SemaLookup.cpp revision de488aea99349696f2a5ea79ca1693b297eb62ca
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/Support/ErrorHandling.h"
29#include <set>
30#include <vector>
31#include <iterator>
32#include <utility>
33#include <algorithm>
34
35using namespace clang;
36
37namespace {
38  class UnqualUsingEntry {
39    const DeclContext *Nominated;
40    const DeclContext *CommonAncestor;
41
42  public:
43    UnqualUsingEntry(const DeclContext *Nominated,
44                     const DeclContext *CommonAncestor)
45      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
46    }
47
48    const DeclContext *getCommonAncestor() const {
49      return CommonAncestor;
50    }
51
52    const DeclContext *getNominatedNamespace() const {
53      return Nominated;
54    }
55
56    // Sort by the pointer value of the common ancestor.
57    struct Comparator {
58      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
59        return L.getCommonAncestor() < R.getCommonAncestor();
60      }
61
62      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
63        return E.getCommonAncestor() < DC;
64      }
65
66      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
67        return DC < E.getCommonAncestor();
68      }
69    };
70  };
71
72  /// A collection of using directives, as used by C++ unqualified
73  /// lookup.
74  class UnqualUsingDirectiveSet {
75    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
76
77    ListTy list;
78    llvm::SmallPtrSet<DeclContext*, 8> visited;
79
80  public:
81    UnqualUsingDirectiveSet() {}
82
83    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
84      // C++ [namespace.udir]p1:
85      //   During unqualified name lookup, the names appear as if they
86      //   were declared in the nearest enclosing namespace which contains
87      //   both the using-directive and the nominated namespace.
88      DeclContext *InnermostFileDC
89        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
90      assert(InnermostFileDC && InnermostFileDC->isFileContext());
91
92      for (; S; S = S->getParent()) {
93        if (!(S->getFlags() & Scope::DeclScope))
94          continue;
95
96        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
97          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
98          visit(Ctx, EffectiveDC);
99        } else {
100          Scope::udir_iterator I = S->using_directives_begin(),
101                             End = S->using_directives_end();
102
103          for (; I != End; ++I)
104            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
105        }
106      }
107    }
108
109    // Visits a context and collect all of its using directives
110    // recursively.  Treats all using directives as if they were
111    // declared in the context.
112    //
113    // A given context is only every visited once, so it is important
114    // that contexts be visited from the inside out in order to get
115    // the effective DCs right.
116    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
117      if (!visited.insert(DC))
118        return;
119
120      addUsingDirectives(DC, EffectiveDC);
121    }
122
123    // Visits a using directive and collects all of its using
124    // directives recursively.  Treats all using directives as if they
125    // were declared in the effective DC.
126    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
127      DeclContext *NS = UD->getNominatedNamespace();
128      if (!visited.insert(NS))
129        return;
130
131      addUsingDirective(UD, EffectiveDC);
132      addUsingDirectives(NS, EffectiveDC);
133    }
134
135    // Adds all the using directives in a context (and those nominated
136    // by its using directives, transitively) as if they appeared in
137    // the given effective context.
138    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
139      llvm::SmallVector<DeclContext*,4> queue;
140      while (true) {
141        DeclContext::udir_iterator I, End;
142        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
143          UsingDirectiveDecl *UD = *I;
144          DeclContext *NS = UD->getNominatedNamespace();
145          if (visited.insert(NS)) {
146            addUsingDirective(UD, EffectiveDC);
147            queue.push_back(NS);
148          }
149        }
150
151        if (queue.empty())
152          return;
153
154        DC = queue.back();
155        queue.pop_back();
156      }
157    }
158
159    // Add a using directive as if it had been declared in the given
160    // context.  This helps implement C++ [namespace.udir]p3:
161    //   The using-directive is transitive: if a scope contains a
162    //   using-directive that nominates a second namespace that itself
163    //   contains using-directives, the effect is as if the
164    //   using-directives from the second namespace also appeared in
165    //   the first.
166    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
167      // Find the common ancestor between the effective context and
168      // the nominated namespace.
169      DeclContext *Common = UD->getNominatedNamespace();
170      while (!Common->Encloses(EffectiveDC))
171        Common = Common->getParent();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC,
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196// Retrieve the set of identifier namespaces that correspond to a
197// specific kind of name lookup.
198inline unsigned
199getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
200                                          bool CPlusPlus) {
201  unsigned IDNS = 0;
202  switch (NameKind) {
203  case Sema::LookupOrdinaryName:
204  case Sema::LookupOperatorName:
205  case Sema::LookupRedeclarationWithLinkage:
206    IDNS = Decl::IDNS_Ordinary;
207    if (CPlusPlus)
208      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
209    break;
210
211  case Sema::LookupTagName:
212    IDNS = Decl::IDNS_Tag;
213    break;
214
215  case Sema::LookupMemberName:
216    IDNS = Decl::IDNS_Member;
217    if (CPlusPlus)
218      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
219    break;
220
221  case Sema::LookupNestedNameSpecifierName:
222  case Sema::LookupNamespaceName:
223    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
224    break;
225
226  case Sema::LookupObjCProtocolName:
227    IDNS = Decl::IDNS_ObjCProtocol;
228    break;
229
230  case Sema::LookupObjCImplementationName:
231    IDNS = Decl::IDNS_ObjCImplementation;
232    break;
233
234  case Sema::LookupObjCCategoryImplName:
235    IDNS = Decl::IDNS_ObjCCategoryImpl;
236    break;
237  }
238  return IDNS;
239}
240
241// Necessary because CXXBasePaths is not complete in Sema.h
242void Sema::LookupResult::deletePaths(CXXBasePaths *Paths) {
243  delete Paths;
244}
245
246void Sema::LookupResult::resolveKind() {
247  unsigned N = Decls.size();
248
249  // Fast case: no possible ambiguity.
250  if (N <= 1) return;
251
252  // Don't do any extra resolution if we've already resolved as ambiguous.
253  if (Kind == Ambiguous) return;
254
255  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
256
257  bool Ambiguous = false;
258  bool HasTag = false, HasFunction = false, HasNonFunction = false;
259
260  unsigned UniqueTagIndex = 0;
261
262  unsigned I = 0;
263  while (I < N) {
264    NamedDecl *D = Decls[I];
265    assert(D == D->getUnderlyingDecl());
266
267    NamedDecl *CanonD = cast<NamedDecl>(D->getCanonicalDecl());
268    if (!Unique.insert(CanonD)) {
269      // If it's not unique, pull something off the back (and
270      // continue at this index).
271      Decls[I] = Decls[--N];
272    } else if (isa<UnresolvedUsingDecl>(D)) {
273      // FIXME: proper support for UnresolvedUsingDecls.
274      Decls[I] = Decls[--N];
275    } else {
276      // Otherwise, do some decl type analysis and then continue.
277      if (isa<TagDecl>(D)) {
278        if (HasTag)
279          Ambiguous = true;
280        UniqueTagIndex = I;
281        HasTag = true;
282      } else if (D->isFunctionOrFunctionTemplate()) {
283        HasFunction = true;
284      } else {
285        if (HasNonFunction)
286          Ambiguous = true;
287        HasNonFunction = true;
288      }
289      I++;
290    }
291  }
292
293  // C++ [basic.scope.hiding]p2:
294  //   A class name or enumeration name can be hidden by the name of
295  //   an object, function, or enumerator declared in the same
296  //   scope. If a class or enumeration name and an object, function,
297  //   or enumerator are declared in the same scope (in any order)
298  //   with the same name, the class or enumeration name is hidden
299  //   wherever the object, function, or enumerator name is visible.
300  // But it's still an error if there are distinct tag types found,
301  // even if they're not visible. (ref?)
302  if (HasTag && !Ambiguous && (HasFunction || HasNonFunction))
303    Decls[UniqueTagIndex] = Decls[--N];
304
305  Decls.set_size(N);
306
307  if (HasFunction && HasNonFunction)
308    Ambiguous = true;
309
310  if (Ambiguous)
311    setAmbiguous(LookupResult::AmbiguousReference);
312  else if (N > 1)
313    Kind = LookupResult::FoundOverloaded;
314  else
315    Kind = LookupResult::Found;
316}
317
318/// @brief Converts the result of name lookup into a single (possible
319/// NULL) pointer to a declaration.
320///
321/// The resulting declaration will either be the declaration we found
322/// (if only a single declaration was found), an
323/// OverloadedFunctionDecl (if an overloaded function was found), or
324/// NULL (if no declaration was found). This conversion must not be
325/// used anywhere where name lookup could result in an ambiguity.
326///
327/// The OverloadedFunctionDecl conversion is meant as a stop-gap
328/// solution, since it causes the OverloadedFunctionDecl to be
329/// leaked. FIXME: Eventually, there will be a better way to iterate
330/// over the set of overloaded functions returned by name lookup.
331NamedDecl *Sema::LookupResult::getAsSingleDecl(ASTContext &C) const {
332  size_t size = Decls.size();
333  if (size == 0) return 0;
334  if (size == 1) return *begin();
335
336  if (isAmbiguous()) return 0;
337
338  iterator I = begin(), E = end();
339
340  OverloadedFunctionDecl *Ovl
341    = OverloadedFunctionDecl::Create(C, (*I)->getDeclContext(),
342                                        (*I)->getDeclName());
343  for (; I != E; ++I) {
344    NamedDecl *ND = *I;
345    assert(ND->getUnderlyingDecl() == ND
346           && "decls in lookup result should have redirections stripped");
347    assert(ND->isFunctionOrFunctionTemplate());
348    if (isa<FunctionDecl>(ND))
349      Ovl->addOverload(cast<FunctionDecl>(ND));
350    else
351      Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
352    // FIXME: UnresolvedUsingDecls.
353  }
354
355  return Ovl;
356}
357
358void Sema::LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
359  CXXBasePaths::paths_iterator I, E;
360  DeclContext::lookup_iterator DI, DE;
361  for (I = P.begin(), E = P.end(); I != E; ++I)
362    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
363      addDecl(*DI);
364}
365
366void Sema::LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
367  Paths = new CXXBasePaths;
368  Paths->swap(P);
369  addDeclsFromBasePaths(*Paths);
370  resolveKind();
371  setAmbiguous(AmbiguousBaseSubobjects);
372}
373
374void Sema::LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
375  Paths = new CXXBasePaths;
376  Paths->swap(P);
377  addDeclsFromBasePaths(*Paths);
378  resolveKind();
379  setAmbiguous(AmbiguousBaseSubobjectTypes);
380}
381
382void Sema::LookupResult::print(llvm::raw_ostream &Out) {
383  Out << Decls.size() << " result(s)";
384  if (isAmbiguous()) Out << ", ambiguous";
385  if (Paths) Out << ", base paths present";
386
387  for (iterator I = begin(), E = end(); I != E; ++I) {
388    Out << "\n";
389    (*I)->print(Out, 2);
390  }
391}
392
393// Adds all qualifying matches for a name within a decl context to the
394// given lookup result.  Returns true if any matches were found.
395static bool LookupDirect(Sema::LookupResult &R,
396                         const DeclContext *DC,
397                         DeclarationName Name,
398                         Sema::LookupNameKind NameKind,
399                         unsigned IDNS) {
400  bool Found = false;
401
402  DeclContext::lookup_const_iterator I, E;
403  for (llvm::tie(I, E) = DC->lookup(Name); I != E; ++I)
404    if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS))
405      R.addDecl(*I), Found = true;
406
407  return Found;
408}
409
410// Performs C++ unqualified lookup into the given file context.
411static bool
412CppNamespaceLookup(Sema::LookupResult &R, ASTContext &Context, DeclContext *NS,
413                   DeclarationName Name, Sema::LookupNameKind NameKind,
414                   unsigned IDNS, UnqualUsingDirectiveSet &UDirs) {
415
416  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
417
418  // Perform direct name lookup into the LookupCtx.
419  bool Found = LookupDirect(R, NS, Name, NameKind, IDNS);
420
421  // Perform direct name lookup into the namespaces nominated by the
422  // using directives whose common ancestor is this namespace.
423  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
424  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
425
426  for (; UI != UEnd; ++UI)
427    if (LookupDirect(R, UI->getNominatedNamespace(), Name, NameKind, IDNS))
428      Found = true;
429
430  R.resolveKind();
431
432  return Found;
433}
434
435static bool isNamespaceOrTranslationUnitScope(Scope *S) {
436  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
437    return Ctx->isFileContext();
438  return false;
439}
440
441// Find the next outer declaration context corresponding to this scope.
442static DeclContext *findOuterContext(Scope *S) {
443  for (S = S->getParent(); S; S = S->getParent())
444    if (S->getEntity())
445      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
446
447  return 0;
448}
449
450bool
451Sema::CppLookupName(LookupResult &R, Scope *S, DeclarationName Name,
452                    LookupNameKind NameKind, bool RedeclarationOnly) {
453  assert(getLangOptions().CPlusPlus &&
454         "Can perform only C++ lookup");
455  unsigned IDNS
456    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
457
458  // If we're testing for redeclarations, also look in the friend namespaces.
459  if (RedeclarationOnly) {
460    if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend;
461    if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend;
462  }
463
464  Scope *Initial = S;
465  IdentifierResolver::iterator
466    I = IdResolver.begin(Name),
467    IEnd = IdResolver.end();
468
469  // First we lookup local scope.
470  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
471  // ...During unqualified name lookup (3.4.1), the names appear as if
472  // they were declared in the nearest enclosing namespace which contains
473  // both the using-directive and the nominated namespace.
474  // [Note: in this context, "contains" means "contains directly or
475  // indirectly".
476  //
477  // For example:
478  // namespace A { int i; }
479  // void foo() {
480  //   int i;
481  //   {
482  //     using namespace A;
483  //     ++i; // finds local 'i', A::i appears at global scope
484  //   }
485  // }
486  //
487  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
488    // Check whether the IdResolver has anything in this scope.
489    bool Found = false;
490    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
491      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
492        Found = true;
493        R.addDecl(*I);
494      }
495    }
496    if (Found) {
497      R.resolveKind();
498      return true;
499    }
500
501    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
502      DeclContext *OuterCtx = findOuterContext(S);
503      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
504           Ctx = Ctx->getLookupParent()) {
505        if (Ctx->isFunctionOrMethod())
506          continue;
507
508        // Perform qualified name lookup into this context.
509        // FIXME: In some cases, we know that every name that could be found by
510        // this qualified name lookup will also be on the identifier chain. For
511        // example, inside a class without any base classes, we never need to
512        // perform qualified lookup because all of the members are on top of the
513        // identifier chain.
514        if (LookupQualifiedName(R, Ctx, Name, NameKind, RedeclarationOnly))
515          return true;
516      }
517    }
518  }
519
520  // Stop if we ran out of scopes.
521  // FIXME:  This really, really shouldn't be happening.
522  if (!S) return false;
523
524  // Collect UsingDirectiveDecls in all scopes, and recursively all
525  // nominated namespaces by those using-directives.
526  //
527  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
528  // don't build it for each lookup!
529
530  UnqualUsingDirectiveSet UDirs;
531  UDirs.visitScopeChain(Initial, S);
532  UDirs.done();
533
534  // Lookup namespace scope, and global scope.
535  // Unqualified name lookup in C++ requires looking into scopes
536  // that aren't strictly lexical, and therefore we walk through the
537  // context as well as walking through the scopes.
538
539  for (; S; S = S->getParent()) {
540    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
541    if (Ctx->isTransparentContext())
542      continue;
543
544    assert(Ctx && Ctx->isFileContext() &&
545           "We should have been looking only at file context here already.");
546
547    // Check whether the IdResolver has anything in this scope.
548    bool Found = false;
549    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
550      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
551        // We found something.  Look for anything else in our scope
552        // with this same name and in an acceptable identifier
553        // namespace, so that we can construct an overload set if we
554        // need to.
555        Found = true;
556        R.addDecl(*I);
557      }
558    }
559
560    // Look into context considering using-directives.
561    if (CppNamespaceLookup(R, Context, Ctx, Name, NameKind, IDNS, UDirs))
562      Found = true;
563
564    if (Found) {
565      R.resolveKind();
566      return true;
567    }
568
569    if (RedeclarationOnly && !Ctx->isTransparentContext())
570      return false;
571  }
572
573  return !R.empty();
574}
575
576/// @brief Perform unqualified name lookup starting from a given
577/// scope.
578///
579/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
580/// used to find names within the current scope. For example, 'x' in
581/// @code
582/// int x;
583/// int f() {
584///   return x; // unqualified name look finds 'x' in the global scope
585/// }
586/// @endcode
587///
588/// Different lookup criteria can find different names. For example, a
589/// particular scope can have both a struct and a function of the same
590/// name, and each can be found by certain lookup criteria. For more
591/// information about lookup criteria, see the documentation for the
592/// class LookupCriteria.
593///
594/// @param S        The scope from which unqualified name lookup will
595/// begin. If the lookup criteria permits, name lookup may also search
596/// in the parent scopes.
597///
598/// @param Name     The name of the entity that we are searching for.
599///
600/// @param Loc      If provided, the source location where we're performing
601/// name lookup. At present, this is only used to produce diagnostics when
602/// C library functions (like "malloc") are implicitly declared.
603///
604/// @returns The result of name lookup, which includes zero or more
605/// declarations and possibly additional information used to diagnose
606/// ambiguities.
607bool Sema::LookupName(LookupResult &R, Scope *S, DeclarationName Name,
608                      LookupNameKind NameKind, bool RedeclarationOnly,
609                      bool AllowBuiltinCreation, SourceLocation Loc) {
610  if (!Name) return false;
611
612  if (!getLangOptions().CPlusPlus) {
613    // Unqualified name lookup in C/Objective-C is purely lexical, so
614    // search in the declarations attached to the name.
615    unsigned IDNS = 0;
616    switch (NameKind) {
617    case Sema::LookupOrdinaryName:
618      IDNS = Decl::IDNS_Ordinary;
619      break;
620
621    case Sema::LookupTagName:
622      IDNS = Decl::IDNS_Tag;
623      break;
624
625    case Sema::LookupMemberName:
626      IDNS = Decl::IDNS_Member;
627      break;
628
629    case Sema::LookupOperatorName:
630    case Sema::LookupNestedNameSpecifierName:
631    case Sema::LookupNamespaceName:
632      assert(false && "C does not perform these kinds of name lookup");
633      break;
634
635    case Sema::LookupRedeclarationWithLinkage:
636      // Find the nearest non-transparent declaration scope.
637      while (!(S->getFlags() & Scope::DeclScope) ||
638             (S->getEntity() &&
639              static_cast<DeclContext *>(S->getEntity())
640                ->isTransparentContext()))
641        S = S->getParent();
642      IDNS = Decl::IDNS_Ordinary;
643      break;
644
645    case Sema::LookupObjCProtocolName:
646      IDNS = Decl::IDNS_ObjCProtocol;
647      break;
648
649    case Sema::LookupObjCImplementationName:
650      IDNS = Decl::IDNS_ObjCImplementation;
651      break;
652
653    case Sema::LookupObjCCategoryImplName:
654      IDNS = Decl::IDNS_ObjCCategoryImpl;
655      break;
656    }
657
658    // Scan up the scope chain looking for a decl that matches this
659    // identifier that is in the appropriate namespace.  This search
660    // should not take long, as shadowing of names is uncommon, and
661    // deep shadowing is extremely uncommon.
662    bool LeftStartingScope = false;
663
664    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
665                                   IEnd = IdResolver.end();
666         I != IEnd; ++I)
667      if ((*I)->isInIdentifierNamespace(IDNS)) {
668        if (NameKind == LookupRedeclarationWithLinkage) {
669          // Determine whether this (or a previous) declaration is
670          // out-of-scope.
671          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
672            LeftStartingScope = true;
673
674          // If we found something outside of our starting scope that
675          // does not have linkage, skip it.
676          if (LeftStartingScope && !((*I)->hasLinkage()))
677            continue;
678        }
679
680        R.addDecl(*I);
681
682        if ((*I)->getAttr<OverloadableAttr>()) {
683          // If this declaration has the "overloadable" attribute, we
684          // might have a set of overloaded functions.
685
686          // Figure out what scope the identifier is in.
687          while (!(S->getFlags() & Scope::DeclScope) ||
688                 !S->isDeclScope(DeclPtrTy::make(*I)))
689            S = S->getParent();
690
691          // Find the last declaration in this scope (with the same
692          // name, naturally).
693          IdentifierResolver::iterator LastI = I;
694          for (++LastI; LastI != IEnd; ++LastI) {
695            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
696              break;
697            R.addDecl(*LastI);
698          }
699        }
700
701        R.resolveKind();
702
703        return true;
704      }
705  } else {
706    // Perform C++ unqualified name lookup.
707    if (CppLookupName(R, S, Name, NameKind, RedeclarationOnly))
708      return true;
709  }
710
711  // If we didn't find a use of this identifier, and if the identifier
712  // corresponds to a compiler builtin, create the decl object for the builtin
713  // now, injecting it into translation unit scope, and return it.
714  if (NameKind == LookupOrdinaryName ||
715      NameKind == LookupRedeclarationWithLinkage) {
716    IdentifierInfo *II = Name.getAsIdentifierInfo();
717    if (II && AllowBuiltinCreation) {
718      // If this is a builtin on this (or all) targets, create the decl.
719      if (unsigned BuiltinID = II->getBuiltinID()) {
720        // In C++, we don't have any predefined library functions like
721        // 'malloc'. Instead, we'll just error.
722        if (getLangOptions().CPlusPlus &&
723            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
724          return false;
725
726        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
727                                           S, RedeclarationOnly, Loc);
728        if (D) R.addDecl(D);
729        return (D != NULL);
730      }
731    }
732  }
733  return false;
734}
735
736/// @brief Perform qualified name lookup in the namespaces nominated by
737/// using directives by the given context.
738///
739/// C++98 [namespace.qual]p2:
740///   Given X::m (where X is a user-declared namespace), or given ::m
741///   (where X is the global namespace), let S be the set of all
742///   declarations of m in X and in the transitive closure of all
743///   namespaces nominated by using-directives in X and its used
744///   namespaces, except that using-directives are ignored in any
745///   namespace, including X, directly containing one or more
746///   declarations of m. No namespace is searched more than once in
747///   the lookup of a name. If S is the empty set, the program is
748///   ill-formed. Otherwise, if S has exactly one member, or if the
749///   context of the reference is a using-declaration
750///   (namespace.udecl), S is the required set of declarations of
751///   m. Otherwise if the use of m is not one that allows a unique
752///   declaration to be chosen from S, the program is ill-formed.
753/// C++98 [namespace.qual]p5:
754///   During the lookup of a qualified namespace member name, if the
755///   lookup finds more than one declaration of the member, and if one
756///   declaration introduces a class name or enumeration name and the
757///   other declarations either introduce the same object, the same
758///   enumerator or a set of functions, the non-type name hides the
759///   class or enumeration name if and only if the declarations are
760///   from the same namespace; otherwise (the declarations are from
761///   different namespaces), the program is ill-formed.
762static bool LookupQualifiedNameInUsingDirectives(Sema::LookupResult &R,
763                                                 DeclContext *StartDC,
764                                                 DeclarationName Name,
765                                                 Sema::LookupNameKind NameKind,
766                                                 unsigned IDNS) {
767  assert(StartDC->isFileContext() && "start context is not a file context");
768
769  DeclContext::udir_iterator I = StartDC->using_directives_begin();
770  DeclContext::udir_iterator E = StartDC->using_directives_end();
771
772  if (I == E) return false;
773
774  // We have at least added all these contexts to the queue.
775  llvm::DenseSet<DeclContext*> Visited;
776  Visited.insert(StartDC);
777
778  // We have not yet looked into these namespaces, much less added
779  // their "using-children" to the queue.
780  llvm::SmallVector<NamespaceDecl*, 8> Queue;
781
782  // We have already looked into the initial namespace; seed the queue
783  // with its using-children.
784  for (; I != E; ++I) {
785    NamespaceDecl *ND = (*I)->getNominatedNamespace();
786    if (Visited.insert(ND).second)
787      Queue.push_back(ND);
788  }
789
790  // The easiest way to implement the restriction in [namespace.qual]p5
791  // is to check whether any of the individual results found a tag
792  // and, if so, to declare an ambiguity if the final result is not
793  // a tag.
794  bool FoundTag = false;
795  bool FoundNonTag = false;
796
797  Sema::LookupResult LocalR;
798
799  bool Found = false;
800  while (!Queue.empty()) {
801    NamespaceDecl *ND = Queue.back();
802    Queue.pop_back();
803
804    // We go through some convolutions here to avoid copying results
805    // between LookupResults.
806    bool UseLocal = !R.empty();
807    Sema::LookupResult &DirectR = UseLocal ? LocalR : R;
808    bool FoundDirect = LookupDirect(DirectR, ND, Name, NameKind, IDNS);
809
810    if (FoundDirect) {
811      // First do any local hiding.
812      DirectR.resolveKind();
813
814      // If the local result is a tag, remember that.
815      if (DirectR.isSingleTagDecl())
816        FoundTag = true;
817      else
818        FoundNonTag = true;
819
820      // Append the local results to the total results if necessary.
821      if (UseLocal) {
822        R.addAllDecls(LocalR);
823        LocalR.clear();
824      }
825    }
826
827    // If we find names in this namespace, ignore its using directives.
828    if (FoundDirect) {
829      Found = true;
830      continue;
831    }
832
833    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
834      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
835      if (Visited.insert(Nom).second)
836        Queue.push_back(Nom);
837    }
838  }
839
840  if (Found) {
841    if (FoundTag && FoundNonTag)
842      R.setAmbiguousQualifiedTagHiding();
843    else
844      R.resolveKind();
845  }
846
847  return Found;
848}
849
850/// @brief Perform qualified name lookup into a given context.
851///
852/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
853/// names when the context of those names is explicit specified, e.g.,
854/// "std::vector" or "x->member".
855///
856/// Different lookup criteria can find different names. For example, a
857/// particular scope can have both a struct and a function of the same
858/// name, and each can be found by certain lookup criteria. For more
859/// information about lookup criteria, see the documentation for the
860/// class LookupCriteria.
861///
862/// @param LookupCtx The context in which qualified name lookup will
863/// search. If the lookup criteria permits, name lookup may also search
864/// in the parent contexts or (for C++ classes) base classes.
865///
866/// @param Name     The name of the entity that we are searching for.
867///
868/// @param Criteria The criteria that this routine will use to
869/// determine which names are visible and which names will be
870/// found. Note that name lookup will find a name that is visible by
871/// the given criteria, but the entity itself may not be semantically
872/// correct or even the kind of entity expected based on the
873/// lookup. For example, searching for a nested-name-specifier name
874/// might result in an EnumDecl, which is visible but is not permitted
875/// as a nested-name-specifier in C++03.
876///
877/// @returns The result of name lookup, which includes zero or more
878/// declarations and possibly additional information used to diagnose
879/// ambiguities.
880bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
881                               DeclarationName Name, LookupNameKind NameKind,
882                               bool RedeclarationOnly) {
883  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
884
885  if (!Name)
886    return false;
887
888  // If we're performing qualified name lookup (e.g., lookup into a
889  // struct), find fields as part of ordinary name lookup.
890  unsigned IDNS
891    = getIdentifierNamespacesFromLookupNameKind(NameKind,
892                                                getLangOptions().CPlusPlus);
893  if (NameKind == LookupOrdinaryName)
894    IDNS |= Decl::IDNS_Member;
895
896  // Make sure that the declaration context is complete.
897  assert((!isa<TagDecl>(LookupCtx) ||
898          LookupCtx->isDependentContext() ||
899          cast<TagDecl>(LookupCtx)->isDefinition() ||
900          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
901            ->isBeingDefined()) &&
902         "Declaration context must already be complete!");
903
904  // Perform qualified name lookup into the LookupCtx.
905  if (LookupDirect(R, LookupCtx, Name, NameKind, IDNS)) {
906    R.resolveKind();
907    return true;
908  }
909
910  // Don't descend into implied contexts for redeclarations.
911  // C++98 [namespace.qual]p6:
912  //   In a declaration for a namespace member in which the
913  //   declarator-id is a qualified-id, given that the qualified-id
914  //   for the namespace member has the form
915  //     nested-name-specifier unqualified-id
916  //   the unqualified-id shall name a member of the namespace
917  //   designated by the nested-name-specifier.
918  // See also [class.mfct]p5 and [class.static.data]p2.
919  if (RedeclarationOnly)
920    return false;
921
922  // If this is a namespace, look it up in
923  if (LookupCtx->isFileContext())
924    return LookupQualifiedNameInUsingDirectives(R, LookupCtx, Name, NameKind,
925                                                IDNS);
926
927  // If this isn't a C++ class, we aren't allowed to look into base
928  // classes, we're done.
929  if (!isa<CXXRecordDecl>(LookupCtx))
930    return false;
931
932  // Perform lookup into our base classes.
933  CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx);
934  CXXBasePaths Paths;
935  Paths.setOrigin(LookupRec);
936
937  // Look for this member in our base classes
938  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
939  switch (NameKind) {
940    case LookupOrdinaryName:
941    case LookupMemberName:
942    case LookupRedeclarationWithLinkage:
943      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
944      break;
945
946    case LookupTagName:
947      BaseCallback = &CXXRecordDecl::FindTagMember;
948      break;
949
950    case LookupOperatorName:
951    case LookupNamespaceName:
952    case LookupObjCProtocolName:
953    case LookupObjCImplementationName:
954    case LookupObjCCategoryImplName:
955      // These lookups will never find a member in a C++ class (or base class).
956      return false;
957
958    case LookupNestedNameSpecifierName:
959      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
960      break;
961  }
962
963  if (!LookupRec->lookupInBases(BaseCallback, Name.getAsOpaquePtr(), Paths))
964    return false;
965
966  // C++ [class.member.lookup]p2:
967  //   [...] If the resulting set of declarations are not all from
968  //   sub-objects of the same type, or the set has a nonstatic member
969  //   and includes members from distinct sub-objects, there is an
970  //   ambiguity and the program is ill-formed. Otherwise that set is
971  //   the result of the lookup.
972  // FIXME: support using declarations!
973  QualType SubobjectType;
974  int SubobjectNumber = 0;
975  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
976       Path != PathEnd; ++Path) {
977    const CXXBasePathElement &PathElement = Path->back();
978
979    // Determine whether we're looking at a distinct sub-object or not.
980    if (SubobjectType.isNull()) {
981      // This is the first subobject we've looked at. Record its type.
982      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
983      SubobjectNumber = PathElement.SubobjectNumber;
984    } else if (SubobjectType
985                 != Context.getCanonicalType(PathElement.Base->getType())) {
986      // We found members of the given name in two subobjects of
987      // different types. This lookup is ambiguous.
988      R.setAmbiguousBaseSubobjectTypes(Paths);
989      return true;
990    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
991      // We have a different subobject of the same type.
992
993      // C++ [class.member.lookup]p5:
994      //   A static member, a nested type or an enumerator defined in
995      //   a base class T can unambiguously be found even if an object
996      //   has more than one base class subobject of type T.
997      Decl *FirstDecl = *Path->Decls.first;
998      if (isa<VarDecl>(FirstDecl) ||
999          isa<TypeDecl>(FirstDecl) ||
1000          isa<EnumConstantDecl>(FirstDecl))
1001        continue;
1002
1003      if (isa<CXXMethodDecl>(FirstDecl)) {
1004        // Determine whether all of the methods are static.
1005        bool AllMethodsAreStatic = true;
1006        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1007             Func != Path->Decls.second; ++Func) {
1008          if (!isa<CXXMethodDecl>(*Func)) {
1009            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1010            break;
1011          }
1012
1013          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1014            AllMethodsAreStatic = false;
1015            break;
1016          }
1017        }
1018
1019        if (AllMethodsAreStatic)
1020          continue;
1021      }
1022
1023      // We have found a nonstatic member name in multiple, distinct
1024      // subobjects. Name lookup is ambiguous.
1025      R.setAmbiguousBaseSubobjects(Paths);
1026      return true;
1027    }
1028  }
1029
1030  // Lookup in a base class succeeded; return these results.
1031
1032  DeclContext::lookup_iterator I, E;
1033  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
1034    R.addDecl(*I);
1035  R.resolveKind();
1036  return true;
1037}
1038
1039/// @brief Performs name lookup for a name that was parsed in the
1040/// source code, and may contain a C++ scope specifier.
1041///
1042/// This routine is a convenience routine meant to be called from
1043/// contexts that receive a name and an optional C++ scope specifier
1044/// (e.g., "N::M::x"). It will then perform either qualified or
1045/// unqualified name lookup (with LookupQualifiedName or LookupName,
1046/// respectively) on the given name and return those results.
1047///
1048/// @param S        The scope from which unqualified name lookup will
1049/// begin.
1050///
1051/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1052///
1053/// @param Name     The name of the entity that name lookup will
1054/// search for.
1055///
1056/// @param Loc      If provided, the source location where we're performing
1057/// name lookup. At present, this is only used to produce diagnostics when
1058/// C library functions (like "malloc") are implicitly declared.
1059///
1060/// @param EnteringContext Indicates whether we are going to enter the
1061/// context of the scope-specifier SS (if present).
1062///
1063/// @returns True if any decls were found (but possibly ambiguous)
1064bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1065                            DeclarationName Name, LookupNameKind NameKind,
1066                            bool RedeclarationOnly, bool AllowBuiltinCreation,
1067                            SourceLocation Loc,
1068                            bool EnteringContext) {
1069  if (SS && SS->isInvalid()) {
1070    // When the scope specifier is invalid, don't even look for
1071    // anything.
1072    return false;
1073  }
1074
1075  if (SS && SS->isSet()) {
1076    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1077      // We have resolved the scope specifier to a particular declaration
1078      // contex, and will perform name lookup in that context.
1079      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1080        return false;
1081
1082      return LookupQualifiedName(R, DC, Name, NameKind, RedeclarationOnly);
1083    }
1084
1085    // We could not resolve the scope specified to a specific declaration
1086    // context, which means that SS refers to an unknown specialization.
1087    // Name lookup can't find anything in this case.
1088    return false;
1089  }
1090
1091  // Perform unqualified name lookup starting in the given scope.
1092  return LookupName(R, S, Name, NameKind, RedeclarationOnly,
1093                    AllowBuiltinCreation, Loc);
1094}
1095
1096
1097/// @brief Produce a diagnostic describing the ambiguity that resulted
1098/// from name lookup.
1099///
1100/// @param Result       The ambiguous name lookup result.
1101///
1102/// @param Name         The name of the entity that name lookup was
1103/// searching for.
1104///
1105/// @param NameLoc      The location of the name within the source code.
1106///
1107/// @param LookupRange  A source range that provides more
1108/// source-location information concerning the lookup itself. For
1109/// example, this range might highlight a nested-name-specifier that
1110/// precedes the name.
1111///
1112/// @returns true
1113bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
1114                                   SourceLocation NameLoc,
1115                                   SourceRange LookupRange) {
1116  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1117
1118  switch (Result.getAmbiguityKind()) {
1119  case LookupResult::AmbiguousBaseSubobjects: {
1120    CXXBasePaths *Paths = Result.getBasePaths();
1121    QualType SubobjectType = Paths->front().back().Base->getType();
1122    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1123      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1124      << LookupRange;
1125
1126    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1127    while (isa<CXXMethodDecl>(*Found) &&
1128           cast<CXXMethodDecl>(*Found)->isStatic())
1129      ++Found;
1130
1131    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1132
1133    return true;
1134  }
1135
1136  case LookupResult::AmbiguousBaseSubobjectTypes: {
1137    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1138      << Name << LookupRange;
1139
1140    CXXBasePaths *Paths = Result.getBasePaths();
1141    std::set<Decl *> DeclsPrinted;
1142    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1143                                      PathEnd = Paths->end();
1144         Path != PathEnd; ++Path) {
1145      Decl *D = *Path->Decls.first;
1146      if (DeclsPrinted.insert(D).second)
1147        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1148    }
1149
1150    return true;
1151  }
1152
1153  case LookupResult::AmbiguousTagHiding: {
1154    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1155
1156    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1157
1158    LookupResult::iterator DI, DE = Result.end();
1159    for (DI = Result.begin(); DI != DE; ++DI)
1160      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1161        TagDecls.insert(TD);
1162        Diag(TD->getLocation(), diag::note_hidden_tag);
1163      }
1164
1165    for (DI = Result.begin(); DI != DE; ++DI)
1166      if (!isa<TagDecl>(*DI))
1167        Diag((*DI)->getLocation(), diag::note_hiding_object);
1168
1169    // For recovery purposes, go ahead and implement the hiding.
1170    Result.hideDecls(TagDecls);
1171
1172    return true;
1173  }
1174
1175  case LookupResult::AmbiguousReference: {
1176    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1177
1178    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1179    for (; DI != DE; ++DI)
1180      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1181
1182    return true;
1183  }
1184  }
1185
1186  llvm::llvm_unreachable("unknown ambiguity kind");
1187  return true;
1188}
1189
1190static void
1191addAssociatedClassesAndNamespaces(QualType T,
1192                                  ASTContext &Context,
1193                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1194                                  Sema::AssociatedClassSet &AssociatedClasses);
1195
1196static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1197                             DeclContext *Ctx) {
1198  if (Ctx->isFileContext())
1199    Namespaces.insert(Ctx);
1200}
1201
1202// \brief Add the associated classes and namespaces for argument-dependent
1203// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1204static void
1205addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1206                                  ASTContext &Context,
1207                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1208                                  Sema::AssociatedClassSet &AssociatedClasses) {
1209  // C++ [basic.lookup.koenig]p2, last bullet:
1210  //   -- [...] ;
1211  switch (Arg.getKind()) {
1212    case TemplateArgument::Null:
1213      break;
1214
1215    case TemplateArgument::Type:
1216      // [...] the namespaces and classes associated with the types of the
1217      // template arguments provided for template type parameters (excluding
1218      // template template parameters)
1219      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1220                                        AssociatedNamespaces,
1221                                        AssociatedClasses);
1222      break;
1223
1224    case TemplateArgument::Declaration:
1225      // [...] the namespaces in which any template template arguments are
1226      // defined; and the classes in which any member templates used as
1227      // template template arguments are defined.
1228      if (ClassTemplateDecl *ClassTemplate
1229            = dyn_cast<ClassTemplateDecl>(Arg.getAsDecl())) {
1230        DeclContext *Ctx = ClassTemplate->getDeclContext();
1231        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1232          AssociatedClasses.insert(EnclosingClass);
1233        // Add the associated namespace for this class.
1234        while (Ctx->isRecord())
1235          Ctx = Ctx->getParent();
1236        CollectNamespace(AssociatedNamespaces, Ctx);
1237      }
1238      break;
1239
1240    case TemplateArgument::Integral:
1241    case TemplateArgument::Expression:
1242      // [Note: non-type template arguments do not contribute to the set of
1243      //  associated namespaces. ]
1244      break;
1245
1246    case TemplateArgument::Pack:
1247      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1248                                        PEnd = Arg.pack_end();
1249           P != PEnd; ++P)
1250        addAssociatedClassesAndNamespaces(*P, Context,
1251                                          AssociatedNamespaces,
1252                                          AssociatedClasses);
1253      break;
1254  }
1255}
1256
1257// \brief Add the associated classes and namespaces for
1258// argument-dependent lookup with an argument of class type
1259// (C++ [basic.lookup.koenig]p2).
1260static void
1261addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1262                                  ASTContext &Context,
1263                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1264                            Sema::AssociatedClassSet &AssociatedClasses) {
1265  // C++ [basic.lookup.koenig]p2:
1266  //   [...]
1267  //     -- If T is a class type (including unions), its associated
1268  //        classes are: the class itself; the class of which it is a
1269  //        member, if any; and its direct and indirect base
1270  //        classes. Its associated namespaces are the namespaces in
1271  //        which its associated classes are defined.
1272
1273  // Add the class of which it is a member, if any.
1274  DeclContext *Ctx = Class->getDeclContext();
1275  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1276    AssociatedClasses.insert(EnclosingClass);
1277  // Add the associated namespace for this class.
1278  while (Ctx->isRecord())
1279    Ctx = Ctx->getParent();
1280  CollectNamespace(AssociatedNamespaces, Ctx);
1281
1282  // Add the class itself. If we've already seen this class, we don't
1283  // need to visit base classes.
1284  if (!AssociatedClasses.insert(Class))
1285    return;
1286
1287  // -- If T is a template-id, its associated namespaces and classes are
1288  //    the namespace in which the template is defined; for member
1289  //    templates, the member template’s class; the namespaces and classes
1290  //    associated with the types of the template arguments provided for
1291  //    template type parameters (excluding template template parameters); the
1292  //    namespaces in which any template template arguments are defined; and
1293  //    the classes in which any member templates used as template template
1294  //    arguments are defined. [Note: non-type template arguments do not
1295  //    contribute to the set of associated namespaces. ]
1296  if (ClassTemplateSpecializationDecl *Spec
1297        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1298    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1299    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1300      AssociatedClasses.insert(EnclosingClass);
1301    // Add the associated namespace for this class.
1302    while (Ctx->isRecord())
1303      Ctx = Ctx->getParent();
1304    CollectNamespace(AssociatedNamespaces, Ctx);
1305
1306    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1307    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1308      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1309                                        AssociatedNamespaces,
1310                                        AssociatedClasses);
1311  }
1312
1313  // Add direct and indirect base classes along with their associated
1314  // namespaces.
1315  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1316  Bases.push_back(Class);
1317  while (!Bases.empty()) {
1318    // Pop this class off the stack.
1319    Class = Bases.back();
1320    Bases.pop_back();
1321
1322    // Visit the base classes.
1323    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1324                                         BaseEnd = Class->bases_end();
1325         Base != BaseEnd; ++Base) {
1326      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1327      // In dependent contexts, we do ADL twice, and the first time around,
1328      // the base type might be a dependent TemplateSpecializationType, or a
1329      // TemplateTypeParmType. If that happens, simply ignore it.
1330      // FIXME: If we want to support export, we probably need to add the
1331      // namespace of the template in a TemplateSpecializationType, or even
1332      // the classes and namespaces of known non-dependent arguments.
1333      if (!BaseType)
1334        continue;
1335      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1336      if (AssociatedClasses.insert(BaseDecl)) {
1337        // Find the associated namespace for this base class.
1338        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1339        while (BaseCtx->isRecord())
1340          BaseCtx = BaseCtx->getParent();
1341        CollectNamespace(AssociatedNamespaces, BaseCtx);
1342
1343        // Make sure we visit the bases of this base class.
1344        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1345          Bases.push_back(BaseDecl);
1346      }
1347    }
1348  }
1349}
1350
1351// \brief Add the associated classes and namespaces for
1352// argument-dependent lookup with an argument of type T
1353// (C++ [basic.lookup.koenig]p2).
1354static void
1355addAssociatedClassesAndNamespaces(QualType T,
1356                                  ASTContext &Context,
1357                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1358                                  Sema::AssociatedClassSet &AssociatedClasses) {
1359  // C++ [basic.lookup.koenig]p2:
1360  //
1361  //   For each argument type T in the function call, there is a set
1362  //   of zero or more associated namespaces and a set of zero or more
1363  //   associated classes to be considered. The sets of namespaces and
1364  //   classes is determined entirely by the types of the function
1365  //   arguments (and the namespace of any template template
1366  //   argument). Typedef names and using-declarations used to specify
1367  //   the types do not contribute to this set. The sets of namespaces
1368  //   and classes are determined in the following way:
1369  T = Context.getCanonicalType(T).getUnqualifiedType();
1370
1371  //    -- If T is a pointer to U or an array of U, its associated
1372  //       namespaces and classes are those associated with U.
1373  //
1374  // We handle this by unwrapping pointer and array types immediately,
1375  // to avoid unnecessary recursion.
1376  while (true) {
1377    if (const PointerType *Ptr = T->getAs<PointerType>())
1378      T = Ptr->getPointeeType();
1379    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1380      T = Ptr->getElementType();
1381    else
1382      break;
1383  }
1384
1385  //     -- If T is a fundamental type, its associated sets of
1386  //        namespaces and classes are both empty.
1387  if (T->getAs<BuiltinType>())
1388    return;
1389
1390  //     -- If T is a class type (including unions), its associated
1391  //        classes are: the class itself; the class of which it is a
1392  //        member, if any; and its direct and indirect base
1393  //        classes. Its associated namespaces are the namespaces in
1394  //        which its associated classes are defined.
1395  if (const RecordType *ClassType = T->getAs<RecordType>())
1396    if (CXXRecordDecl *ClassDecl
1397        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1398      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1399                                        AssociatedNamespaces,
1400                                        AssociatedClasses);
1401      return;
1402    }
1403
1404  //     -- If T is an enumeration type, its associated namespace is
1405  //        the namespace in which it is defined. If it is class
1406  //        member, its associated class is the member’s class; else
1407  //        it has no associated class.
1408  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1409    EnumDecl *Enum = EnumT->getDecl();
1410
1411    DeclContext *Ctx = Enum->getDeclContext();
1412    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1413      AssociatedClasses.insert(EnclosingClass);
1414
1415    // Add the associated namespace for this class.
1416    while (Ctx->isRecord())
1417      Ctx = Ctx->getParent();
1418    CollectNamespace(AssociatedNamespaces, Ctx);
1419
1420    return;
1421  }
1422
1423  //     -- If T is a function type, its associated namespaces and
1424  //        classes are those associated with the function parameter
1425  //        types and those associated with the return type.
1426  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1427    // Return type
1428    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1429                                      Context,
1430                                      AssociatedNamespaces, AssociatedClasses);
1431
1432    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1433    if (!Proto)
1434      return;
1435
1436    // Argument types
1437    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1438                                           ArgEnd = Proto->arg_type_end();
1439         Arg != ArgEnd; ++Arg)
1440      addAssociatedClassesAndNamespaces(*Arg, Context,
1441                                        AssociatedNamespaces, AssociatedClasses);
1442
1443    return;
1444  }
1445
1446  //     -- If T is a pointer to a member function of a class X, its
1447  //        associated namespaces and classes are those associated
1448  //        with the function parameter types and return type,
1449  //        together with those associated with X.
1450  //
1451  //     -- If T is a pointer to a data member of class X, its
1452  //        associated namespaces and classes are those associated
1453  //        with the member type together with those associated with
1454  //        X.
1455  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1456    // Handle the type that the pointer to member points to.
1457    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1458                                      Context,
1459                                      AssociatedNamespaces,
1460                                      AssociatedClasses);
1461
1462    // Handle the class type into which this points.
1463    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1464      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1465                                        Context,
1466                                        AssociatedNamespaces,
1467                                        AssociatedClasses);
1468
1469    return;
1470  }
1471
1472  // FIXME: What about block pointers?
1473  // FIXME: What about Objective-C message sends?
1474}
1475
1476/// \brief Find the associated classes and namespaces for
1477/// argument-dependent lookup for a call with the given set of
1478/// arguments.
1479///
1480/// This routine computes the sets of associated classes and associated
1481/// namespaces searched by argument-dependent lookup
1482/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1483void
1484Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1485                                 AssociatedNamespaceSet &AssociatedNamespaces,
1486                                 AssociatedClassSet &AssociatedClasses) {
1487  AssociatedNamespaces.clear();
1488  AssociatedClasses.clear();
1489
1490  // C++ [basic.lookup.koenig]p2:
1491  //   For each argument type T in the function call, there is a set
1492  //   of zero or more associated namespaces and a set of zero or more
1493  //   associated classes to be considered. The sets of namespaces and
1494  //   classes is determined entirely by the types of the function
1495  //   arguments (and the namespace of any template template
1496  //   argument).
1497  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1498    Expr *Arg = Args[ArgIdx];
1499
1500    if (Arg->getType() != Context.OverloadTy) {
1501      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1502                                        AssociatedNamespaces,
1503                                        AssociatedClasses);
1504      continue;
1505    }
1506
1507    // [...] In addition, if the argument is the name or address of a
1508    // set of overloaded functions and/or function templates, its
1509    // associated classes and namespaces are the union of those
1510    // associated with each of the members of the set: the namespace
1511    // in which the function or function template is defined and the
1512    // classes and namespaces associated with its (non-dependent)
1513    // parameter types and return type.
1514    DeclRefExpr *DRE = 0;
1515    TemplateIdRefExpr *TIRE = 0;
1516    Arg = Arg->IgnoreParens();
1517    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1518      if (unaryOp->getOpcode() == UnaryOperator::AddrOf) {
1519        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1520        TIRE = dyn_cast<TemplateIdRefExpr>(unaryOp->getSubExpr());
1521      }
1522    } else {
1523      DRE = dyn_cast<DeclRefExpr>(Arg);
1524      TIRE = dyn_cast<TemplateIdRefExpr>(Arg);
1525    }
1526
1527    OverloadedFunctionDecl *Ovl = 0;
1528    if (DRE)
1529      Ovl = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1530    else if (TIRE)
1531      Ovl = TIRE->getTemplateName().getAsOverloadedFunctionDecl();
1532    if (!Ovl)
1533      continue;
1534
1535    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1536                                                FuncEnd = Ovl->function_end();
1537         Func != FuncEnd; ++Func) {
1538      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*Func);
1539      if (!FDecl)
1540        FDecl = cast<FunctionTemplateDecl>(*Func)->getTemplatedDecl();
1541
1542      // Add the namespace in which this function was defined. Note
1543      // that, if this is a member function, we do *not* consider the
1544      // enclosing namespace of its class.
1545      DeclContext *Ctx = FDecl->getDeclContext();
1546      CollectNamespace(AssociatedNamespaces, Ctx);
1547
1548      // Add the classes and namespaces associated with the parameter
1549      // types and return type of this function.
1550      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1551                                        AssociatedNamespaces,
1552                                        AssociatedClasses);
1553    }
1554  }
1555}
1556
1557/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1558/// an acceptable non-member overloaded operator for a call whose
1559/// arguments have types T1 (and, if non-empty, T2). This routine
1560/// implements the check in C++ [over.match.oper]p3b2 concerning
1561/// enumeration types.
1562static bool
1563IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1564                                       QualType T1, QualType T2,
1565                                       ASTContext &Context) {
1566  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1567    return true;
1568
1569  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1570    return true;
1571
1572  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1573  if (Proto->getNumArgs() < 1)
1574    return false;
1575
1576  if (T1->isEnumeralType()) {
1577    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1578    if (Context.getCanonicalType(T1).getUnqualifiedType()
1579          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1580      return true;
1581  }
1582
1583  if (Proto->getNumArgs() < 2)
1584    return false;
1585
1586  if (!T2.isNull() && T2->isEnumeralType()) {
1587    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1588    if (Context.getCanonicalType(T2).getUnqualifiedType()
1589          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1590      return true;
1591  }
1592
1593  return false;
1594}
1595
1596/// \brief Find the protocol with the given name, if any.
1597ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1598  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1599  return cast_or_null<ObjCProtocolDecl>(D);
1600}
1601
1602/// \brief Find the Objective-C category implementation with the given
1603/// name, if any.
1604ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
1605  Decl *D = LookupSingleName(TUScope, II, LookupObjCCategoryImplName);
1606  return cast_or_null<ObjCCategoryImplDecl>(D);
1607}
1608
1609void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1610                                        QualType T1, QualType T2,
1611                                        FunctionSet &Functions) {
1612  // C++ [over.match.oper]p3:
1613  //     -- The set of non-member candidates is the result of the
1614  //        unqualified lookup of operator@ in the context of the
1615  //        expression according to the usual rules for name lookup in
1616  //        unqualified function calls (3.4.2) except that all member
1617  //        functions are ignored. However, if no operand has a class
1618  //        type, only those non-member functions in the lookup set
1619  //        that have a first parameter of type T1 or "reference to
1620  //        (possibly cv-qualified) T1", when T1 is an enumeration
1621  //        type, or (if there is a right operand) a second parameter
1622  //        of type T2 or "reference to (possibly cv-qualified) T2",
1623  //        when T2 is an enumeration type, are candidate functions.
1624  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1625  LookupResult Operators;
1626  LookupName(Operators, S, OpName, LookupOperatorName);
1627
1628  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1629
1630  if (Operators.empty())
1631    return;
1632
1633  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1634       Op != OpEnd; ++Op) {
1635    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1636      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1637        Functions.insert(FD); // FIXME: canonical FD
1638    } else if (FunctionTemplateDecl *FunTmpl
1639                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1640      // FIXME: friend operators?
1641      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1642      // later?
1643      if (!FunTmpl->getDeclContext()->isRecord())
1644        Functions.insert(FunTmpl);
1645    }
1646  }
1647}
1648
1649static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1650                                Decl *D) {
1651  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1652    Functions.insert(Func);
1653  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1654    Functions.insert(FunTmpl);
1655}
1656
1657void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1658                                   Expr **Args, unsigned NumArgs,
1659                                   FunctionSet &Functions) {
1660  // Find all of the associated namespaces and classes based on the
1661  // arguments we have.
1662  AssociatedNamespaceSet AssociatedNamespaces;
1663  AssociatedClassSet AssociatedClasses;
1664  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1665                                     AssociatedNamespaces,
1666                                     AssociatedClasses);
1667
1668  QualType T1, T2;
1669  if (Operator) {
1670    T1 = Args[0]->getType();
1671    if (NumArgs >= 2)
1672      T2 = Args[1]->getType();
1673  }
1674
1675  // C++ [basic.lookup.argdep]p3:
1676  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1677  //   and let Y be the lookup set produced by argument dependent
1678  //   lookup (defined as follows). If X contains [...] then Y is
1679  //   empty. Otherwise Y is the set of declarations found in the
1680  //   namespaces associated with the argument types as described
1681  //   below. The set of declarations found by the lookup of the name
1682  //   is the union of X and Y.
1683  //
1684  // Here, we compute Y and add its members to the overloaded
1685  // candidate set.
1686  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1687                                     NSEnd = AssociatedNamespaces.end();
1688       NS != NSEnd; ++NS) {
1689    //   When considering an associated namespace, the lookup is the
1690    //   same as the lookup performed when the associated namespace is
1691    //   used as a qualifier (3.4.3.2) except that:
1692    //
1693    //     -- Any using-directives in the associated namespace are
1694    //        ignored.
1695    //
1696    //     -- Any namespace-scope friend functions declared in
1697    //        associated classes are visible within their respective
1698    //        namespaces even if they are not visible during an ordinary
1699    //        lookup (11.4).
1700    DeclContext::lookup_iterator I, E;
1701    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1702      Decl *D = *I;
1703      // If the only declaration here is an ordinary friend, consider
1704      // it only if it was declared in an associated classes.
1705      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1706        DeclContext *LexDC = D->getLexicalDeclContext();
1707        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1708          continue;
1709      }
1710
1711      FunctionDecl *Fn;
1712      if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
1713          IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
1714        CollectFunctionDecl(Functions, D);
1715    }
1716  }
1717}
1718