local]p8.
963      Ctx = OutsideOfTemplateParamDC;
964      OutsideOfTemplateParamDC = 0;
965    }
966
967    if (Ctx) {
968      DeclContext *OuterCtx;
969      bool SearchAfterTemplateScope;
970      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
971      if (SearchAfterTemplateScope)
972        OutsideOfTemplateParamDC = OuterCtx;
973
974      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
975        // We do not directly look into transparent contexts, since
976        // those entities will be found in the nearest enclosing
977        // non-transparent context.
978        if (Ctx->isTransparentContext())
979          continue;
980
981        // If we have a context, and it's not a context stashed in the
982        // template parameter scope for an out-of-line definition, also
983        // look into that context.
984        if (!(Found && S && S->isTemplateParamScope())) {
985          assert(Ctx->isFileContext() &&
986              "We should have been looking only at file context here already.");
987
988          // Look into context considering using-directives.
989          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
990            Found = true;
991        }
992
993        if (Found) {
994          R.resolveKind();
995          return true;
996        }
997
998        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
999          return false;
1000      }
1001    }
1002
1003    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1004      return false;
1005  }
1006
1007  return !R.empty();
1008}
1009
1010/// @brief Perform unqualified name lookup starting from a given
1011/// scope.
1012///
1013/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1014/// used to find names within the current scope. For example, 'x' in
1015/// @code
1016/// int x;
1017/// int f() {
1018///   return x; // unqualified name look finds 'x' in the global scope
1019/// }
1020/// @endcode
1021///
1022/// Different lookup criteria can find different names. For example, a
1023/// particular scope can have both a struct and a function of the same
1024/// name, and each can be found by certain lookup criteria. For more
1025/// information about lookup criteria, see the documentation for the
1026/// class LookupCriteria.
1027///
1028/// @param S        The scope from which unqualified name lookup will
1029/// begin. If the lookup criteria permits, name lookup may also search
1030/// in the parent scopes.
1031///
1032/// @param Name     The name of the entity that we are searching for.
1033///
1034/// @param Loc      If provided, the source location where we're performing
1035/// name lookup. At present, this is only used to produce diagnostics when
1036/// C library functions (like "malloc") are implicitly declared.
1037///
1038/// @returns The result of name lookup, which includes zero or more
1039/// declarations and possibly additional information used to diagnose
1040/// ambiguities.
1041bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1042  DeclarationName Name = R.getLookupName();
1043  if (!Name) return false;
1044
1045  LookupNameKind NameKind = R.getLookupKind();
1046
1047  if (!getLangOptions().CPlusPlus) {
1048    // Unqualified name lookup in C/Objective-C is purely lexical, so
1049    // search in the declarations attached to the name.
1050
1051    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1052      // Find the nearest non-transparent declaration scope.
1053      while (!(S->getFlags() & Scope::DeclScope) ||
1054             (S->getEntity() &&
1055              static_cast<DeclContext *>(S->getEntity())
1056                ->isTransparentContext()))
1057        S = S->getParent();
1058    }
1059
1060    unsigned IDNS = R.getIdentifierNamespace();
1061
1062    // Scan up the scope chain looking for a decl that matches this
1063    // identifier that is in the appropriate namespace.  This search
1064    // should not take long, as shadowing of names is uncommon, and
1065    // deep shadowing is extremely uncommon.
1066    bool LeftStartingScope = false;
1067
1068    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1069                                   IEnd = IdResolver.end();
1070         I != IEnd; ++I)
1071      if ((*I)->isInIdentifierNamespace(IDNS)) {
1072        if (NameKind == LookupRedeclarationWithLinkage) {
1073          // Determine whether this (or a previous) declaration is
1074          // out-of-scope.
1075          if (!LeftStartingScope && !S->isDeclScope(*I))
1076            LeftStartingScope = true;
1077
1078          // If we found something outside of our starting scope that
1079          // does not have linkage, skip it.
1080          if (LeftStartingScope && !((*I)->hasLinkage()))
1081            continue;
1082        }
1083
1084        R.addDecl(*I);
1085
1086        if ((*I)->getAttr<OverloadableAttr>()) {
1087          // If this declaration has the "overloadable" attribute, we
1088          // might have a set of overloaded functions.
1089
1090          // Figure out what scope the identifier is in.
1091          while (!(S->getFlags() & Scope::DeclScope) ||
1092                 !S->isDeclScope(*I))
1093            S = S->getParent();
1094
1095          // Find the last declaration in this scope (with the same
1096          // name, naturally).
1097          IdentifierResolver::iterator LastI = I;
1098          for (++LastI; LastI != IEnd; ++LastI) {
1099            if (!S->isDeclScope(*LastI))
1100              break;
1101            R.addDecl(*LastI);
1102          }
1103        }
1104
1105        R.resolveKind();
1106
1107        return true;
1108      }
1109  } else {
1110    // Perform C++ unqualified name lookup.
1111    if (CppLookupName(R, S))
1112      return true;
1113  }
1114
1115  // If we didn't find a use of this identifier, and if the identifier
1116  // corresponds to a compiler builtin, create the decl object for the builtin
1117  // now, injecting it into translation unit scope, and return it.
1118  if (AllowBuiltinCreation)
1119    return LookupBuiltin(*this, R);
1120
1121  return false;
1122}
1123
1124/// @brief Perform qualified name lookup in the namespaces nominated by
1125/// using directives by the given context.
1126///
1127/// C++98 [namespace.qual]p2:
1128///   Given X::m (where X is a user-declared namespace), or given ::m
1129///   (where X is the global namespace), let S be the set of all
1130///   declarations of m in X and in the transitive closure of all
1131///   namespaces nominated by using-directives in X and its used
1132///   namespaces, except that using-directives are ignored in any
1133///   namespace, including X, directly containing one or more
1134///   declarations of m. No namespace is searched more than once in
1135///   the lookup of a name. If S is the empty set, the program is
1136///   ill-formed. Otherwise, if S has exactly one member, or if the
1137///   context of the reference is a using-declaration
1138///   (namespace.udecl), S is the required set of declarations of
1139///   m. Otherwise if the use of m is not one that allows a unique
1140///   declaration to be chosen from S, the program is ill-formed.
1141/// C++98 [namespace.qual]p5:
1142///   During the lookup of a qualified namespace member name, if the
1143///   lookup finds more than one declaration of the member, and if one
1144///   declaration introduces a class name or enumeration name and the
1145///   other declarations either introduce the same object, the same
1146///   enumerator or a set of functions, the non-type name hides the
1147///   class or enumeration name if and only if the declarations are
1148///   from the same namespace; otherwise (the declarations are from
1149///   different namespaces), the program is ill-formed.
1150static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1151                                                 DeclContext *StartDC) {
1152  assert(StartDC->isFileContext() && "start context is not a file context");
1153
1154  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1155  DeclContext::udir_iterator E = StartDC->using_directives_end();
1156
1157  if (I == E) return false;
1158
1159  // We have at least added all these contexts to the queue.
1160  llvm::DenseSet<DeclContext*> Visited;
1161  Visited.insert(StartDC);
1162
1163  // We have not yet looked into these namespaces, much less added
1164  // their "using-children" to the queue.
1165  llvm::SmallVector<NamespaceDecl*, 8> Queue;
1166
1167  // We have already looked into the initial namespace; seed the queue
1168  // with its using-children.
1169  for (; I != E; ++I) {
1170    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1171    if (Visited.insert(ND).second)
1172      Queue.push_back(ND);
1173  }
1174
1175  // The easiest way to implement the restriction in [namespace.qual]p5
1176  // is to check whether any of the individual results found a tag
1177  // and, if so, to declare an ambiguity if the final result is not
1178  // a tag.
1179  bool FoundTag = false;
1180  bool FoundNonTag = false;
1181
1182  LookupResult LocalR(LookupResult::Temporary, R);
1183
1184  bool Found = false;
1185  while (!Queue.empty()) {
1186    NamespaceDecl *ND = Queue.back();
1187    Queue.pop_back();
1188
1189    // We go through some convolutions here to avoid copying results
1190    // between LookupResults.
1191    bool UseLocal = !R.empty();
1192    LookupResult &DirectR = UseLocal ? LocalR : R;
1193    bool FoundDirect = LookupDirect(S, DirectR, ND);
1194
1195    if (FoundDirect) {
1196      // First do any local hiding.
1197      DirectR.resolveKind();
1198
1199      // If the local result is a tag, remember that.
1200      if (DirectR.isSingleTagDecl())
1201        FoundTag = true;
1202      else
1203        FoundNonTag = true;
1204
1205      // Append the local results to the total results if necessary.
1206      if (UseLocal) {
1207        R.addAllDecls(LocalR);
1208        LocalR.clear();
1209      }
1210    }
1211
1212    // If we find names in this namespace, ignore its using directives.
1213    if (FoundDirect) {
1214      Found = true;
1215      continue;
1216    }
1217
1218    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1219      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1220      if (Visited.insert(Nom).second)
1221        Queue.push_back(Nom);
1222    }
1223  }
1224
1225  if (Found) {
1226    if (FoundTag && FoundNonTag)
1227      R.setAmbiguousQualifiedTagHiding();
1228    else
1229      R.resolveKind();
1230  }
1231
1232  return Found;
1233}
1234
1235/// \brief Callback that looks for any member of a class with the given name.
1236static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1237                            CXXBasePath &Path,
1238                            void *Name) {
1239  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1240
1241  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1242  Path.Decls = BaseRecord->lookup(N);
1243  return Path.Decls.first != Path.Decls.second;
1244}
1245
1246/// \brief Determine whether the given set of member declarations contains only
1247/// static members, nested types, and enumerators.
1248template<typename InputIterator>
1249static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1250  Decl *D = (*First)->getUnderlyingDecl();
1251  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1252    return true;
1253
1254  if (isa<CXXMethodDecl>(D)) {
1255    // Determine whether all of the methods are static.
1256    bool AllMethodsAreStatic = true;
1257    for(; First != Last; ++First) {
1258      D = (*First)->getUnderlyingDecl();
1259
1260      if (!isa<CXXMethodDecl>(D)) {
1261        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1262        break;
1263      }
1264
1265      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1266        AllMethodsAreStatic = false;
1267        break;
1268      }
1269    }
1270
1271    if (AllMethodsAreStatic)
1272      return true;
1273  }
1274
1275  return false;
1276}
1277
1278/// \brief Perform qualified name lookup into a given context.
1279///
1280/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1281/// names when the context of those names is explicit specified, e.g.,
1282/// "std::vector" or "x->member", or as part of unqualified name lookup.
1283///
1284/// Different lookup criteria can find different names. For example, a
1285/// particular scope can have both a struct and a function of the same
1286/// name, and each can be found by certain lookup criteria. For more
1287/// information about lookup criteria, see the documentation for the
1288/// class LookupCriteria.
1289///
1290/// \param R captures both the lookup criteria and any lookup results found.
1291///
1292/// \param LookupCtx The context in which qualified name lookup will
1293/// search. If the lookup criteria permits, name lookup may also search
1294/// in the parent contexts or (for C++ classes) base classes.
1295///
1296/// \param InUnqualifiedLookup true if this is qualified name lookup that
1297/// occurs as part of unqualified name lookup.
1298///
1299/// \returns true if lookup succeeded, false if it failed.
1300bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1301                               bool InUnqualifiedLookup) {
1302  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1303
1304  if (!R.getLookupName())
1305    return false;
1306
1307  // Make sure that the declaration context is complete.
1308  assert((!isa<TagDecl>(LookupCtx) ||
1309          LookupCtx->isDependentContext() ||
1310          cast<TagDecl>(LookupCtx)->isDefinition() ||
1311          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1312            ->isBeingDefined()) &&
1313         "Declaration context must already be complete!");
1314
1315  // Perform qualified name lookup into the LookupCtx.
1316  if (LookupDirect(*this, R, LookupCtx)) {
1317    R.resolveKind();
1318    if (isa<CXXRecordDecl>(LookupCtx))
1319      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1320    return true;
1321  }
1322
1323  // Don't descend into implied contexts for redeclarations.
1324  // C++98 [namespace.qual]p6:
1325  //   In a declaration for a namespace member in which the
1326  //   declarator-id is a qualified-id, given that the qualified-id
1327  //   for the namespace member has the form
1328  //     nested-name-specifier unqualified-id
1329  //   the unqualified-id shall name a member of the namespace
1330  //   designated by the nested-name-specifier.
1331  // See also [class.mfct]p5 and [class.static.data]p2.
1332  if (R.isForRedeclaration())
1333    return false;
1334
1335  // If this is a namespace, look it up in the implied namespaces.
1336  if (LookupCtx->isFileContext())
1337    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1338
1339  // If this isn't a C++ class, we aren't allowed to look into base
1340  // classes, we're done.
1341  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1342  if (!LookupRec || !LookupRec->getDefinition())
1343    return false;
1344
1345  // If we're performing qualified name lookup into a dependent class,
1346  // then we are actually looking into a current instantiation. If we have any
1347  // dependent base classes, then we either have to delay lookup until
1348  // template instantiation time (at which point all bases will be available)
1349  // or we have to fail.
1350  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1351      LookupRec->hasAnyDependentBases()) {
1352    R.setNotFoundInCurrentInstantiation();
1353    return false;
1354  }
1355
1356  // Perform lookup into our base classes.
1357  CXXBasePaths Paths;
1358  Paths.setOrigin(LookupRec);
1359
1360  // Look for this member in our base classes
1361  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1362  switch (R.getLookupKind()) {
1363    case LookupOrdinaryName:
1364    case LookupMemberName:
1365    case LookupRedeclarationWithLinkage:
1366      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1367      break;
1368
1369    case LookupTagName:
1370      BaseCallback = &CXXRecordDecl::FindTagMember;
1371      break;
1372
1373    case LookupAnyName:
1374      BaseCallback = &LookupAnyMember;
1375      break;
1376
1377    case LookupUsingDeclName:
1378      // This lookup is for redeclarations only.
1379
1380    case LookupOperatorName:
1381    case LookupNamespaceName:
1382    case LookupObjCProtocolName:
1383      // These lookups will never find a member in a C++ class (or base class).
1384      return false;
1385
1386    case LookupNestedNameSpecifierName:
1387      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1388      break;
1389  }
1390
1391  if (!LookupRec->lookupInBases(BaseCallback,
1392                                R.getLookupName().getAsOpaquePtr(), Paths))
1393    return false;
1394
1395  R.setNamingClass(LookupRec);
1396
1397  // C++ [class.member.lookup]p2:
1398  //   [...] If the resulting set of declarations are not all from
1399  //   sub-objects of the same type, or the set has a nonstatic member
1400  //   and includes members from distinct sub-objects, there is an
1401  //   ambiguity and the program is ill-formed. Otherwise that set is
1402  //   the result of the lookup.
1403  QualType SubobjectType;
1404  int SubobjectNumber = 0;
1405  AccessSpecifier SubobjectAccess = AS_none;
1406
1407  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1408       Path != PathEnd; ++Path) {
1409    const CXXBasePathElement &PathElement = Path->back();
1410
1411    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1412    // across all paths.
1413    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1414
1415    // Determine whether we're looking at a distinct sub-object or not.
1416    if (SubobjectType.isNull()) {
1417      // This is the first subobject we've looked at. Record its type.
1418      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1419      SubobjectNumber = PathElement.SubobjectNumber;
1420      continue;
1421    }
1422
1423    if (SubobjectType
1424                 != Context.getCanonicalType(PathElement.Base->getType())) {
1425      // We found members of the given name in two subobjects of
1426      // different types. If the declaration sets aren't the same, this
1427      // this lookup is ambiguous.
1428      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1429        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1430        DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1431        DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1432
1433        while (FirstD != FirstPath->Decls.second &&
1434               CurrentD != Path->Decls.second) {
1435         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1436             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1437           break;
1438
1439          ++FirstD;
1440          ++CurrentD;
1441        }
1442
1443        if (FirstD == FirstPath->Decls.second &&
1444            CurrentD == Path->Decls.second)
1445          continue;
1446      }
1447
1448      R.setAmbiguousBaseSubobjectTypes(Paths);
1449      return true;
1450    }
1451
1452    if (SubobjectNumber != PathElement.SubobjectNumber) {
1453      // We have a different subobject of the same type.
1454
1455      // C++ [class.member.lookup]p5:
1456      //   A static member, a nested type or an enumerator defined in
1457      //   a base class T can unambiguously be found even if an object
1458      //   has more than one base class subobject of type T.
1459      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1460        continue;
1461
1462      // We have found a nonstatic member name in multiple, distinct
1463      // subobjects. Name lookup is ambiguous.
1464      R.setAmbiguousBaseSubobjects(Paths);
1465      return true;
1466    }
1467  }
1468
1469  // Lookup in a base class succeeded; return these results.
1470
1471  DeclContext::lookup_iterator I, E;
1472  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1473    NamedDecl *D = *I;
1474    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1475                                                    D->getAccess());
1476    R.addDecl(D, AS);
1477  }
1478  R.resolveKind();
1479  return true;
1480}
1481
1482/// @brief Performs name lookup for a name that was parsed in the
1483/// source code, and may contain a C++ scope specifier.
1484///
1485/// This routine is a convenience routine meant to be called from
1486/// contexts that receive a name and an optional C++ scope specifier
1487/// (e.g., "N::M::x"). It will then perform either qualified or
1488/// unqualified name lookup (with LookupQualifiedName or LookupName,
1489/// respectively) on the given name and return those results.
1490///
1491/// @param S        The scope from which unqualified name lookup will
1492/// begin.
1493///
1494/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1495///
1496/// @param Name     The name of the entity that name lookup will
1497/// search for.
1498///
1499/// @param Loc      If provided, the source location where we're performing
1500/// name lookup. At present, this is only used to produce diagnostics when
1501/// C library functions (like "malloc") are implicitly declared.
1502///
1503/// @param EnteringContext Indicates whether we are going to enter the
1504/// context of the scope-specifier SS (if present).
1505///
1506/// @returns True if any decls were found (but possibly ambiguous)
1507bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1508                            bool AllowBuiltinCreation, bool EnteringContext) {
1509  if (SS && SS->isInvalid()) {
1510    // When the scope specifier is invalid, don't even look for
1511    // anything.
1512    return false;
1513  }
1514
1515  if (SS && SS->isSet()) {
1516    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1517      // We have resolved the scope specifier to a particular declaration
1518      // contex, and will perform name lookup in that context.
1519      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1520        return false;
1521
1522      R.setContextRange(SS->getRange());
1523
1524      return LookupQualifiedName(R, DC);
1525    }
1526
1527    // We could not resolve the scope specified to a specific declaration
1528    // context, which means that SS refers to an unknown specialization.
1529    // Name lookup can't find anything in this case.
1530    return false;
1531  }
1532
1533  // Perform unqualified name lookup starting in the given scope.
1534  return LookupName(R, S, AllowBuiltinCreation);
1535}
1536
1537
1538/// @brief Produce a diagnostic describing the ambiguity that resulted
1539/// from name lookup.
1540///
1541/// @param Result       The ambiguous name lookup result.
1542///
1543/// @param Name         The name of the entity that name lookup was
1544/// searching for.
1545///
1546/// @param NameLoc      The location of the name within the source code.
1547///
1548/// @param LookupRange  A source range that provides more
1549/// source-location information concerning the lookup itself. For
1550/// example, this range might highlight a nested-name-specifier that
1551/// precedes the name.
1552///
1553/// @returns true
1554bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1555  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1556
1557  DeclarationName Name = Result.getLookupName();
1558  SourceLocation NameLoc = Result.getNameLoc();
1559  SourceRange LookupRange = Result.getContextRange();
1560
1561  switch (Result.getAmbiguityKind()) {
1562  case LookupResult::AmbiguousBaseSubobjects: {
1563    CXXBasePaths *Paths = Result.getBasePaths();
1564    QualType SubobjectType = Paths->front().back().Base->getType();
1565    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1566      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1567      << LookupRange;
1568
1569    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1570    while (isa<CXXMethodDecl>(*Found) &&
1571           cast<CXXMethodDecl>(*Found)->isStatic())
1572      ++Found;
1573
1574    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1575
1576    return true;
1577  }
1578
1579  case LookupResult::AmbiguousBaseSubobjectTypes: {
1580    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1581      << Name << LookupRange;
1582
1583    CXXBasePaths *Paths = Result.getBasePaths();
1584    std::set<Decl *> DeclsPrinted;
1585    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1586                                      PathEnd = Paths->end();
1587         Path != PathEnd; ++Path) {
1588      Decl *D = *Path->Decls.first;
1589      if (DeclsPrinted.insert(D).second)
1590        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1591    }
1592
1593    return true;
1594  }
1595
1596  case LookupResult::AmbiguousTagHiding: {
1597    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1598
1599    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1600
1601    LookupResult::iterator DI, DE = Result.end();
1602    for (DI = Result.begin(); DI != DE; ++DI)
1603      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1604        TagDecls.insert(TD);
1605        Diag(TD->getLocation(), diag::note_hidden_tag);
1606      }
1607
1608    for (DI = Result.begin(); DI != DE; ++DI)
1609      if (!isa<TagDecl>(*DI))
1610        Diag((*DI)->getLocation(), diag::note_hiding_object);
1611
1612    // For recovery purposes, go ahead and implement the hiding.
1613    LookupResult::Filter F = Result.makeFilter();
1614    while (F.hasNext()) {
1615      if (TagDecls.count(F.next()))
1616        F.erase();
1617    }
1618    F.done();
1619
1620    return true;
1621  }
1622
1623  case LookupResult::AmbiguousReference: {
1624    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1625
1626    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1627    for (; DI != DE; ++DI)
1628      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1629
1630    return true;
1631  }
1632  }
1633
1634  llvm_unreachable("unknown ambiguity kind");
1635  return true;
1636}
1637
1638namespace {
1639  struct AssociatedLookup {
1640    AssociatedLookup(Sema &S,
1641                     Sema::AssociatedNamespaceSet &Namespaces,
1642                     Sema::AssociatedClassSet &Classes)
1643      : S(S), Namespaces(Namespaces), Classes(Classes) {
1644    }
1645
1646    Sema &S;
1647    Sema::AssociatedNamespaceSet &Namespaces;
1648    Sema::AssociatedClassSet &Classes;
1649  };
1650}
1651
1652static void
1653addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1654
1655static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1656                                      DeclContext *Ctx) {
1657  // Add the associated namespace for this class.
1658
1659  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1660  // be a locally scoped record.
1661
1662  // We skip out of inline namespaces. The innermost non-inline namespace
1663  // contains all names of all its nested inline namespaces anyway, so we can
1664  // replace the entire inline namespace tree with its root.
1665  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1666         Ctx->isInlineNamespace())
1667    Ctx = Ctx->getParent();
1668
1669  if (Ctx->isFileContext())
1670    Namespaces.insert(Ctx->getPrimaryContext());
1671}
1672
1673// \brief Add the associated classes and namespaces for argument-dependent
1674// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1675static void
1676addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1677                                  const TemplateArgument &Arg) {
1678  // C++ [basic.lookup.koenig]p2, last bullet:
1679  //   -- [...] ;
1680  switch (Arg.getKind()) {
1681    case TemplateArgument::Null:
1682      break;
1683
1684    case TemplateArgument::Type:
1685      // [...] the namespaces and classes associated with the types of the
1686      // template arguments provided for template type parameters (excluding
1687      // template template parameters)
1688      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1689      break;
1690
1691    case TemplateArgument::Template: {
1692      // [...] the namespaces in which any template template arguments are
1693      // defined; and the classes in which any member templates used as
1694      // template template arguments are defined.
1695      TemplateName Template = Arg.getAsTemplate();
1696      if (ClassTemplateDecl *ClassTemplate
1697                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1698        DeclContext *Ctx = ClassTemplate->getDeclContext();
1699        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1700          Result.Classes.insert(EnclosingClass);
1701        // Add the associated namespace for this class.
1702        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1703      }
1704      break;
1705    }
1706
1707    case TemplateArgument::Declaration:
1708    case TemplateArgument::Integral:
1709    case TemplateArgument::Expression:
1710      // [Note: non-type template arguments do not contribute to the set of
1711      //  associated namespaces. ]
1712      break;
1713
1714    case TemplateArgument::Pack:
1715      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1716                                        PEnd = Arg.pack_end();
1717           P != PEnd; ++P)
1718        addAssociatedClassesAndNamespaces(Result, *P);
1719      break;
1720  }
1721}
1722
1723// \brief Add the associated classes and namespaces for
1724// argument-dependent lookup with an argument of class type
1725// (C++ [basic.lookup.koenig]p2).
1726static void
1727addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1728                                  CXXRecordDecl *Class) {
1729
1730  // Just silently ignore anything whose name is __va_list_tag.
1731  if (Class->getDeclName() == Result.S.VAListTagName)
1732    return;
1733
1734  // C++ [basic.lookup.koenig]p2:
1735  //   [...]
1736  //     -- If T is a class type (including unions), its associated
1737  //        classes are: the class itself; the class of which it is a
1738  //        member, if any; and its direct and indirect base
1739  //        classes. Its associated namespaces are the namespaces in
1740  //        which its associated classes are defined.
1741
1742  // Add the class of which it is a member, if any.
1743  DeclContext *Ctx = Class->getDeclContext();
1744  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1745    Result.Classes.insert(EnclosingClass);
1746  // Add the associated namespace for this class.
1747  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1748
1749  // Add the class itself. If we've already seen this class, we don't
1750  // need to visit base classes.
1751  if (!Result.Classes.insert(Class))
1752    return;
1753
1754  // -- If T is a template-id, its associated namespaces and classes are
1755  //    the namespace in which the template is defined; for member
1756  //    templates, the member template’s class; the namespaces and classes
1757  //    associated with the types of the template arguments provided for
1758  //    template type parameters (excluding template template parameters); the
1759  //    namespaces in which any template template arguments are defined; and
1760  //    the classes in which any member templates used as template template
1761  //    arguments are defined. [Note: non-type template arguments do not
1762  //    contribute to the set of associated namespaces. ]
1763  if (ClassTemplateSpecializationDecl *Spec
1764        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1765    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1766    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1767      Result.Classes.insert(EnclosingClass);
1768    // Add the associated namespace for this class.
1769    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1770
1771    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1772    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1773      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1774  }
1775
1776  // Only recurse into base classes for complete types.
1777  if (!Class->hasDefinition()) {
1778    // FIXME: we might need to instantiate templates here
1779    return;
1780  }
1781
1782  // Add direct and indirect base classes along with their associated
1783  // namespaces.
1784  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1785  Bases.push_back(Class);
1786  while (!Bases.empty()) {
1787    // Pop this class off the stack.
1788    Class = Bases.back();
1789    Bases.pop_back();
1790
1791    // Visit the base classes.
1792    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1793                                         BaseEnd = Class->bases_end();
1794         Base != BaseEnd; ++Base) {
1795      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1796      // In dependent contexts, we do ADL twice, and the first time around,
1797      // the base type might be a dependent TemplateSpecializationType, or a
1798      // TemplateTypeParmType. If that happens, simply ignore it.
1799      // FIXME: If we want to support export, we probably need to add the
1800      // namespace of the template in a TemplateSpecializationType, or even
1801      // the classes and namespaces of known non-dependent arguments.
1802      if (!BaseType)
1803        continue;
1804      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1805      if (Result.Classes.insert(BaseDecl)) {
1806        // Find the associated namespace for this base class.
1807        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1808        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1809
1810        // Make sure we visit the bases of this base class.
1811        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1812          Bases.push_back(BaseDecl);
1813      }
1814    }
1815  }
1816}
1817
1818// \brief Add the associated classes and namespaces for
1819// argument-dependent lookup with an argument of type T
1820// (C++ [basic.lookup.koenig]p2).
1821static void
1822addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1823  // C++ [basic.lookup.koenig]p2:
1824  //
1825  //   For each argument type T in the function call, there is a set
1826  //   of zero or more associated namespaces and a set of zero or more
1827  //   associated classes to be considered. The sets of namespaces and
1828  //   classes is determined entirely by the types of the function
1829  //   arguments (and the namespace of any template template
1830  //   argument). Typedef names and using-declarations used to specify
1831  //   the types do not contribute to this set. The sets of namespaces
1832  //   and classes are determined in the following way:
1833
1834  llvm::SmallVector<const Type *, 16> Queue;
1835  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1836
1837  while (true) {
1838    switch (T->getTypeClass()) {
1839
1840#define TYPE(Class, Base)
1841#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1842#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1843#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1844#define ABSTRACT_TYPE(Class, Base)
1845#include "clang/AST/TypeNodes.def"
1846      // T is canonical.  We can also ignore dependent types because
1847      // we don't need to do ADL at the definition point, but if we
1848      // wanted to implement template export (or if we find some other
1849      // use for associated classes and namespaces...) this would be
1850      // wrong.
1851      break;
1852
1853    //    -- If T is a pointer to U or an array of U, its associated
1854    //       namespaces and classes are those associated with U.
1855    case Type::Pointer:
1856      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1857      continue;
1858    case Type::ConstantArray:
1859    case Type::IncompleteArray:
1860    case Type::VariableArray:
1861      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1862      continue;
1863
1864    //     -- If T is a fundamental type, its associated sets of
1865    //        namespaces and classes are both empty.
1866    case Type::Builtin:
1867      break;
1868
1869    //     -- If T is a class type (including unions), its associated
1870    //        classes are: the class itself; the class of which it is a
1871    //        member, if any; and its direct and indirect base
1872    //        classes. Its associated namespaces are the namespaces in
1873    //        which its associated classes are defined.
1874    case Type::Record: {
1875      CXXRecordDecl *Class
1876        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1877      addAssociatedClassesAndNamespaces(Result, Class);
1878      break;
1879    }
1880
1881    //     -- If T is an enumeration type, its associated namespace is
1882    //        the namespace in which it is defined. If it is class
1883    //        member, its associated class is the member’s class; else
1884    //        it has no associated class.
1885    case Type::Enum: {
1886      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1887
1888      DeclContext *Ctx = Enum->getDeclContext();
1889      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1890        Result.Classes.insert(EnclosingClass);
1891
1892      // Add the associated namespace for this class.
1893      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1894
1895      break;
1896    }
1897
1898    //     -- If T is a function type, its associated namespaces and
1899    //        classes are those associated with the function parameter
1900    //        types and those associated with the return type.
1901    case Type::FunctionProto: {
1902      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1903      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1904                                             ArgEnd = Proto->arg_type_end();
1905             Arg != ArgEnd; ++Arg)
1906        Queue.push_back(Arg->getTypePtr());
1907      // fallthrough
1908    }
1909    case Type::FunctionNoProto: {
1910      const FunctionType *FnType = cast<FunctionType>(T);
1911      T = FnType->getResultType().getTypePtr();
1912      continue;
1913    }
1914
1915    //     -- If T is a pointer to a member function of a class X, its
1916    //        associated namespaces and classes are those associated
1917    //        with the function parameter types and return type,
1918    //        together with those associated with X.
1919    //
1920    //     -- If T is a pointer to a data member of class X, its
1921    //        associated namespaces and classes are those associated
1922    //        with the member type together with those associated with
1923    //        X.
1924    case Type::MemberPointer: {
1925      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1926
1927      // Queue up the class type into which this points.
1928      Queue.push_back(MemberPtr->getClass());
1929
1930      // And directly continue with the pointee type.
1931      T = MemberPtr->getPointeeType().getTypePtr();
1932      continue;
1933    }
1934
1935    // As an extension, treat this like a normal pointer.
1936    case Type::BlockPointer:
1937      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1938      continue;
1939
1940    // References aren't covered by the standard, but that's such an
1941    // obvious defect that we cover them anyway.
1942    case Type::LValueReference:
1943    case Type::RValueReference:
1944      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1945      continue;
1946
1947    // These are fundamental types.
1948    case Type::Vector:
1949    case Type::ExtVector:
1950    case Type::Complex:
1951      break;
1952
1953    // These are ignored by ADL.
1954    case Type::ObjCObject:
1955    case Type::ObjCInterface:
1956    case Type::ObjCObjectPointer:
1957      break;
1958    }
1959
1960    if (Queue.empty()) break;
1961    T = Queue.back();
1962    Queue.pop_back();
1963  }
1964}
1965
1966/// \brief Find the associated classes and namespaces for
1967/// argument-dependent lookup for a call with the given set of
1968/// arguments.
1969///
1970/// This routine computes the sets of associated classes and associated
1971/// namespaces searched by argument-dependent lookup
1972/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1973void
1974Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1975                                 AssociatedNamespaceSet &AssociatedNamespaces,
1976                                 AssociatedClassSet &AssociatedClasses) {
1977  AssociatedNamespaces.clear();
1978  AssociatedClasses.clear();
1979
1980  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1981
1982  // C++ [basic.lookup.koenig]p2:
1983  //   For each argument type T in the function call, there is a set
1984  //   of zero or more associated namespaces and a set of zero or more
1985  //   associated classes to be considered. The sets of namespaces and
1986  //   classes is determined entirely by the types of the function
1987  //   arguments (and the namespace of any template template
1988  //   argument).
1989  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1990    Expr *Arg = Args[ArgIdx];
1991
1992    if (Arg->getType() != Context.OverloadTy) {
1993      addAssociatedClassesAndNamespaces(Result, Arg->getType());
1994      continue;
1995    }
1996
1997    // [...] In addition, if the argument is the name or address of a
1998    // set of overloaded functions and/or function templates, its
1999    // associated classes and namespaces are the union of those
2000    // associated with each of the members of the set: the namespace
2001    // in which the function or function template is defined and the
2002    // classes and namespaces associated with its (non-dependent)
2003    // parameter types and return type.
2004    Arg = Arg->IgnoreParens();
2005    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2006      if (unaryOp->getOpcode() == UO_AddrOf)
2007        Arg = unaryOp->getSubExpr();
2008
2009    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2010    if (!ULE) continue;
2011
2012    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2013           I != E; ++I) {
2014      // Look through any using declarations to find the underlying function.
2015      NamedDecl *Fn = (*I)->getUnderlyingDecl();
2016
2017      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2018      if (!FDecl)
2019        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2020
2021      // Add the classes and namespaces associated with the parameter
2022      // types and return type of this function.
2023      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2024    }
2025  }
2026}
2027
2028/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2029/// an acceptable non-member overloaded operator for a call whose
2030/// arguments have types T1 (and, if non-empty, T2). This routine
2031/// implements the check in C++ [over.match.oper]p3b2 concerning
2032/// enumeration types.
2033static bool
2034IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2035                                       QualType T1, QualType T2,
2036                                       ASTContext &Context) {
2037  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2038    return true;
2039
2040  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2041    return true;
2042
2043  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2044  if (Proto->getNumArgs() < 1)
2045    return false;
2046
2047  if (T1->isEnumeralType()) {
2048    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2049    if (Context.hasSameUnqualifiedType(T1, ArgType))
2050      return true;
2051  }
2052
2053  if (Proto->getNumArgs() < 2)
2054    return false;
2055
2056  if (!T2.isNull() && T2->isEnumeralType()) {
2057    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2058    if (Context.hasSameUnqualifiedType(T2, ArgType))
2059      return true;
2060  }
2061
2062  return false;
2063}
2064
2065NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2066                                  SourceLocation Loc,
2067                                  LookupNameKind NameKind,
2068                                  RedeclarationKind Redecl) {
2069  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2070  LookupName(R, S);
2071  return R.getAsSingle<NamedDecl>();
2072}
2073
2074/// \brief Find the protocol with the given name, if any.
2075ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2076                                       SourceLocation IdLoc) {
2077  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2078                             LookupObjCProtocolName);
2079  return cast_or_null<ObjCProtocolDecl>(D);
2080}
2081
2082void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2083                                        QualType T1, QualType T2,
2084                                        UnresolvedSetImpl &Functions) {
2085  // C++ [over.match.oper]p3:
2086  //     -- The set of non-member candidates is the result of the
2087  //        unqualified lookup of operator@ in the context of the
2088  //        expression according to the usual rules for name lookup in
2089  //        unqualified function calls (3.4.2) except that all member
2090  //        functions are ignored. However, if no operand has a class
2091  //        type, only those non-member functions in the lookup set
2092  //        that have a first parameter of type T1 or "reference to
2093  //        (possibly cv-qualified) T1", when T1 is an enumeration
2094  //        type, or (if there is a right operand) a second parameter
2095  //        of type T2 or "reference to (possibly cv-qualified) T2",
2096  //        when T2 is an enumeration type, are candidate functions.
2097  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2098  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2099  LookupName(Operators, S);
2100
2101  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2102
2103  if (Operators.empty())
2104    return;
2105
2106  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2107       Op != OpEnd; ++Op) {
2108    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2109    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2110      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2111        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2112    } else if (FunctionTemplateDecl *FunTmpl
2113                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2114      // FIXME: friend operators?
2115      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2116      // later?
2117      if (!FunTmpl->getDeclContext()->isRecord())
2118        Functions.addDecl(*Op, Op.getAccess());
2119    }
2120  }
2121}
2122
2123/// \brief Look up the constructors for the given class.
2124DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2125  // If the copy constructor has not yet been declared, do so now.
2126  if (CanDeclareSpecialMemberFunction(Context, Class)) {
2127    if (!Class->hasDeclaredDefaultConstructor())
2128      DeclareImplicitDefaultConstructor(Class);
2129    if (!Class->hasDeclaredCopyConstructor())
2130      DeclareImplicitCopyConstructor(Class);
2131  }
2132
2133  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2134  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2135  return Class->lookup(Name);
2136}
2137
2138/// \brief Look for the destructor of the given class.
2139///
2140/// During semantic analysis, this routine should be used in lieu of
2141/// CXXRecordDecl::getDestructor().
2142///
2143/// \returns The destructor for this class.
2144CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2145  // If the destructor has not yet been declared, do so now.
2146  if (CanDeclareSpecialMemberFunction(Context, Class) &&
2147      !Class->hasDeclaredDestructor())
2148    DeclareImplicitDestructor(Class);
2149
2150  return Class->getDestructor();
2151}
2152
2153void ADLResult::insert(NamedDecl *New) {
2154  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2155
2156  // If we haven't yet seen a decl for this key, or the last decl
2157  // was exactly this one, we're done.
2158  if (Old == 0 || Old == New) {
2159    Old = New;
2160    return;
2161  }
2162
2163  // Otherwise, decide which is a more recent redeclaration.
2164  FunctionDecl *OldFD, *NewFD;
2165  if (isa<FunctionTemplateDecl>(New)) {
2166    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2167    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2168  } else {
2169    OldFD = cast<FunctionDecl>(Old);
2170    NewFD = cast<FunctionDecl>(New);
2171  }
2172
2173  FunctionDecl *Cursor = NewFD;
2174  while (true) {
2175    Cursor = Cursor->getPreviousDeclaration();
2176
2177    // If we got to the end without finding OldFD, OldFD is the newer
2178    // declaration;  leave things as they are.
2179    if (!Cursor) return;
2180
2181    // If we do find OldFD, then NewFD is newer.
2182    if (Cursor == OldFD) break;
2183
2184    // Otherwise, keep looking.
2185  }
2186
2187  Old = New;
2188}
2189
2190void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2191                                   Expr **Args, unsigned NumArgs,
2192                                   ADLResult &Result) {
2193  // Find all of the associated namespaces and classes based on the
2194  // arguments we have.
2195  AssociatedNamespaceSet AssociatedNamespaces;
2196  AssociatedClassSet AssociatedClasses;
2197  FindAssociatedClassesAndNamespaces(Args, NumArgs,
2198                                     AssociatedNamespaces,
2199                                     AssociatedClasses);
2200
2201  QualType T1, T2;
2202  if (Operator) {
2203    T1 = Args[0]->getType();
2204    if (NumArgs >= 2)
2205      T2 = Args[1]->getType();
2206  }
2207
2208  // C++ [basic.lookup.argdep]p3:
2209  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2210  //   and let Y be the lookup set produced by argument dependent
2211  //   lookup (defined as follows). If X contains [...] then Y is
2212  //   empty. Otherwise Y is the set of declarations found in the
2213  //   namespaces associated with the argument types as described
2214  //   below. The set of declarations found by the lookup of the name
2215  //   is the union of X and Y.
2216  //
2217  // Here, we compute Y and add its members to the overloaded
2218  // candidate set.
2219  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2220                                     NSEnd = AssociatedNamespaces.end();
2221       NS != NSEnd; ++NS) {
2222    //   When considering an associated namespace, the lookup is the
2223    //   same as the lookup performed when the associated namespace is
2224    //   used as a qualifier (3.4.3.2) except that:
2225    //
2226    //     -- Any using-directives in the associated namespace are
2227    //        ignored.
2228    //
2229    //     -- Any namespace-scope friend functions declared in
2230    //        associated classes are visible within their respective
2231    //        namespaces even if they are not visible during an ordinary
2232    //        lookup (11.4).
2233    DeclContext::lookup_iterator I, E;
2234    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2235      NamedDecl *D = *I;
2236      // If the only declaration here is an ordinary friend, consider
2237      // it only if it was declared in an associated classes.
2238      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2239        DeclContext *LexDC = D->getLexicalDeclContext();
2240        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2241          continue;
2242      }
2243
2244      if (isa<UsingShadowDecl>(D))
2245        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2246
2247      if (isa<FunctionDecl>(D)) {
2248        if (Operator &&
2249            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2250                                                    T1, T2, Context))
2251          continue;
2252      } else if (!isa<FunctionTemplateDecl>(D))
2253        continue;
2254
2255      Result.insert(D);
2256    }
2257  }
2258}
2259
2260//----------------------------------------------------------------------------
2261// Search for all visible declarations.
2262//----------------------------------------------------------------------------
2263VisibleDeclConsumer::~VisibleDeclConsumer() { }
2264
2265namespace {
2266
2267class ShadowContextRAII;
2268
2269class VisibleDeclsRecord {
2270public:
2271  /// \brief An entry in the shadow map, which is optimized to store a
2272  /// single declaration (the common case) but can also store a list
2273  /// of declarations.
2274  class ShadowMapEntry {
2275    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2276
2277    /// \brief Contains either the solitary NamedDecl * or a vector
2278    /// of declarations.
2279    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2280
2281  public:
2282    ShadowMapEntry() : DeclOrVector() { }
2283
2284    void Add(NamedDecl *ND);
2285    void Destroy();
2286
2287    // Iteration.
2288    typedef NamedDecl **iterator;
2289    iterator begin();
2290    iterator end();
2291  };
2292
2293private:
2294  /// \brief A mapping from declaration names to the declarations that have
2295  /// this name within a particular scope.
2296  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2297
2298  /// \brief A list of shadow maps, which is used to model name hiding.
2299  std::list<ShadowMap> ShadowMaps;
2300
2301  /// \brief The declaration contexts we have already visited.
2302  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2303
2304  friend class ShadowContextRAII;
2305
2306public:
2307  /// \brief Determine whether we have already visited this context
2308  /// (and, if not, note that we are going to visit that context now).
2309  bool visitedContext(DeclContext *Ctx) {
2310    return !VisitedContexts.insert(Ctx);
2311  }
2312
2313  bool alreadyVisitedContext(DeclContext *Ctx) {
2314    return VisitedContexts.count(Ctx);
2315  }
2316
2317  /// \brief Determine whether the given declaration is hidden in the
2318  /// current scope.
2319  ///
2320  /// \returns the declaration that hides the given declaration, or
2321  /// NULL if no such declaration exists.
2322  NamedDecl *checkHidden(NamedDecl *ND);
2323
2324  /// \brief Add a declaration to the current shadow map.
2325  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2326};
2327
2328/// \brief RAII object that records when we've entered a shadow context.
2329class ShadowContextRAII {
2330  VisibleDeclsRecord &Visible;
2331
2332  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2333
2334public:
2335  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2336    Visible.ShadowMaps.push_back(ShadowMap());
2337  }
2338
2339  ~ShadowContextRAII() {
2340    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2341                          EEnd = Visible.ShadowMaps.back().end();
2342         E != EEnd;
2343         ++E)
2344      E->second.Destroy();
2345
2346    Visible.ShadowMaps.pop_back();
2347  }
2348};
2349
2350} // end anonymous namespace
2351
2352void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2353  if (DeclOrVector.isNull()) {
2354    // 0 - > 1 elements: just set the single element information.
2355    DeclOrVector = ND;
2356    return;
2357  }
2358
2359  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2360    // 1 -> 2 elements: create the vector of results and push in the
2361    // existing declaration.
2362    DeclVector *Vec = new DeclVector;
2363    Vec->push_back(PrevND);
2364    DeclOrVector = Vec;
2365  }
2366
2367  // Add the new element to the end of the vector.
2368  DeclOrVector.get<DeclVector*>()->push_back(ND);
2369}
2370
2371void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2372  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2373    delete Vec;
2374    DeclOrVector = ((NamedDecl *)0);
2375  }
2376}
2377
2378VisibleDeclsRecord::ShadowMapEntry::iterator
2379VisibleDeclsRecord::ShadowMapEntry::begin() {
2380  if (DeclOrVector.isNull())
2381    return 0;
2382
2383  if (DeclOrVector.dyn_cast<NamedDecl *>())
2384    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2385
2386  return DeclOrVector.get<DeclVector *>()->begin();
2387}
2388
2389VisibleDeclsRecord::ShadowMapEntry::iterator
2390VisibleDeclsRecord::ShadowMapEntry::end() {
2391  if (DeclOrVector.isNull())
2392    return 0;
2393
2394  if (DeclOrVector.dyn_cast<NamedDecl *>())
2395    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2396
2397  return DeclOrVector.get<DeclVector *>()->end();
2398}
2399
2400NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2401  // Look through using declarations.
2402  ND = ND->getUnderlyingDecl();
2403
2404  unsigned IDNS = ND->getIdentifierNamespace();
2405  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2406  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2407       SM != SMEnd; ++SM) {
2408    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2409    if (Pos == SM->end())
2410      continue;
2411
2412    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2413                               IEnd = Pos->second.end();
2414         I != IEnd; ++I) {
2415      // A tag declaration does not hide a non-tag declaration.
2416      if ((*I)->hasTagIdentifierNamespace() &&
2417          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2418                   Decl::IDNS_ObjCProtocol)))
2419        continue;
2420
2421      // Protocols are in distinct namespaces from everything else.
2422      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2423           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2424          (*I)->getIdentifierNamespace() != IDNS)
2425        continue;
2426
2427      // Functions and function templates in the same scope overload
2428      // rather than hide.  FIXME: Look for hiding based on function
2429      // signatures!
2430      if ((*I)->isFunctionOrFunctionTemplate() &&
2431          ND->isFunctionOrFunctionTemplate() &&
2432          SM == ShadowMaps.rbegin())
2433        continue;
2434
2435      // We've found a declaration that hides this one.
2436      return *I;
2437    }
2438  }
2439
2440  return 0;
2441}
2442
2443static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2444                               bool QualifiedNameLookup,
2445                               bool InBaseClass,
2446                               VisibleDeclConsumer &Consumer,
2447                               VisibleDeclsRecord &Visited) {
2448  if (!Ctx)
2449    return;
2450
2451  // Make sure we don't visit the same context twice.
2452  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2453    return;
2454
2455  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2456    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2457
2458  // Enumerate all of the results in this context.
2459  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2460       CurCtx = CurCtx->getNextContext()) {
2461    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2462                                 DEnd = CurCtx->decls_end();
2463         D != DEnd; ++D) {
2464      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2465        if (Result.isAcceptableDecl(ND)) {
2466          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2467          Visited.add(ND);
2468        }
2469
2470      // Visit transparent contexts and inline namespaces inside this context.
2471      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2472        if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
2473          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2474                             Consumer, Visited);
2475      }
2476    }
2477  }
2478
2479  // Traverse using directives for qualified name lookup.
2480  if (QualifiedNameLookup) {
2481    ShadowContextRAII Shadow(Visited);
2482    DeclContext::udir_iterator I, E;
2483    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2484      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2485                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2486    }
2487  }
2488
2489  // Traverse the contexts of inherited C++ classes.
2490  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2491    if (!Record->hasDefinition())
2492      return;
2493
2494    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2495                                         BEnd = Record->bases_end();
2496         B != BEnd; ++B) {
2497      QualType BaseType = B->getType();
2498
2499      // Don't look into dependent bases, because name lookup can't look
2500      // there anyway.
2501      if (BaseType->isDependentType())
2502        continue;
2503
2504      const RecordType *Record = BaseType->getAs<RecordType>();
2505      if (!Record)
2506        continue;
2507
2508      // FIXME: It would be nice to be able to determine whether referencing
2509      // a particular member would be ambiguous. For example, given
2510      //
2511      //   struct A { int member; };
2512      //   struct B { int member; };
2513      //   struct C : A, B { };
2514      //
2515      //   void f(C *c) { c->### }
2516      //
2517      // accessing 'member' would result in an ambiguity. However, we
2518      // could be smart enough to qualify the member with the base
2519      // class, e.g.,
2520      //
2521      //   c->B::member
2522      //
2523      // or
2524      //
2525      //   c->A::member
2526
2527      // Find results in this base class (and its bases).
2528      ShadowContextRAII Shadow(Visited);
2529      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2530                         true, Consumer, Visited);
2531    }
2532  }
2533
2534  // Traverse the contexts of Objective-C classes.
2535  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2536    // Traverse categories.
2537    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2538         Category; Category = Category->getNextClassCategory()) {
2539      ShadowContextRAII Shadow(Visited);
2540      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2541                         Consumer, Visited);
2542    }
2543
2544    // Traverse protocols.
2545    for (ObjCInterfaceDecl::all_protocol_iterator
2546         I = IFace->all_referenced_protocol_begin(),
2547         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2548      ShadowContextRAII Shadow(Visited);
2549      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2550                         Visited);
2551    }
2552
2553    // Traverse the superclass.
2554    if (IFace->getSuperClass()) {
2555      ShadowContextRAII Shadow(Visited);
2556      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2557                         true, Consumer, Visited);
2558    }
2559
2560    // If there is an implementation, traverse it. We do this to find
2561    // synthesized ivars.
2562    if (IFace->getImplementation()) {
2563      ShadowContextRAII Shadow(Visited);
2564      LookupVisibleDecls(IFace->getImplementation(), Result,
2565                         QualifiedNameLookup, true, Consumer, Visited);
2566    }
2567  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2568    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2569           E = Protocol->protocol_end(); I != E; ++I) {
2570      ShadowContextRAII Shadow(Visited);
2571      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2572                         Visited);
2573    }
2574  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2575    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2576           E = Category->protocol_end(); I != E; ++I) {
2577      ShadowContextRAII Shadow(Visited);
2578      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2579                         Visited);
2580    }
2581
2582    // If there is an implementation, traverse it.
2583    if (Category->getImplementation()) {
2584      ShadowContextRAII Shadow(Visited);
2585      LookupVisibleDecls(Category->getImplementation(), Result,
2586                         QualifiedNameLookup, true, Consumer, Visited);
2587    }
2588  }
2589}
2590
2591static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2592                               UnqualUsingDirectiveSet &UDirs,
2593                               VisibleDeclConsumer &Consumer,
2594                               VisibleDeclsRecord &Visited) {
2595  if (!S)
2596    return;
2597
2598  if (!S->getEntity() ||
2599      (!S->getParent() &&
2600       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2601      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2602    // Walk through the declarations in this Scope.
2603    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2604         D != DEnd; ++D) {
2605      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2606        if (Result.isAcceptableDecl(ND)) {
2607          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2608          Visited.add(ND);
2609        }
2610    }
2611  }
2612
2613  // FIXME: C++ [temp.local]p8
2614  DeclContext *Entity = 0;
2615  if (S->getEntity()) {
2616    // Look into this scope's declaration context, along with any of its
2617    // parent lookup contexts (e.g., enclosing classes), up to the point
2618    // where we hit the context stored in the next outer scope.
2619    Entity = (DeclContext *)S->getEntity();
2620    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2621
2622    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2623         Ctx = Ctx->getLookupParent()) {
2624      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2625        if (Method->isInstanceMethod()) {
2626          // For instance methods, look for ivars in the method's interface.
2627          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2628                                  Result.getNameLoc(), Sema::LookupMemberName);
2629          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2630            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2631                               /*InBaseClass=*/false, Consumer, Visited);
2632        }
2633
2634        // We've already performed all of the name lookup that we need
2635        // to for Objective-C methods; the next context will be the
2636        // outer scope.
2637        break;
2638      }
2639
2640      if (Ctx->isFunctionOrMethod())
2641        continue;
2642
2643      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2644                         /*InBaseClass=*/false, Consumer, Visited);
2645    }
2646  } else if (!S->getParent()) {
2647    // Look into the translation unit scope. We walk through the translation
2648    // unit's declaration context, because the Scope itself won't have all of
2649    // the declarations if we loaded a precompiled header.
2650    // FIXME: We would like the translation unit's Scope object to point to the
2651    // translation unit, so we don't need this special "if" branch. However,
2652    // doing so would force the normal C++ name-lookup code to look into the
2653    // translation unit decl when the IdentifierInfo chains would suffice.
2654    // Once we fix that problem (which is part of a more general "don't look
2655    // in DeclContexts unless we have to" optimization), we can eliminate this.
2656    Entity = Result.getSema().Context.getTranslationUnitDecl();
2657    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2658                       /*InBaseClass=*/false, Consumer, Visited);
2659  }
2660
2661  if (Entity) {
2662    // Lookup visible declarations in any namespaces found by using
2663    // directives.
2664    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2665    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2666    for (; UI != UEnd; ++UI)
2667      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2668                         Result, /*QualifiedNameLookup=*/false,
2669                         /*InBaseClass=*/false, Consumer, Visited);
2670  }
2671
2672  // Lookup names in the parent scope.
2673  ShadowContextRAII Shadow(Visited);
2674  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2675}
2676
2677void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2678                              VisibleDeclConsumer &Consumer,
2679                              bool IncludeGlobalScope) {
2680  // Determine the set of using directives available during
2681  // unqualified name lookup.
2682  Scope *Initial = S;
2683  UnqualUsingDirectiveSet UDirs;
2684  if (getLangOptions().CPlusPlus) {
2685    // Find the first namespace or translation-unit scope.
2686    while (S && !isNamespaceOrTranslationUnitScope(S))
2687      S = S->getParent();
2688
2689    UDirs.visitScopeChain(Initial, S);
2690  }
2691  UDirs.done();
2692
2693  // Look for visible declarations.
2694  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2695  VisibleDeclsRecord Visited;
2696  if (!IncludeGlobalScope)
2697    Visited.visitedContext(Context.getTranslationUnitDecl());
2698  ShadowContextRAII Shadow(Visited);
2699  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2700}
2701
2702void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2703                              VisibleDeclConsumer &Consumer,
2704                              bool IncludeGlobalScope) {
2705  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2706  VisibleDeclsRecord Visited;
2707  if (!IncludeGlobalScope)
2708    Visited.visitedContext(Context.getTranslationUnitDecl());
2709  ShadowContextRAII Shadow(Visited);
2710  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2711                       /*InBaseClass=*/false, Consumer, Visited);
2712}
2713
2714//----------------------------------------------------------------------------
2715// Typo correction
2716//----------------------------------------------------------------------------
2717
2718namespace {
2719class TypoCorrectionConsumer : public VisibleDeclConsumer {
2720  /// \brief The name written that is a typo in the source.
2721  llvm::StringRef Typo;
2722
2723  /// \brief The results found that have the smallest edit distance
2724  /// found (so far) with the typo name.
2725  ///
2726  /// The boolean value indicates whether there is a keyword with this name.
2727  llvm::StringMap<bool, llvm::BumpPtrAllocator> BestResults;
2728
2729  /// \brief The best edit distance found so far.
2730  unsigned BestEditDistance;
2731
2732public:
2733  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2734    : Typo(Typo->getName()),
2735      BestEditDistance((std::numeric_limits<unsigned>::max)()) { }
2736
2737  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2738  void FoundName(llvm::StringRef Name);
2739  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2740
2741  typedef llvm::StringMap<bool, llvm::BumpPtrAllocator>::iterator iterator;
2742  iterator begin() { return BestResults.begin(); }
2743  iterator end()  { return BestResults.end(); }
2744  void erase(iterator I) { BestResults.erase(I); }
2745  unsigned size() const { return BestResults.size(); }
2746  bool empty() const { return BestResults.empty(); }
2747
2748  bool &operator[](llvm::StringRef Name) {
2749    return BestResults[Name];
2750  }
2751
2752  unsigned getBestEditDistance() const { return BestEditDistance; }
2753};
2754
2755}
2756
2757void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2758                                       bool InBaseClass) {
2759  // Don't consider hidden names for typo correction.
2760  if (Hiding)
2761    return;
2762
2763  // Only consider entities with identifiers for names, ignoring
2764  // special names (constructors, overloaded operators, selectors,
2765  // etc.).
2766  IdentifierInfo *Name = ND->getIdentifier();
2767  if (!Name)
2768    return;
2769
2770  FoundName(Name->getName());
2771}
2772
2773void TypoCorrectionConsumer::FoundName(llvm::StringRef Name) {
2774  using namespace std;
2775
2776  // Use a simple length-based heuristic to determine the minimum possible
2777  // edit distance. If the minimum isn't good enough, bail out early.
2778  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
2779  if (MinED > BestEditDistance || (MinED && Typo.size() / MinED < 3))
2780    return;
2781
2782  // Compute an upper bound on the allowable edit distance, so that the
2783  // edit-distance algorithm can short-circuit.
2784  unsigned UpperBound = min(unsigned((Typo.size() + 2) / 3), BestEditDistance);
2785
2786  // Compute the edit distance between the typo and the name of this
2787  // entity. If this edit distance is not worse than the best edit
2788  // distance we've seen so far, add it to the list of results.
2789  unsigned ED = Typo.edit_distance(Name, true, UpperBound);
2790  if (ED == 0)
2791    return;
2792
2793  if (ED < BestEditDistance) {
2794    // This result is better than any we've seen before; clear out
2795    // the previous results.
2796    BestResults.clear();
2797    BestEditDistance = ED;
2798  } else if (ED > BestEditDistance) {
2799    // This result is worse than the best results we've seen so far;
2800    // ignore it.
2801    return;
2802  }
2803
2804  // Add this name to the list of results. By not assigning a value, we
2805  // keep the current value if we've seen this name before (either as a
2806  // keyword or as a declaration), or get the default value (not a keyword)
2807  // if we haven't seen it before.
2808  (void)BestResults[Name];
2809}
2810
2811void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2812                                              llvm::StringRef Keyword) {
2813  // Compute the edit distance between the typo and this keyword.
2814  // If this edit distance is not worse than the best edit
2815  // distance we've seen so far, add it to the list of results.
2816  unsigned ED = Typo.edit_distance(Keyword);
2817  if (ED < BestEditDistance) {
2818    BestResults.clear();
2819    BestEditDistance = ED;
2820  } else if (ED > BestEditDistance) {
2821    // This result is worse than the best results we've seen so far;
2822    // ignore it.
2823    return;
2824  }
2825
2826  BestResults[Keyword] = true;
2827}
2828
2829/// \brief Perform name lookup for a possible result for typo correction.
2830static void LookupPotentialTypoResult(Sema &SemaRef,
2831                                      LookupResult &Res,
2832                                      IdentifierInfo *Name,
2833                                      Scope *S, CXXScopeSpec *SS,
2834                                      DeclContext *MemberContext,
2835                                      bool EnteringContext,
2836                                      Sema::CorrectTypoContext CTC) {
2837  Res.suppressDiagnostics();
2838  Res.clear();
2839  Res.setLookupName(Name);
2840  if (MemberContext) {
2841    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
2842      if (CTC == Sema::CTC_ObjCIvarLookup) {
2843        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
2844          Res.addDecl(Ivar);
2845          Res.resolveKind();
2846          return;
2847        }
2848      }
2849
2850      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
2851        Res.addDecl(Prop);
2852        Res.resolveKind();
2853        return;
2854      }
2855    }
2856
2857    SemaRef.LookupQualifiedName(Res, MemberContext);
2858    return;
2859  }
2860
2861  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2862                           EnteringContext);
2863
2864  // Fake ivar lookup; this should really be part of
2865  // LookupParsedName.
2866  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
2867    if (Method->isInstanceMethod() && Method->getClassInterface() &&
2868        (Res.empty() ||
2869         (Res.isSingleResult() &&
2870          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
2871       if (ObjCIvarDecl *IV
2872             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
2873         Res.addDecl(IV);
2874         Res.resolveKind();
2875       }
2876     }
2877  }
2878}
2879
2880/// \brief Try to "correct" a typo in the source code by finding
2881/// visible declarations whose names are similar to the name that was
2882/// present in the source code.
2883///
2884/// \param Res the \c LookupResult structure that contains the name
2885/// that was present in the source code along with the name-lookup
2886/// criteria used to search for the name. On success, this structure
2887/// will contain the results of name lookup.
2888///
2889/// \param S the scope in which name lookup occurs.
2890///
2891/// \param SS the nested-name-specifier that precedes the name we're
2892/// looking for, if present.
2893///
2894/// \param MemberContext if non-NULL, the context in which to look for
2895/// a member access expression.
2896///
2897/// \param EnteringContext whether we're entering the context described by
2898/// the nested-name-specifier SS.
2899///
2900/// \param CTC The context in which typo correction occurs, which impacts the
2901/// set of keywords permitted.
2902///
2903/// \param OPT when non-NULL, the search for visible declarations will
2904/// also walk the protocols in the qualified interfaces of \p OPT.
2905///
2906/// \returns the corrected name if the typo was corrected, otherwise returns an
2907/// empty \c DeclarationName. When a typo was corrected, the result structure
2908/// may contain the results of name lookup for the correct name or it may be
2909/// empty.
2910DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2911                                  DeclContext *MemberContext,
2912                                  bool EnteringContext,
2913                                  CorrectTypoContext CTC,
2914                                  const ObjCObjectPointerType *OPT) {
2915  if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
2916    return DeclarationName();
2917
2918  // We only attempt to correct typos for identifiers.
2919  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2920  if (!Typo)
2921    return DeclarationName();
2922
2923  // If the scope specifier itself was invalid, don't try to correct
2924  // typos.
2925  if (SS && SS->isInvalid())
2926    return DeclarationName();
2927
2928  // Never try to correct typos during template deduction or
2929  // instantiation.
2930  if (!ActiveTemplateInstantiations.empty())
2931    return DeclarationName();
2932
2933  TypoCorrectionConsumer Consumer(Typo);
2934
2935  // Perform name lookup to find visible, similarly-named entities.
2936  bool IsUnqualifiedLookup = false;
2937  if (MemberContext) {
2938    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2939
2940    // Look in qualified interfaces.
2941    if (OPT) {
2942      for (ObjCObjectPointerType::qual_iterator
2943             I = OPT->qual_begin(), E = OPT->qual_end();
2944           I != E; ++I)
2945        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2946    }
2947  } else if (SS && SS->isSet()) {
2948    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2949    if (!DC)
2950      return DeclarationName();
2951
2952    // Provide a stop gap for files that are just seriously broken.  Trying
2953    // to correct all typos can turn into a HUGE performance penalty, causing
2954    // some files to take minutes to get rejected by the parser.
2955    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
2956      return DeclarationName();
2957    ++TyposCorrected;
2958
2959    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2960  } else {
2961    IsUnqualifiedLookup = true;
2962    UnqualifiedTyposCorrectedMap::iterator Cached
2963      = UnqualifiedTyposCorrected.find(Typo);
2964    if (Cached == UnqualifiedTyposCorrected.end()) {
2965      // Provide a stop gap for files that are just seriously broken.  Trying
2966      // to correct all typos can turn into a HUGE performance penalty, causing
2967      // some files to take minutes to get rejected by the parser.
2968      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
2969        return DeclarationName();
2970
2971      // For unqualified lookup, look through all of the names that we have
2972      // seen in this translation unit.
2973      for (IdentifierTable::iterator I = Context.Idents.begin(),
2974                                  IEnd = Context.Idents.end();
2975           I != IEnd; ++I)
2976        Consumer.FoundName(I->getKey());
2977
2978      // Walk through identifiers in external identifier sources.
2979      if (IdentifierInfoLookup *External
2980                              = Context.Idents.getExternalIdentifierLookup()) {
2981        IdentifierIterator *Iter = External->getIdentifiers();
2982        do {
2983          llvm::StringRef Name = Iter->Next();
2984          if (Name.empty())
2985            break;
2986
2987          Consumer.FoundName(Name);
2988        } while (true);
2989      }
2990    } else {
2991      // Use the cached value, unless it's a keyword. In the keyword case, we'll
2992      // end up adding the keyword below.
2993      if (Cached->second.first.empty())
2994        return DeclarationName();
2995
2996      if (!Cached->second.second)
2997        Consumer.FoundName(Cached->second.first);
2998    }
2999  }
3000
3001  // Add context-dependent keywords.
3002  bool WantTypeSpecifiers = false;
3003  bool WantExpressionKeywords = false;
3004  bool WantCXXNamedCasts = false;
3005  bool WantRemainingKeywords = false;
3006  switch (CTC) {
3007    case CTC_Unknown:
3008      WantTypeSpecifiers = true;
3009      WantExpressionKeywords = true;
3010      WantCXXNamedCasts = true;
3011      WantRemainingKeywords = true;
3012
3013      if (ObjCMethodDecl *Method = getCurMethodDecl())
3014        if (Method->getClassInterface() &&
3015            Method->getClassInterface()->getSuperClass())
3016          Consumer.addKeywordResult(Context, "super");
3017
3018      break;
3019
3020    case CTC_NoKeywords:
3021      break;
3022
3023    case CTC_Type:
3024      WantTypeSpecifiers = true;
3025      break;
3026
3027    case CTC_ObjCMessageReceiver:
3028      Consumer.addKeywordResult(Context, "super");
3029      // Fall through to handle message receivers like expressions.
3030
3031    case CTC_Expression:
3032      if (getLangOptions().CPlusPlus)
3033        WantTypeSpecifiers = true;
3034      WantExpressionKeywords = true;
3035      // Fall through to get C++ named casts.
3036
3037    case CTC_CXXCasts:
3038      WantCXXNamedCasts = true;
3039      break;
3040
3041    case CTC_ObjCPropertyLookup:
3042      // FIXME: Add "isa"?
3043      break;
3044
3045    case CTC_MemberLookup:
3046      if (getLangOptions().CPlusPlus)
3047        Consumer.addKeywordResult(Context, "template");
3048      break;
3049
3050    case CTC_ObjCIvarLookup:
3051      break;
3052  }
3053
3054  if (WantTypeSpecifiers) {
3055    // Add type-specifier keywords to the set of results.
3056    const char *CTypeSpecs[] = {
3057      "char", "const", "double", "enum", "float", "int", "long", "short",
3058      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
3059      "_Complex", "_Imaginary",
3060      // storage-specifiers as well
3061      "extern", "inline", "static", "typedef"
3062    };
3063
3064    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3065    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3066      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
3067
3068    if (getLangOptions().C99)
3069      Consumer.addKeywordResult(Context, "restrict");
3070    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
3071      Consumer.addKeywordResult(Context, "bool");
3072
3073    if (getLangOptions().CPlusPlus) {
3074      Consumer.addKeywordResult(Context, "class");
3075      Consumer.addKeywordResult(Context, "typename");
3076      Consumer.addKeywordResult(Context, "wchar_t");
3077
3078      if (getLangOptions().CPlusPlus0x) {
3079        Consumer.addKeywordResult(Context, "char16_t");
3080        Consumer.addKeywordResult(Context, "char32_t");
3081        Consumer.addKeywordResult(Context, "constexpr");
3082        Consumer.addKeywordResult(Context, "decltype");
3083        Consumer.addKeywordResult(Context, "thread_local");
3084      }
3085    }
3086
3087    if (getLangOptions().GNUMode)
3088      Consumer.addKeywordResult(Context, "typeof");
3089  }
3090
3091  if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
3092    Consumer.addKeywordResult(Context, "const_cast");
3093    Consumer.addKeywordResult(Context, "dynamic_cast");
3094    Consumer.addKeywordResult(Context, "reinterpret_cast");
3095    Consumer.addKeywordResult(Context, "static_cast");
3096  }
3097
3098  if (WantExpressionKeywords) {
3099    Consumer.addKeywordResult(Context, "sizeof");
3100    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
3101      Consumer.addKeywordResult(Context, "false");
3102      Consumer.addKeywordResult(Context, "true");
3103    }
3104
3105    if (getLangOptions().CPlusPlus) {
3106      const char *CXXExprs[] = {
3107        "delete", "new", "operator", "throw", "typeid"
3108      };
3109      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3110      for (unsigned I = 0; I != NumCXXExprs; ++I)
3111        Consumer.addKeywordResult(Context, CXXExprs[I]);
3112
3113      if (isa<CXXMethodDecl>(CurContext) &&
3114          cast<CXXMethodDecl>(CurContext)->isInstance())
3115        Consumer.addKeywordResult(Context, "this");
3116
3117      if (getLangOptions().CPlusPlus0x) {
3118        Consumer.addKeywordResult(Context, "alignof");
3119        Consumer.addKeywordResult(Context, "nullptr");
3120      }
3121    }
3122  }
3123
3124  if (WantRemainingKeywords) {
3125    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
3126      // Statements.
3127      const char *CStmts[] = {
3128        "do", "else", "for", "goto", "if", "return", "switch", "while" };
3129      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3130      for (unsigned I = 0; I != NumCStmts; ++I)
3131        Consumer.addKeywordResult(Context, CStmts[I]);
3132
3133      if (getLangOptions().CPlusPlus) {
3134        Consumer.addKeywordResult(Context, "catch");
3135        Consumer.addKeywordResult(Context, "try");
3136      }
3137
3138      if (S && S->getBreakParent())
3139        Consumer.addKeywordResult(Context, "break");
3140
3141      if (S && S->getContinueParent())
3142        Consumer.addKeywordResult(Context, "continue");
3143
3144      if (!getCurFunction()->SwitchStack.empty()) {
3145        Consumer.addKeywordResult(Context, "case");
3146        Consumer.addKeywordResult(Context, "default");
3147      }
3148    } else {
3149      if (getLangOptions().CPlusPlus) {
3150        Consumer.addKeywordResult(Context, "namespace");
3151        Consumer.addKeywordResult(Context, "template");
3152      }
3153
3154      if (S && S->isClassScope()) {
3155        Consumer.addKeywordResult(Context, "explicit");
3156        Consumer.addKeywordResult(Context, "friend");
3157        Consumer.addKeywordResult(Context, "mutable");
3158        Consumer.addKeywordResult(Context, "private");
3159        Consumer.addKeywordResult(Context, "protected");
3160        Consumer.addKeywordResult(Context, "public");
3161        Consumer.addKeywordResult(Context, "virtual");
3162      }
3163    }
3164
3165    if (getLangOptions().CPlusPlus) {
3166      Consumer.addKeywordResult(Context, "using");
3167
3168      if (getLangOptions().CPlusPlus0x)
3169        Consumer.addKeywordResult(Context, "static_assert");
3170    }
3171  }
3172
3173  // If we haven't found anything, we're done.
3174  if (Consumer.empty()) {
3175    // If this was an unqualified lookup, note that no correction was found.
3176    if (IsUnqualifiedLookup)
3177      (void)UnqualifiedTyposCorrected[Typo];
3178
3179    return DeclarationName();
3180  }
3181
3182  // Make sure that the user typed at least 3 characters for each correction
3183  // made. Otherwise, we don't even both looking at the results.
3184
3185  // We also suppress exact matches; those should be handled by a
3186  // different mechanism (e.g., one that introduces qualification in
3187  // C++).
3188  unsigned ED = Consumer.getBestEditDistance();
3189  if (ED > 0 && Typo->getName().size() / ED < 3) {
3190    // If this was an unqualified lookup, note that no correction was found.
3191    if (IsUnqualifiedLookup)
3192      (void)UnqualifiedTyposCorrected[Typo];
3193
3194    return DeclarationName();
3195  }
3196
3197  // Weed out any names that could not be found by name lookup.
3198  bool LastLookupWasAccepted = false;
3199  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3200                                     IEnd = Consumer.end();
3201       I != IEnd; /* Increment in loop. */) {
3202    // Keywords are always found.
3203    if (I->second) {
3204      ++I;
3205      continue;
3206    }
3207
3208    // Perform name lookup on this name.
3209    IdentifierInfo *Name = &Context.Idents.get(I->getKey());
3210    LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3211                              EnteringContext, CTC);
3212
3213    switch (Res.getResultKind()) {
3214    case LookupResult::NotFound:
3215    case LookupResult::NotFoundInCurrentInstantiation:
3216    case LookupResult::Ambiguous:
3217      // We didn't find this name in our scope, or didn't like what we found;
3218      // ignore it.
3219      Res.suppressDiagnostics();
3220      {
3221        TypoCorrectionConsumer::iterator Next = I;
3222        ++Next;
3223        Consumer.erase(I);
3224        I = Next;
3225      }
3226      LastLookupWasAccepted = false;
3227      break;
3228
3229    case LookupResult::Found:
3230    case LookupResult::FoundOverloaded:
3231    case LookupResult::FoundUnresolvedValue:
3232      ++I;
3233      LastLookupWasAccepted = true;
3234      break;
3235    }
3236
3237    if (Res.isAmbiguous()) {
3238      // We don't deal with ambiguities.
3239      Res.suppressDiagnostics();
3240      Res.clear();
3241      return DeclarationName();
3242    }
3243  }
3244
3245  // If only a single name remains, return that result.
3246  if (Consumer.size() == 1) {
3247    IdentifierInfo *Name = &Context.Idents.get(Consumer.begin()->getKey());
3248    if (Consumer.begin()->second) {
3249      Res.suppressDiagnostics();
3250      Res.clear();
3251
3252      // Don't correct to a keyword that's the same as the typo; the keyword
3253      // wasn't actually in scope.
3254      if (ED == 0) {
3255        Res.setLookupName(Typo);
3256        return DeclarationName();
3257      }
3258
3259    } else if (!LastLookupWasAccepted) {
3260      // Perform name lookup on this name.
3261      LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3262                                EnteringContext, CTC);
3263    }
3264
3265    // Record the correction for unqualified lookup.
3266    if (IsUnqualifiedLookup)
3267      UnqualifiedTyposCorrected[Typo]
3268        = std::make_pair(Name->getName(), Consumer.begin()->second);
3269
3270    return &Context.Idents.get(Consumer.begin()->getKey());
3271  }
3272  else if (Consumer.size() > 1 && CTC == CTC_ObjCMessageReceiver
3273           && Consumer["super"]) {
3274    // Prefix 'super' when we're completing in a message-receiver
3275    // context.
3276    Res.suppressDiagnostics();
3277    Res.clear();
3278
3279    // Don't correct to a keyword that's the same as the typo; the keyword
3280    // wasn't actually in scope.
3281    if (ED == 0) {
3282      Res.setLookupName(Typo);
3283      return DeclarationName();
3284    }
3285
3286    // Record the correction for unqualified lookup.
3287    if (IsUnqualifiedLookup)
3288      UnqualifiedTyposCorrected[Typo]
3289        = std::make_pair("super", Consumer.begin()->second);
3290
3291    return &Context.Idents.get("super");
3292  }
3293
3294  Res.suppressDiagnostics();
3295  Res.setLookupName(Typo);
3296  Res.clear();
3297  // Record the correction for unqualified lookup.
3298  if (IsUnqualifiedLookup)
3299    (void)UnqualifiedTyposCorrected[Typo];
3300
3301  return DeclarationName();
3302}
3303