SemaLookup.cpp revision e77dce286d4ad171e2eba021aa2bc9666a90124f
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196static bool IsAcceptableIDNS(NamedDecl *D, unsigned IDNS) {
197  return D->isInIdentifierNamespace(IDNS);
198}
199
200static bool IsAcceptableOperatorName(NamedDecl *D, unsigned IDNS) {
201  return D->isInIdentifierNamespace(IDNS) &&
202    !D->getDeclContext()->isRecord();
203}
204
205static bool IsAcceptableNestedNameSpecifierName(NamedDecl *D, unsigned IDNS) {
206  // This lookup ignores everything that isn't a type.
207
208  // This is a fast check for the far most common case.
209  if (D->isInIdentifierNamespace(Decl::IDNS_Tag))
210    return true;
211
212  if (isa<UsingShadowDecl>(D))
213    D = cast<UsingShadowDecl>(D)->getTargetDecl();
214
215  return isa<TypeDecl>(D);
216}
217
218static bool IsAcceptableNamespaceName(NamedDecl *D, unsigned IDNS) {
219  // We don't need to look through using decls here because
220  // using decls aren't allowed to name namespaces.
221
222  return isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D);
223}
224
225/// Gets the default result filter for the given lookup.
226static inline
227LookupResult::ResultFilter getResultFilter(Sema::LookupNameKind NameKind) {
228  switch (NameKind) {
229  case Sema::LookupOrdinaryName:
230  case Sema::LookupTagName:
231  case Sema::LookupMemberName:
232  case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping
233  case Sema::LookupUsingDeclName:
234  case Sema::LookupObjCProtocolName:
235  case Sema::LookupObjCImplementationName:
236    return &IsAcceptableIDNS;
237
238  case Sema::LookupOperatorName:
239    return &IsAcceptableOperatorName;
240
241  case Sema::LookupNestedNameSpecifierName:
242    return &IsAcceptableNestedNameSpecifierName;
243
244  case Sema::LookupNamespaceName:
245    return &IsAcceptableNamespaceName;
246  }
247
248  llvm_unreachable("unkknown lookup kind");
249  return 0;
250}
251
252// Retrieve the set of identifier namespaces that correspond to a
253// specific kind of name lookup.
254static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
255                               bool CPlusPlus,
256                               bool Redeclaration) {
257  unsigned IDNS = 0;
258  switch (NameKind) {
259  case Sema::LookupOrdinaryName:
260  case Sema::LookupOperatorName:
261  case Sema::LookupRedeclarationWithLinkage:
262    IDNS = Decl::IDNS_Ordinary;
263    if (CPlusPlus) {
264      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
265      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
266    }
267    break;
268
269  case Sema::LookupTagName:
270    IDNS = Decl::IDNS_Tag;
271    if (CPlusPlus && Redeclaration)
272      IDNS |= Decl::IDNS_TagFriend;
273    break;
274
275  case Sema::LookupMemberName:
276    IDNS = Decl::IDNS_Member;
277    if (CPlusPlus)
278      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
279    break;
280
281  case Sema::LookupNestedNameSpecifierName:
282  case Sema::LookupNamespaceName:
283    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
284    break;
285
286  case Sema::LookupUsingDeclName:
287    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
288         | Decl::IDNS_Member | Decl::IDNS_Using;
289    break;
290
291  case Sema::LookupObjCProtocolName:
292    IDNS = Decl::IDNS_ObjCProtocol;
293    break;
294
295  case Sema::LookupObjCImplementationName:
296    IDNS = Decl::IDNS_ObjCImplementation;
297    break;
298  }
299  return IDNS;
300}
301
302void LookupResult::configure() {
303  IDNS = getIDNS(LookupKind,
304                 SemaRef.getLangOptions().CPlusPlus,
305                 isForRedeclaration());
306  IsAcceptableFn = getResultFilter(LookupKind);
307}
308
309// Necessary because CXXBasePaths is not complete in Sema.h
310void LookupResult::deletePaths(CXXBasePaths *Paths) {
311  delete Paths;
312}
313
314/// Resolves the result kind of this lookup.
315void LookupResult::resolveKind() {
316  unsigned N = Decls.size();
317
318  // Fast case: no possible ambiguity.
319  if (N == 0) {
320    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
321    return;
322  }
323
324  // If there's a single decl, we need to examine it to decide what
325  // kind of lookup this is.
326  if (N == 1) {
327    if (isa<FunctionTemplateDecl>(*Decls.begin()))
328      ResultKind = FoundOverloaded;
329    else if (isa<UnresolvedUsingValueDecl>(*Decls.begin()))
330      ResultKind = FoundUnresolvedValue;
331    return;
332  }
333
334  // Don't do any extra resolution if we've already resolved as ambiguous.
335  if (ResultKind == Ambiguous) return;
336
337  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
338
339  bool Ambiguous = false;
340  bool HasTag = false, HasFunction = false, HasNonFunction = false;
341  bool HasFunctionTemplate = false, HasUnresolved = false;
342
343  unsigned UniqueTagIndex = 0;
344
345  unsigned I = 0;
346  while (I < N) {
347    NamedDecl *D = Decls[I]->getUnderlyingDecl();
348    D = cast<NamedDecl>(D->getCanonicalDecl());
349
350    if (!Unique.insert(D)) {
351      // If it's not unique, pull something off the back (and
352      // continue at this index).
353      Decls[I] = Decls[--N];
354    } else {
355      // Otherwise, do some decl type analysis and then continue.
356
357      if (isa<UnresolvedUsingValueDecl>(D)) {
358        HasUnresolved = true;
359      } else if (isa<TagDecl>(D)) {
360        if (HasTag)
361          Ambiguous = true;
362        UniqueTagIndex = I;
363        HasTag = true;
364      } else if (isa<FunctionTemplateDecl>(D)) {
365        HasFunction = true;
366        HasFunctionTemplate = true;
367      } else if (isa<FunctionDecl>(D)) {
368        HasFunction = true;
369      } else {
370        if (HasNonFunction)
371          Ambiguous = true;
372        HasNonFunction = true;
373      }
374      I++;
375    }
376  }
377
378  // C++ [basic.scope.hiding]p2:
379  //   A class name or enumeration name can be hidden by the name of
380  //   an object, function, or enumerator declared in the same
381  //   scope. If a class or enumeration name and an object, function,
382  //   or enumerator are declared in the same scope (in any order)
383  //   with the same name, the class or enumeration name is hidden
384  //   wherever the object, function, or enumerator name is visible.
385  // But it's still an error if there are distinct tag types found,
386  // even if they're not visible. (ref?)
387  if (HideTags && HasTag && !Ambiguous &&
388      (HasFunction || HasNonFunction || HasUnresolved))
389    Decls[UniqueTagIndex] = Decls[--N];
390
391  Decls.set_size(N);
392
393  if (HasNonFunction && (HasFunction || HasUnresolved))
394    Ambiguous = true;
395
396  if (Ambiguous)
397    setAmbiguous(LookupResult::AmbiguousReference);
398  else if (HasUnresolved)
399    ResultKind = LookupResult::FoundUnresolvedValue;
400  else if (N > 1 || HasFunctionTemplate)
401    ResultKind = LookupResult::FoundOverloaded;
402  else
403    ResultKind = LookupResult::Found;
404}
405
406void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
407  CXXBasePaths::paths_iterator I, E;
408  DeclContext::lookup_iterator DI, DE;
409  for (I = P.begin(), E = P.end(); I != E; ++I)
410    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
411      addDecl(*DI);
412}
413
414void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
415  Paths = new CXXBasePaths;
416  Paths->swap(P);
417  addDeclsFromBasePaths(*Paths);
418  resolveKind();
419  setAmbiguous(AmbiguousBaseSubobjects);
420}
421
422void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
423  Paths = new CXXBasePaths;
424  Paths->swap(P);
425  addDeclsFromBasePaths(*Paths);
426  resolveKind();
427  setAmbiguous(AmbiguousBaseSubobjectTypes);
428}
429
430void LookupResult::print(llvm::raw_ostream &Out) {
431  Out << Decls.size() << " result(s)";
432  if (isAmbiguous()) Out << ", ambiguous";
433  if (Paths) Out << ", base paths present";
434
435  for (iterator I = begin(), E = end(); I != E; ++I) {
436    Out << "\n";
437    (*I)->print(Out, 2);
438  }
439}
440
441// Adds all qualifying matches for a name within a decl context to the
442// given lookup result.  Returns true if any matches were found.
443static bool LookupDirect(LookupResult &R, const DeclContext *DC) {
444  bool Found = false;
445
446  DeclContext::lookup_const_iterator I, E;
447  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
448    NamedDecl *D = *I;
449    if (R.isAcceptableDecl(D)) {
450      R.addDecl(D);
451      Found = true;
452    }
453  }
454
455  if (R.getLookupName().getNameKind()
456        != DeclarationName::CXXConversionFunctionName ||
457      R.getLookupName().getCXXNameType()->isDependentType() ||
458      !isa<CXXRecordDecl>(DC))
459    return Found;
460
461  // C++ [temp.mem]p6:
462  //   A specialization of a conversion function template is not found by
463  //   name lookup. Instead, any conversion function templates visible in the
464  //   context of the use are considered. [...]
465  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
466  if (!Record->isDefinition())
467    return Found;
468
469  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
470  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
471         UEnd = Unresolved->end(); U != UEnd; ++U) {
472    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
473    if (!ConvTemplate)
474      continue;
475
476    // When we're performing lookup for the purposes of redeclaration, just
477    // add the conversion function template. When we deduce template
478    // arguments for specializations, we'll end up unifying the return
479    // type of the new declaration with the type of the function template.
480    if (R.isForRedeclaration()) {
481      R.addDecl(ConvTemplate);
482      Found = true;
483      continue;
484    }
485
486    // C++ [temp.mem]p6:
487    //   [...] For each such operator, if argument deduction succeeds
488    //   (14.9.2.3), the resulting specialization is used as if found by
489    //   name lookup.
490    //
491    // When referencing a conversion function for any purpose other than
492    // a redeclaration (such that we'll be building an expression with the
493    // result), perform template argument deduction and place the
494    // specialization into the result set. We do this to avoid forcing all
495    // callers to perform special deduction for conversion functions.
496    Sema::TemplateDeductionInfo Info(R.getSema().Context);
497    FunctionDecl *Specialization = 0;
498
499    const FunctionProtoType *ConvProto
500      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
501    assert(ConvProto && "Nonsensical conversion function template type");
502
503    // Compute the type of the function that we would expect the conversion
504    // function to have, if it were to match the name given.
505    // FIXME: Calling convention!
506    QualType ExpectedType
507      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
508                                            0, 0, ConvProto->isVariadic(),
509                                            ConvProto->getTypeQuals(),
510                                            false, false, 0, 0,
511                                            ConvProto->getNoReturnAttr());
512
513    // Perform template argument deduction against the type that we would
514    // expect the function to have.
515    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
516                                            Specialization, Info)
517          == Sema::TDK_Success) {
518      R.addDecl(Specialization);
519      Found = true;
520    }
521  }
522
523  return Found;
524}
525
526// Performs C++ unqualified lookup into the given file context.
527static bool
528CppNamespaceLookup(LookupResult &R, ASTContext &Context, DeclContext *NS,
529                   UnqualUsingDirectiveSet &UDirs) {
530
531  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
532
533  // Perform direct name lookup into the LookupCtx.
534  bool Found = LookupDirect(R, NS);
535
536  // Perform direct name lookup into the namespaces nominated by the
537  // using directives whose common ancestor is this namespace.
538  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
539  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
540
541  for (; UI != UEnd; ++UI)
542    if (LookupDirect(R, UI->getNominatedNamespace()))
543      Found = true;
544
545  R.resolveKind();
546
547  return Found;
548}
549
550static bool isNamespaceOrTranslationUnitScope(Scope *S) {
551  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
552    return Ctx->isFileContext();
553  return false;
554}
555
556// Find the next outer declaration context corresponding to this scope.
557static DeclContext *findOuterContext(Scope *S) {
558  for (S = S->getParent(); S; S = S->getParent())
559    if (S->getEntity())
560      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
561
562  return 0;
563}
564
565bool Sema::CppLookupName(LookupResult &R, Scope *S) {
566  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
567
568  DeclarationName Name = R.getLookupName();
569
570  Scope *Initial = S;
571  IdentifierResolver::iterator
572    I = IdResolver.begin(Name),
573    IEnd = IdResolver.end();
574
575  // First we lookup local scope.
576  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
577  // ...During unqualified name lookup (3.4.1), the names appear as if
578  // they were declared in the nearest enclosing namespace which contains
579  // both the using-directive and the nominated namespace.
580  // [Note: in this context, "contains" means "contains directly or
581  // indirectly".
582  //
583  // For example:
584  // namespace A { int i; }
585  // void foo() {
586  //   int i;
587  //   {
588  //     using namespace A;
589  //     ++i; // finds local 'i', A::i appears at global scope
590  //   }
591  // }
592  //
593  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
594    // Check whether the IdResolver has anything in this scope.
595    bool Found = false;
596    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
597      if (R.isAcceptableDecl(*I)) {
598        Found = true;
599        R.addDecl(*I);
600      }
601    }
602    if (Found) {
603      R.resolveKind();
604      return true;
605    }
606
607    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
608      DeclContext *OuterCtx = findOuterContext(S);
609      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
610           Ctx = Ctx->getLookupParent()) {
611        // We do not directly look into function or method contexts
612        // (since all local variables are found via the identifier
613        // changes) or in transparent contexts (since those entities
614        // will be found in the nearest enclosing non-transparent
615        // context).
616        if (Ctx->isFunctionOrMethod() || Ctx->isTransparentContext())
617          continue;
618
619        // Perform qualified name lookup into this context.
620        // FIXME: In some cases, we know that every name that could be found by
621        // this qualified name lookup will also be on the identifier chain. For
622        // example, inside a class without any base classes, we never need to
623        // perform qualified lookup because all of the members are on top of the
624        // identifier chain.
625        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
626          return true;
627      }
628    }
629  }
630
631  // Stop if we ran out of scopes.
632  // FIXME:  This really, really shouldn't be happening.
633  if (!S) return false;
634
635  // Collect UsingDirectiveDecls in all scopes, and recursively all
636  // nominated namespaces by those using-directives.
637  //
638  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
639  // don't build it for each lookup!
640
641  UnqualUsingDirectiveSet UDirs;
642  UDirs.visitScopeChain(Initial, S);
643  UDirs.done();
644
645  // Lookup namespace scope, and global scope.
646  // Unqualified name lookup in C++ requires looking into scopes
647  // that aren't strictly lexical, and therefore we walk through the
648  // context as well as walking through the scopes.
649
650  for (; S; S = S->getParent()) {
651    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
652    if (!Ctx || Ctx->isTransparentContext())
653      continue;
654
655    assert(Ctx && Ctx->isFileContext() &&
656           "We should have been looking only at file context here already.");
657
658    // Check whether the IdResolver has anything in this scope.
659    bool Found = false;
660    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
661      if (R.isAcceptableDecl(*I)) {
662        // We found something.  Look for anything else in our scope
663        // with this same name and in an acceptable identifier
664        // namespace, so that we can construct an overload set if we
665        // need to.
666        Found = true;
667        R.addDecl(*I);
668      }
669    }
670
671    // Look into context considering using-directives.
672    if (CppNamespaceLookup(R, Context, Ctx, UDirs))
673      Found = true;
674
675    if (Found) {
676      R.resolveKind();
677      return true;
678    }
679
680    if (R.isForRedeclaration() && !Ctx->isTransparentContext())
681      return false;
682  }
683
684  return !R.empty();
685}
686
687/// @brief Perform unqualified name lookup starting from a given
688/// scope.
689///
690/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
691/// used to find names within the current scope. For example, 'x' in
692/// @code
693/// int x;
694/// int f() {
695///   return x; // unqualified name look finds 'x' in the global scope
696/// }
697/// @endcode
698///
699/// Different lookup criteria can find different names. For example, a
700/// particular scope can have both a struct and a function of the same
701/// name, and each can be found by certain lookup criteria. For more
702/// information about lookup criteria, see the documentation for the
703/// class LookupCriteria.
704///
705/// @param S        The scope from which unqualified name lookup will
706/// begin. If the lookup criteria permits, name lookup may also search
707/// in the parent scopes.
708///
709/// @param Name     The name of the entity that we are searching for.
710///
711/// @param Loc      If provided, the source location where we're performing
712/// name lookup. At present, this is only used to produce diagnostics when
713/// C library functions (like "malloc") are implicitly declared.
714///
715/// @returns The result of name lookup, which includes zero or more
716/// declarations and possibly additional information used to diagnose
717/// ambiguities.
718bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
719  DeclarationName Name = R.getLookupName();
720  if (!Name) return false;
721
722  LookupNameKind NameKind = R.getLookupKind();
723
724  if (!getLangOptions().CPlusPlus) {
725    // Unqualified name lookup in C/Objective-C is purely lexical, so
726    // search in the declarations attached to the name.
727
728    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
729      // Find the nearest non-transparent declaration scope.
730      while (!(S->getFlags() & Scope::DeclScope) ||
731             (S->getEntity() &&
732              static_cast<DeclContext *>(S->getEntity())
733                ->isTransparentContext()))
734        S = S->getParent();
735    }
736
737    unsigned IDNS = R.getIdentifierNamespace();
738
739    // Scan up the scope chain looking for a decl that matches this
740    // identifier that is in the appropriate namespace.  This search
741    // should not take long, as shadowing of names is uncommon, and
742    // deep shadowing is extremely uncommon.
743    bool LeftStartingScope = false;
744
745    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
746                                   IEnd = IdResolver.end();
747         I != IEnd; ++I)
748      if ((*I)->isInIdentifierNamespace(IDNS)) {
749        if (NameKind == LookupRedeclarationWithLinkage) {
750          // Determine whether this (or a previous) declaration is
751          // out-of-scope.
752          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
753            LeftStartingScope = true;
754
755          // If we found something outside of our starting scope that
756          // does not have linkage, skip it.
757          if (LeftStartingScope && !((*I)->hasLinkage()))
758            continue;
759        }
760
761        R.addDecl(*I);
762
763        if ((*I)->getAttr<OverloadableAttr>()) {
764          // If this declaration has the "overloadable" attribute, we
765          // might have a set of overloaded functions.
766
767          // Figure out what scope the identifier is in.
768          while (!(S->getFlags() & Scope::DeclScope) ||
769                 !S->isDeclScope(DeclPtrTy::make(*I)))
770            S = S->getParent();
771
772          // Find the last declaration in this scope (with the same
773          // name, naturally).
774          IdentifierResolver::iterator LastI = I;
775          for (++LastI; LastI != IEnd; ++LastI) {
776            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
777              break;
778            R.addDecl(*LastI);
779          }
780        }
781
782        R.resolveKind();
783
784        return true;
785      }
786  } else {
787    // Perform C++ unqualified name lookup.
788    if (CppLookupName(R, S))
789      return true;
790  }
791
792  // If we didn't find a use of this identifier, and if the identifier
793  // corresponds to a compiler builtin, create the decl object for the builtin
794  // now, injecting it into translation unit scope, and return it.
795  if (NameKind == LookupOrdinaryName ||
796      NameKind == LookupRedeclarationWithLinkage) {
797    IdentifierInfo *II = Name.getAsIdentifierInfo();
798    if (II && AllowBuiltinCreation) {
799      // If this is a builtin on this (or all) targets, create the decl.
800      if (unsigned BuiltinID = II->getBuiltinID()) {
801        // In C++, we don't have any predefined library functions like
802        // 'malloc'. Instead, we'll just error.
803        if (getLangOptions().CPlusPlus &&
804            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
805          return false;
806
807        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
808                                           S, R.isForRedeclaration(),
809                                           R.getNameLoc());
810        if (D) R.addDecl(D);
811        return (D != NULL);
812      }
813    }
814  }
815  return false;
816}
817
818/// @brief Perform qualified name lookup in the namespaces nominated by
819/// using directives by the given context.
820///
821/// C++98 [namespace.qual]p2:
822///   Given X::m (where X is a user-declared namespace), or given ::m
823///   (where X is the global namespace), let S be the set of all
824///   declarations of m in X and in the transitive closure of all
825///   namespaces nominated by using-directives in X and its used
826///   namespaces, except that using-directives are ignored in any
827///   namespace, including X, directly containing one or more
828///   declarations of m. No namespace is searched more than once in
829///   the lookup of a name. If S is the empty set, the program is
830///   ill-formed. Otherwise, if S has exactly one member, or if the
831///   context of the reference is a using-declaration
832///   (namespace.udecl), S is the required set of declarations of
833///   m. Otherwise if the use of m is not one that allows a unique
834///   declaration to be chosen from S, the program is ill-formed.
835/// C++98 [namespace.qual]p5:
836///   During the lookup of a qualified namespace member name, if the
837///   lookup finds more than one declaration of the member, and if one
838///   declaration introduces a class name or enumeration name and the
839///   other declarations either introduce the same object, the same
840///   enumerator or a set of functions, the non-type name hides the
841///   class or enumeration name if and only if the declarations are
842///   from the same namespace; otherwise (the declarations are from
843///   different namespaces), the program is ill-formed.
844static bool LookupQualifiedNameInUsingDirectives(LookupResult &R,
845                                                 DeclContext *StartDC) {
846  assert(StartDC->isFileContext() && "start context is not a file context");
847
848  DeclContext::udir_iterator I = StartDC->using_directives_begin();
849  DeclContext::udir_iterator E = StartDC->using_directives_end();
850
851  if (I == E) return false;
852
853  // We have at least added all these contexts to the queue.
854  llvm::DenseSet<DeclContext*> Visited;
855  Visited.insert(StartDC);
856
857  // We have not yet looked into these namespaces, much less added
858  // their "using-children" to the queue.
859  llvm::SmallVector<NamespaceDecl*, 8> Queue;
860
861  // We have already looked into the initial namespace; seed the queue
862  // with its using-children.
863  for (; I != E; ++I) {
864    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
865    if (Visited.insert(ND).second)
866      Queue.push_back(ND);
867  }
868
869  // The easiest way to implement the restriction in [namespace.qual]p5
870  // is to check whether any of the individual results found a tag
871  // and, if so, to declare an ambiguity if the final result is not
872  // a tag.
873  bool FoundTag = false;
874  bool FoundNonTag = false;
875
876  LookupResult LocalR(LookupResult::Temporary, R);
877
878  bool Found = false;
879  while (!Queue.empty()) {
880    NamespaceDecl *ND = Queue.back();
881    Queue.pop_back();
882
883    // We go through some convolutions here to avoid copying results
884    // between LookupResults.
885    bool UseLocal = !R.empty();
886    LookupResult &DirectR = UseLocal ? LocalR : R;
887    bool FoundDirect = LookupDirect(DirectR, ND);
888
889    if (FoundDirect) {
890      // First do any local hiding.
891      DirectR.resolveKind();
892
893      // If the local result is a tag, remember that.
894      if (DirectR.isSingleTagDecl())
895        FoundTag = true;
896      else
897        FoundNonTag = true;
898
899      // Append the local results to the total results if necessary.
900      if (UseLocal) {
901        R.addAllDecls(LocalR);
902        LocalR.clear();
903      }
904    }
905
906    // If we find names in this namespace, ignore its using directives.
907    if (FoundDirect) {
908      Found = true;
909      continue;
910    }
911
912    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
913      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
914      if (Visited.insert(Nom).second)
915        Queue.push_back(Nom);
916    }
917  }
918
919  if (Found) {
920    if (FoundTag && FoundNonTag)
921      R.setAmbiguousQualifiedTagHiding();
922    else
923      R.resolveKind();
924  }
925
926  return Found;
927}
928
929/// \brief Perform qualified name lookup into a given context.
930///
931/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
932/// names when the context of those names is explicit specified, e.g.,
933/// "std::vector" or "x->member", or as part of unqualified name lookup.
934///
935/// Different lookup criteria can find different names. For example, a
936/// particular scope can have both a struct and a function of the same
937/// name, and each can be found by certain lookup criteria. For more
938/// information about lookup criteria, see the documentation for the
939/// class LookupCriteria.
940///
941/// \param R captures both the lookup criteria and any lookup results found.
942///
943/// \param LookupCtx The context in which qualified name lookup will
944/// search. If the lookup criteria permits, name lookup may also search
945/// in the parent contexts or (for C++ classes) base classes.
946///
947/// \param InUnqualifiedLookup true if this is qualified name lookup that
948/// occurs as part of unqualified name lookup.
949///
950/// \returns true if lookup succeeded, false if it failed.
951bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
952                               bool InUnqualifiedLookup) {
953  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
954
955  if (!R.getLookupName())
956    return false;
957
958  // Make sure that the declaration context is complete.
959  assert((!isa<TagDecl>(LookupCtx) ||
960          LookupCtx->isDependentContext() ||
961          cast<TagDecl>(LookupCtx)->isDefinition() ||
962          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
963            ->isBeingDefined()) &&
964         "Declaration context must already be complete!");
965
966  // Perform qualified name lookup into the LookupCtx.
967  if (LookupDirect(R, LookupCtx)) {
968    R.resolveKind();
969    if (isa<CXXRecordDecl>(LookupCtx))
970      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
971    return true;
972  }
973
974  // Don't descend into implied contexts for redeclarations.
975  // C++98 [namespace.qual]p6:
976  //   In a declaration for a namespace member in which the
977  //   declarator-id is a qualified-id, given that the qualified-id
978  //   for the namespace member has the form
979  //     nested-name-specifier unqualified-id
980  //   the unqualified-id shall name a member of the namespace
981  //   designated by the nested-name-specifier.
982  // See also [class.mfct]p5 and [class.static.data]p2.
983  if (R.isForRedeclaration())
984    return false;
985
986  // If this is a namespace, look it up in the implied namespaces.
987  if (LookupCtx->isFileContext())
988    return LookupQualifiedNameInUsingDirectives(R, LookupCtx);
989
990  // If this isn't a C++ class, we aren't allowed to look into base
991  // classes, we're done.
992  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
993  if (!LookupRec)
994    return false;
995
996  // If we're performing qualified name lookup into a dependent class,
997  // then we are actually looking into a current instantiation. If we have any
998  // dependent base classes, then we either have to delay lookup until
999  // template instantiation time (at which point all bases will be available)
1000  // or we have to fail.
1001  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1002      LookupRec->hasAnyDependentBases()) {
1003    R.setNotFoundInCurrentInstantiation();
1004    return false;
1005  }
1006
1007  // Perform lookup into our base classes.
1008  CXXBasePaths Paths;
1009  Paths.setOrigin(LookupRec);
1010
1011  // Look for this member in our base classes
1012  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1013  switch (R.getLookupKind()) {
1014    case LookupOrdinaryName:
1015    case LookupMemberName:
1016    case LookupRedeclarationWithLinkage:
1017      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1018      break;
1019
1020    case LookupTagName:
1021      BaseCallback = &CXXRecordDecl::FindTagMember;
1022      break;
1023
1024    case LookupUsingDeclName:
1025      // This lookup is for redeclarations only.
1026
1027    case LookupOperatorName:
1028    case LookupNamespaceName:
1029    case LookupObjCProtocolName:
1030    case LookupObjCImplementationName:
1031      // These lookups will never find a member in a C++ class (or base class).
1032      return false;
1033
1034    case LookupNestedNameSpecifierName:
1035      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1036      break;
1037  }
1038
1039  if (!LookupRec->lookupInBases(BaseCallback,
1040                                R.getLookupName().getAsOpaquePtr(), Paths))
1041    return false;
1042
1043  R.setNamingClass(LookupRec);
1044
1045  // C++ [class.member.lookup]p2:
1046  //   [...] If the resulting set of declarations are not all from
1047  //   sub-objects of the same type, or the set has a nonstatic member
1048  //   and includes members from distinct sub-objects, there is an
1049  //   ambiguity and the program is ill-formed. Otherwise that set is
1050  //   the result of the lookup.
1051  // FIXME: support using declarations!
1052  QualType SubobjectType;
1053  int SubobjectNumber = 0;
1054  AccessSpecifier SubobjectAccess = AS_private;
1055  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1056       Path != PathEnd; ++Path) {
1057    const CXXBasePathElement &PathElement = Path->back();
1058
1059    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1060    // across all paths.
1061    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1062
1063    // Determine whether we're looking at a distinct sub-object or not.
1064    if (SubobjectType.isNull()) {
1065      // This is the first subobject we've looked at. Record its type.
1066      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1067      SubobjectNumber = PathElement.SubobjectNumber;
1068    } else if (SubobjectType
1069                 != Context.getCanonicalType(PathElement.Base->getType())) {
1070      // We found members of the given name in two subobjects of
1071      // different types. This lookup is ambiguous.
1072      R.setAmbiguousBaseSubobjectTypes(Paths);
1073      return true;
1074    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1075      // We have a different subobject of the same type.
1076
1077      // C++ [class.member.lookup]p5:
1078      //   A static member, a nested type or an enumerator defined in
1079      //   a base class T can unambiguously be found even if an object
1080      //   has more than one base class subobject of type T.
1081      Decl *FirstDecl = *Path->Decls.first;
1082      if (isa<VarDecl>(FirstDecl) ||
1083          isa<TypeDecl>(FirstDecl) ||
1084          isa<EnumConstantDecl>(FirstDecl))
1085        continue;
1086
1087      if (isa<CXXMethodDecl>(FirstDecl)) {
1088        // Determine whether all of the methods are static.
1089        bool AllMethodsAreStatic = true;
1090        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1091             Func != Path->Decls.second; ++Func) {
1092          if (!isa<CXXMethodDecl>(*Func)) {
1093            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1094            break;
1095          }
1096
1097          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1098            AllMethodsAreStatic = false;
1099            break;
1100          }
1101        }
1102
1103        if (AllMethodsAreStatic)
1104          continue;
1105      }
1106
1107      // We have found a nonstatic member name in multiple, distinct
1108      // subobjects. Name lookup is ambiguous.
1109      R.setAmbiguousBaseSubobjects(Paths);
1110      return true;
1111    }
1112  }
1113
1114  // Lookup in a base class succeeded; return these results.
1115
1116  DeclContext::lookup_iterator I, E;
1117  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1118    NamedDecl *D = *I;
1119    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1120                                                    D->getAccess());
1121    R.addDecl(D, AS);
1122  }
1123  R.resolveKind();
1124  return true;
1125}
1126
1127/// @brief Performs name lookup for a name that was parsed in the
1128/// source code, and may contain a C++ scope specifier.
1129///
1130/// This routine is a convenience routine meant to be called from
1131/// contexts that receive a name and an optional C++ scope specifier
1132/// (e.g., "N::M::x"). It will then perform either qualified or
1133/// unqualified name lookup (with LookupQualifiedName or LookupName,
1134/// respectively) on the given name and return those results.
1135///
1136/// @param S        The scope from which unqualified name lookup will
1137/// begin.
1138///
1139/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1140///
1141/// @param Name     The name of the entity that name lookup will
1142/// search for.
1143///
1144/// @param Loc      If provided, the source location where we're performing
1145/// name lookup. At present, this is only used to produce diagnostics when
1146/// C library functions (like "malloc") are implicitly declared.
1147///
1148/// @param EnteringContext Indicates whether we are going to enter the
1149/// context of the scope-specifier SS (if present).
1150///
1151/// @returns True if any decls were found (but possibly ambiguous)
1152bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1153                            bool AllowBuiltinCreation, bool EnteringContext) {
1154  if (SS && SS->isInvalid()) {
1155    // When the scope specifier is invalid, don't even look for
1156    // anything.
1157    return false;
1158  }
1159
1160  if (SS && SS->isSet()) {
1161    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1162      // We have resolved the scope specifier to a particular declaration
1163      // contex, and will perform name lookup in that context.
1164      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1165        return false;
1166
1167      R.setContextRange(SS->getRange());
1168
1169      return LookupQualifiedName(R, DC);
1170    }
1171
1172    // We could not resolve the scope specified to a specific declaration
1173    // context, which means that SS refers to an unknown specialization.
1174    // Name lookup can't find anything in this case.
1175    return false;
1176  }
1177
1178  // Perform unqualified name lookup starting in the given scope.
1179  return LookupName(R, S, AllowBuiltinCreation);
1180}
1181
1182
1183/// @brief Produce a diagnostic describing the ambiguity that resulted
1184/// from name lookup.
1185///
1186/// @param Result       The ambiguous name lookup result.
1187///
1188/// @param Name         The name of the entity that name lookup was
1189/// searching for.
1190///
1191/// @param NameLoc      The location of the name within the source code.
1192///
1193/// @param LookupRange  A source range that provides more
1194/// source-location information concerning the lookup itself. For
1195/// example, this range might highlight a nested-name-specifier that
1196/// precedes the name.
1197///
1198/// @returns true
1199bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1200  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1201
1202  DeclarationName Name = Result.getLookupName();
1203  SourceLocation NameLoc = Result.getNameLoc();
1204  SourceRange LookupRange = Result.getContextRange();
1205
1206  switch (Result.getAmbiguityKind()) {
1207  case LookupResult::AmbiguousBaseSubobjects: {
1208    CXXBasePaths *Paths = Result.getBasePaths();
1209    QualType SubobjectType = Paths->front().back().Base->getType();
1210    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1211      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1212      << LookupRange;
1213
1214    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1215    while (isa<CXXMethodDecl>(*Found) &&
1216           cast<CXXMethodDecl>(*Found)->isStatic())
1217      ++Found;
1218
1219    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1220
1221    return true;
1222  }
1223
1224  case LookupResult::AmbiguousBaseSubobjectTypes: {
1225    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1226      << Name << LookupRange;
1227
1228    CXXBasePaths *Paths = Result.getBasePaths();
1229    std::set<Decl *> DeclsPrinted;
1230    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1231                                      PathEnd = Paths->end();
1232         Path != PathEnd; ++Path) {
1233      Decl *D = *Path->Decls.first;
1234      if (DeclsPrinted.insert(D).second)
1235        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1236    }
1237
1238    return true;
1239  }
1240
1241  case LookupResult::AmbiguousTagHiding: {
1242    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1243
1244    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1245
1246    LookupResult::iterator DI, DE = Result.end();
1247    for (DI = Result.begin(); DI != DE; ++DI)
1248      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1249        TagDecls.insert(TD);
1250        Diag(TD->getLocation(), diag::note_hidden_tag);
1251      }
1252
1253    for (DI = Result.begin(); DI != DE; ++DI)
1254      if (!isa<TagDecl>(*DI))
1255        Diag((*DI)->getLocation(), diag::note_hiding_object);
1256
1257    // For recovery purposes, go ahead and implement the hiding.
1258    LookupResult::Filter F = Result.makeFilter();
1259    while (F.hasNext()) {
1260      if (TagDecls.count(F.next()))
1261        F.erase();
1262    }
1263    F.done();
1264
1265    return true;
1266  }
1267
1268  case LookupResult::AmbiguousReference: {
1269    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1270
1271    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1272    for (; DI != DE; ++DI)
1273      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1274
1275    return true;
1276  }
1277  }
1278
1279  llvm_unreachable("unknown ambiguity kind");
1280  return true;
1281}
1282
1283static void
1284addAssociatedClassesAndNamespaces(QualType T,
1285                                  ASTContext &Context,
1286                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1287                                  Sema::AssociatedClassSet &AssociatedClasses);
1288
1289static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1290                             DeclContext *Ctx) {
1291  if (Ctx->isFileContext())
1292    Namespaces.insert(Ctx);
1293}
1294
1295// \brief Add the associated classes and namespaces for argument-dependent
1296// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1297static void
1298addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1299                                  ASTContext &Context,
1300                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1301                                  Sema::AssociatedClassSet &AssociatedClasses) {
1302  // C++ [basic.lookup.koenig]p2, last bullet:
1303  //   -- [...] ;
1304  switch (Arg.getKind()) {
1305    case TemplateArgument::Null:
1306      break;
1307
1308    case TemplateArgument::Type:
1309      // [...] the namespaces and classes associated with the types of the
1310      // template arguments provided for template type parameters (excluding
1311      // template template parameters)
1312      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1313                                        AssociatedNamespaces,
1314                                        AssociatedClasses);
1315      break;
1316
1317    case TemplateArgument::Template: {
1318      // [...] the namespaces in which any template template arguments are
1319      // defined; and the classes in which any member templates used as
1320      // template template arguments are defined.
1321      TemplateName Template = Arg.getAsTemplate();
1322      if (ClassTemplateDecl *ClassTemplate
1323                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1324        DeclContext *Ctx = ClassTemplate->getDeclContext();
1325        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1326          AssociatedClasses.insert(EnclosingClass);
1327        // Add the associated namespace for this class.
1328        while (Ctx->isRecord())
1329          Ctx = Ctx->getParent();
1330        CollectNamespace(AssociatedNamespaces, Ctx);
1331      }
1332      break;
1333    }
1334
1335    case TemplateArgument::Declaration:
1336    case TemplateArgument::Integral:
1337    case TemplateArgument::Expression:
1338      // [Note: non-type template arguments do not contribute to the set of
1339      //  associated namespaces. ]
1340      break;
1341
1342    case TemplateArgument::Pack:
1343      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1344                                        PEnd = Arg.pack_end();
1345           P != PEnd; ++P)
1346        addAssociatedClassesAndNamespaces(*P, Context,
1347                                          AssociatedNamespaces,
1348                                          AssociatedClasses);
1349      break;
1350  }
1351}
1352
1353// \brief Add the associated classes and namespaces for
1354// argument-dependent lookup with an argument of class type
1355// (C++ [basic.lookup.koenig]p2).
1356static void
1357addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1358                                  ASTContext &Context,
1359                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1360                            Sema::AssociatedClassSet &AssociatedClasses) {
1361  // C++ [basic.lookup.koenig]p2:
1362  //   [...]
1363  //     -- If T is a class type (including unions), its associated
1364  //        classes are: the class itself; the class of which it is a
1365  //        member, if any; and its direct and indirect base
1366  //        classes. Its associated namespaces are the namespaces in
1367  //        which its associated classes are defined.
1368
1369  // Add the class of which it is a member, if any.
1370  DeclContext *Ctx = Class->getDeclContext();
1371  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1372    AssociatedClasses.insert(EnclosingClass);
1373  // Add the associated namespace for this class.
1374  while (Ctx->isRecord())
1375    Ctx = Ctx->getParent();
1376  CollectNamespace(AssociatedNamespaces, Ctx);
1377
1378  // Add the class itself. If we've already seen this class, we don't
1379  // need to visit base classes.
1380  if (!AssociatedClasses.insert(Class))
1381    return;
1382
1383  // -- If T is a template-id, its associated namespaces and classes are
1384  //    the namespace in which the template is defined; for member
1385  //    templates, the member template’s class; the namespaces and classes
1386  //    associated with the types of the template arguments provided for
1387  //    template type parameters (excluding template template parameters); the
1388  //    namespaces in which any template template arguments are defined; and
1389  //    the classes in which any member templates used as template template
1390  //    arguments are defined. [Note: non-type template arguments do not
1391  //    contribute to the set of associated namespaces. ]
1392  if (ClassTemplateSpecializationDecl *Spec
1393        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1394    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1395    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1396      AssociatedClasses.insert(EnclosingClass);
1397    // Add the associated namespace for this class.
1398    while (Ctx->isRecord())
1399      Ctx = Ctx->getParent();
1400    CollectNamespace(AssociatedNamespaces, Ctx);
1401
1402    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1403    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1404      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1405                                        AssociatedNamespaces,
1406                                        AssociatedClasses);
1407  }
1408
1409  // Add direct and indirect base classes along with their associated
1410  // namespaces.
1411  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1412  Bases.push_back(Class);
1413  while (!Bases.empty()) {
1414    // Pop this class off the stack.
1415    Class = Bases.back();
1416    Bases.pop_back();
1417
1418    // Visit the base classes.
1419    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1420                                         BaseEnd = Class->bases_end();
1421         Base != BaseEnd; ++Base) {
1422      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1423      // In dependent contexts, we do ADL twice, and the first time around,
1424      // the base type might be a dependent TemplateSpecializationType, or a
1425      // TemplateTypeParmType. If that happens, simply ignore it.
1426      // FIXME: If we want to support export, we probably need to add the
1427      // namespace of the template in a TemplateSpecializationType, or even
1428      // the classes and namespaces of known non-dependent arguments.
1429      if (!BaseType)
1430        continue;
1431      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1432      if (AssociatedClasses.insert(BaseDecl)) {
1433        // Find the associated namespace for this base class.
1434        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1435        while (BaseCtx->isRecord())
1436          BaseCtx = BaseCtx->getParent();
1437        CollectNamespace(AssociatedNamespaces, BaseCtx);
1438
1439        // Make sure we visit the bases of this base class.
1440        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1441          Bases.push_back(BaseDecl);
1442      }
1443    }
1444  }
1445}
1446
1447// \brief Add the associated classes and namespaces for
1448// argument-dependent lookup with an argument of type T
1449// (C++ [basic.lookup.koenig]p2).
1450static void
1451addAssociatedClassesAndNamespaces(QualType T,
1452                                  ASTContext &Context,
1453                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1454                                  Sema::AssociatedClassSet &AssociatedClasses) {
1455  // C++ [basic.lookup.koenig]p2:
1456  //
1457  //   For each argument type T in the function call, there is a set
1458  //   of zero or more associated namespaces and a set of zero or more
1459  //   associated classes to be considered. The sets of namespaces and
1460  //   classes is determined entirely by the types of the function
1461  //   arguments (and the namespace of any template template
1462  //   argument). Typedef names and using-declarations used to specify
1463  //   the types do not contribute to this set. The sets of namespaces
1464  //   and classes are determined in the following way:
1465  T = Context.getCanonicalType(T).getUnqualifiedType();
1466
1467  //    -- If T is a pointer to U or an array of U, its associated
1468  //       namespaces and classes are those associated with U.
1469  //
1470  // We handle this by unwrapping pointer and array types immediately,
1471  // to avoid unnecessary recursion.
1472  while (true) {
1473    if (const PointerType *Ptr = T->getAs<PointerType>())
1474      T = Ptr->getPointeeType();
1475    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1476      T = Ptr->getElementType();
1477    else
1478      break;
1479  }
1480
1481  //     -- If T is a fundamental type, its associated sets of
1482  //        namespaces and classes are both empty.
1483  if (T->getAs<BuiltinType>())
1484    return;
1485
1486  //     -- If T is a class type (including unions), its associated
1487  //        classes are: the class itself; the class of which it is a
1488  //        member, if any; and its direct and indirect base
1489  //        classes. Its associated namespaces are the namespaces in
1490  //        which its associated classes are defined.
1491  if (const RecordType *ClassType = T->getAs<RecordType>())
1492    if (CXXRecordDecl *ClassDecl
1493        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1494      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1495                                        AssociatedNamespaces,
1496                                        AssociatedClasses);
1497      return;
1498    }
1499
1500  //     -- If T is an enumeration type, its associated namespace is
1501  //        the namespace in which it is defined. If it is class
1502  //        member, its associated class is the member’s class; else
1503  //        it has no associated class.
1504  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1505    EnumDecl *Enum = EnumT->getDecl();
1506
1507    DeclContext *Ctx = Enum->getDeclContext();
1508    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1509      AssociatedClasses.insert(EnclosingClass);
1510
1511    // Add the associated namespace for this class.
1512    while (Ctx->isRecord())
1513      Ctx = Ctx->getParent();
1514    CollectNamespace(AssociatedNamespaces, Ctx);
1515
1516    return;
1517  }
1518
1519  //     -- If T is a function type, its associated namespaces and
1520  //        classes are those associated with the function parameter
1521  //        types and those associated with the return type.
1522  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1523    // Return type
1524    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1525                                      Context,
1526                                      AssociatedNamespaces, AssociatedClasses);
1527
1528    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1529    if (!Proto)
1530      return;
1531
1532    // Argument types
1533    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1534                                           ArgEnd = Proto->arg_type_end();
1535         Arg != ArgEnd; ++Arg)
1536      addAssociatedClassesAndNamespaces(*Arg, Context,
1537                                        AssociatedNamespaces, AssociatedClasses);
1538
1539    return;
1540  }
1541
1542  //     -- If T is a pointer to a member function of a class X, its
1543  //        associated namespaces and classes are those associated
1544  //        with the function parameter types and return type,
1545  //        together with those associated with X.
1546  //
1547  //     -- If T is a pointer to a data member of class X, its
1548  //        associated namespaces and classes are those associated
1549  //        with the member type together with those associated with
1550  //        X.
1551  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1552    // Handle the type that the pointer to member points to.
1553    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1554                                      Context,
1555                                      AssociatedNamespaces,
1556                                      AssociatedClasses);
1557
1558    // Handle the class type into which this points.
1559    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1560      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1561                                        Context,
1562                                        AssociatedNamespaces,
1563                                        AssociatedClasses);
1564
1565    return;
1566  }
1567
1568  // FIXME: What about block pointers?
1569  // FIXME: What about Objective-C message sends?
1570}
1571
1572/// \brief Find the associated classes and namespaces for
1573/// argument-dependent lookup for a call with the given set of
1574/// arguments.
1575///
1576/// This routine computes the sets of associated classes and associated
1577/// namespaces searched by argument-dependent lookup
1578/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1579void
1580Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1581                                 AssociatedNamespaceSet &AssociatedNamespaces,
1582                                 AssociatedClassSet &AssociatedClasses) {
1583  AssociatedNamespaces.clear();
1584  AssociatedClasses.clear();
1585
1586  // C++ [basic.lookup.koenig]p2:
1587  //   For each argument type T in the function call, there is a set
1588  //   of zero or more associated namespaces and a set of zero or more
1589  //   associated classes to be considered. The sets of namespaces and
1590  //   classes is determined entirely by the types of the function
1591  //   arguments (and the namespace of any template template
1592  //   argument).
1593  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1594    Expr *Arg = Args[ArgIdx];
1595
1596    if (Arg->getType() != Context.OverloadTy) {
1597      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1598                                        AssociatedNamespaces,
1599                                        AssociatedClasses);
1600      continue;
1601    }
1602
1603    // [...] In addition, if the argument is the name or address of a
1604    // set of overloaded functions and/or function templates, its
1605    // associated classes and namespaces are the union of those
1606    // associated with each of the members of the set: the namespace
1607    // in which the function or function template is defined and the
1608    // classes and namespaces associated with its (non-dependent)
1609    // parameter types and return type.
1610    Arg = Arg->IgnoreParens();
1611    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1612      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1613        Arg = unaryOp->getSubExpr();
1614
1615    // TODO: avoid the copies.  This should be easy when the cases
1616    // share a storage implementation.
1617    llvm::SmallVector<NamedDecl*, 8> Functions;
1618
1619    if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
1620      Functions.append(ULE->decls_begin(), ULE->decls_end());
1621    else
1622      continue;
1623
1624    for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
1625           E = Functions.end(); I != E; ++I) {
1626      // Look through any using declarations to find the underlying function.
1627      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1628
1629      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1630      if (!FDecl)
1631        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1632
1633      // Add the classes and namespaces associated with the parameter
1634      // types and return type of this function.
1635      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1636                                        AssociatedNamespaces,
1637                                        AssociatedClasses);
1638    }
1639  }
1640}
1641
1642/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1643/// an acceptable non-member overloaded operator for a call whose
1644/// arguments have types T1 (and, if non-empty, T2). This routine
1645/// implements the check in C++ [over.match.oper]p3b2 concerning
1646/// enumeration types.
1647static bool
1648IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1649                                       QualType T1, QualType T2,
1650                                       ASTContext &Context) {
1651  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1652    return true;
1653
1654  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1655    return true;
1656
1657  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1658  if (Proto->getNumArgs() < 1)
1659    return false;
1660
1661  if (T1->isEnumeralType()) {
1662    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1663    if (Context.hasSameUnqualifiedType(T1, ArgType))
1664      return true;
1665  }
1666
1667  if (Proto->getNumArgs() < 2)
1668    return false;
1669
1670  if (!T2.isNull() && T2->isEnumeralType()) {
1671    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1672    if (Context.hasSameUnqualifiedType(T2, ArgType))
1673      return true;
1674  }
1675
1676  return false;
1677}
1678
1679NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1680                                  LookupNameKind NameKind,
1681                                  RedeclarationKind Redecl) {
1682  LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl);
1683  LookupName(R, S);
1684  return R.getAsSingle<NamedDecl>();
1685}
1686
1687/// \brief Find the protocol with the given name, if any.
1688ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1689  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1690  return cast_or_null<ObjCProtocolDecl>(D);
1691}
1692
1693void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1694                                        QualType T1, QualType T2,
1695                                        UnresolvedSetImpl &Functions) {
1696  // C++ [over.match.oper]p3:
1697  //     -- The set of non-member candidates is the result of the
1698  //        unqualified lookup of operator@ in the context of the
1699  //        expression according to the usual rules for name lookup in
1700  //        unqualified function calls (3.4.2) except that all member
1701  //        functions are ignored. However, if no operand has a class
1702  //        type, only those non-member functions in the lookup set
1703  //        that have a first parameter of type T1 or "reference to
1704  //        (possibly cv-qualified) T1", when T1 is an enumeration
1705  //        type, or (if there is a right operand) a second parameter
1706  //        of type T2 or "reference to (possibly cv-qualified) T2",
1707  //        when T2 is an enumeration type, are candidate functions.
1708  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1709  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1710  LookupName(Operators, S);
1711
1712  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1713
1714  if (Operators.empty())
1715    return;
1716
1717  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1718       Op != OpEnd; ++Op) {
1719    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1720      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1721        Functions.addDecl(FD, Op.getAccess()); // FIXME: canonical FD
1722    } else if (FunctionTemplateDecl *FunTmpl
1723                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1724      // FIXME: friend operators?
1725      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1726      // later?
1727      if (!FunTmpl->getDeclContext()->isRecord())
1728        Functions.addDecl(FunTmpl, Op.getAccess());
1729    }
1730  }
1731}
1732
1733void ADLResult::insert(NamedDecl *New) {
1734  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
1735
1736  // If we haven't yet seen a decl for this key, or the last decl
1737  // was exactly this one, we're done.
1738  if (Old == 0 || Old == New) {
1739    Old = New;
1740    return;
1741  }
1742
1743  // Otherwise, decide which is a more recent redeclaration.
1744  FunctionDecl *OldFD, *NewFD;
1745  if (isa<FunctionTemplateDecl>(New)) {
1746    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
1747    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
1748  } else {
1749    OldFD = cast<FunctionDecl>(Old);
1750    NewFD = cast<FunctionDecl>(New);
1751  }
1752
1753  FunctionDecl *Cursor = NewFD;
1754  while (true) {
1755    Cursor = Cursor->getPreviousDeclaration();
1756
1757    // If we got to the end without finding OldFD, OldFD is the newer
1758    // declaration;  leave things as they are.
1759    if (!Cursor) return;
1760
1761    // If we do find OldFD, then NewFD is newer.
1762    if (Cursor == OldFD) break;
1763
1764    // Otherwise, keep looking.
1765  }
1766
1767  Old = New;
1768}
1769
1770void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1771                                   Expr **Args, unsigned NumArgs,
1772                                   ADLResult &Result) {
1773  // Find all of the associated namespaces and classes based on the
1774  // arguments we have.
1775  AssociatedNamespaceSet AssociatedNamespaces;
1776  AssociatedClassSet AssociatedClasses;
1777  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1778                                     AssociatedNamespaces,
1779                                     AssociatedClasses);
1780
1781  QualType T1, T2;
1782  if (Operator) {
1783    T1 = Args[0]->getType();
1784    if (NumArgs >= 2)
1785      T2 = Args[1]->getType();
1786  }
1787
1788  // C++ [basic.lookup.argdep]p3:
1789  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1790  //   and let Y be the lookup set produced by argument dependent
1791  //   lookup (defined as follows). If X contains [...] then Y is
1792  //   empty. Otherwise Y is the set of declarations found in the
1793  //   namespaces associated with the argument types as described
1794  //   below. The set of declarations found by the lookup of the name
1795  //   is the union of X and Y.
1796  //
1797  // Here, we compute Y and add its members to the overloaded
1798  // candidate set.
1799  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1800                                     NSEnd = AssociatedNamespaces.end();
1801       NS != NSEnd; ++NS) {
1802    //   When considering an associated namespace, the lookup is the
1803    //   same as the lookup performed when the associated namespace is
1804    //   used as a qualifier (3.4.3.2) except that:
1805    //
1806    //     -- Any using-directives in the associated namespace are
1807    //        ignored.
1808    //
1809    //     -- Any namespace-scope friend functions declared in
1810    //        associated classes are visible within their respective
1811    //        namespaces even if they are not visible during an ordinary
1812    //        lookup (11.4).
1813    DeclContext::lookup_iterator I, E;
1814    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1815      NamedDecl *D = *I;
1816      // If the only declaration here is an ordinary friend, consider
1817      // it only if it was declared in an associated classes.
1818      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1819        DeclContext *LexDC = D->getLexicalDeclContext();
1820        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1821          continue;
1822      }
1823
1824      if (isa<UsingShadowDecl>(D))
1825        D = cast<UsingShadowDecl>(D)->getTargetDecl();
1826
1827      if (isa<FunctionDecl>(D)) {
1828        if (Operator &&
1829            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
1830                                                    T1, T2, Context))
1831          continue;
1832      } else if (!isa<FunctionTemplateDecl>(D))
1833        continue;
1834
1835      Result.insert(D);
1836    }
1837  }
1838}
1839
1840//----------------------------------------------------------------------------
1841// Search for all visible declarations.
1842//----------------------------------------------------------------------------
1843VisibleDeclConsumer::~VisibleDeclConsumer() { }
1844
1845namespace {
1846
1847class ShadowContextRAII;
1848
1849class VisibleDeclsRecord {
1850public:
1851  /// \brief An entry in the shadow map, which is optimized to store a
1852  /// single declaration (the common case) but can also store a list
1853  /// of declarations.
1854  class ShadowMapEntry {
1855    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
1856
1857    /// \brief Contains either the solitary NamedDecl * or a vector
1858    /// of declarations.
1859    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
1860
1861  public:
1862    ShadowMapEntry() : DeclOrVector() { }
1863
1864    void Add(NamedDecl *ND);
1865    void Destroy();
1866
1867    // Iteration.
1868    typedef NamedDecl **iterator;
1869    iterator begin();
1870    iterator end();
1871  };
1872
1873private:
1874  /// \brief A mapping from declaration names to the declarations that have
1875  /// this name within a particular scope.
1876  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
1877
1878  /// \brief A list of shadow maps, which is used to model name hiding.
1879  std::list<ShadowMap> ShadowMaps;
1880
1881  /// \brief The declaration contexts we have already visited.
1882  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
1883
1884  friend class ShadowContextRAII;
1885
1886public:
1887  /// \brief Determine whether we have already visited this context
1888  /// (and, if not, note that we are going to visit that context now).
1889  bool visitedContext(DeclContext *Ctx) {
1890    return !VisitedContexts.insert(Ctx);
1891  }
1892
1893  /// \brief Determine whether the given declaration is hidden in the
1894  /// current scope.
1895  ///
1896  /// \returns the declaration that hides the given declaration, or
1897  /// NULL if no such declaration exists.
1898  NamedDecl *checkHidden(NamedDecl *ND);
1899
1900  /// \brief Add a declaration to the current shadow map.
1901  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
1902};
1903
1904/// \brief RAII object that records when we've entered a shadow context.
1905class ShadowContextRAII {
1906  VisibleDeclsRecord &Visible;
1907
1908  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
1909
1910public:
1911  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
1912    Visible.ShadowMaps.push_back(ShadowMap());
1913  }
1914
1915  ~ShadowContextRAII() {
1916    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
1917                          EEnd = Visible.ShadowMaps.back().end();
1918         E != EEnd;
1919         ++E)
1920      E->second.Destroy();
1921
1922    Visible.ShadowMaps.pop_back();
1923  }
1924};
1925
1926} // end anonymous namespace
1927
1928void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
1929  if (DeclOrVector.isNull()) {
1930    // 0 - > 1 elements: just set the single element information.
1931    DeclOrVector = ND;
1932    return;
1933  }
1934
1935  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
1936    // 1 -> 2 elements: create the vector of results and push in the
1937    // existing declaration.
1938    DeclVector *Vec = new DeclVector;
1939    Vec->push_back(PrevND);
1940    DeclOrVector = Vec;
1941  }
1942
1943  // Add the new element to the end of the vector.
1944  DeclOrVector.get<DeclVector*>()->push_back(ND);
1945}
1946
1947void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
1948  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
1949    delete Vec;
1950    DeclOrVector = ((NamedDecl *)0);
1951  }
1952}
1953
1954VisibleDeclsRecord::ShadowMapEntry::iterator
1955VisibleDeclsRecord::ShadowMapEntry::begin() {
1956  if (DeclOrVector.isNull())
1957    return 0;
1958
1959  if (DeclOrVector.dyn_cast<NamedDecl *>())
1960    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
1961
1962  return DeclOrVector.get<DeclVector *>()->begin();
1963}
1964
1965VisibleDeclsRecord::ShadowMapEntry::iterator
1966VisibleDeclsRecord::ShadowMapEntry::end() {
1967  if (DeclOrVector.isNull())
1968    return 0;
1969
1970  if (DeclOrVector.dyn_cast<NamedDecl *>())
1971    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
1972
1973  return DeclOrVector.get<DeclVector *>()->end();
1974}
1975
1976NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
1977  // Look through using declarations.
1978  ND = ND->getUnderlyingDecl();
1979
1980  unsigned IDNS = ND->getIdentifierNamespace();
1981  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
1982  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
1983       SM != SMEnd; ++SM) {
1984    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
1985    if (Pos == SM->end())
1986      continue;
1987
1988    for (ShadowMapEntry::iterator I = Pos->second.begin(),
1989                               IEnd = Pos->second.end();
1990         I != IEnd; ++I) {
1991      // A tag declaration does not hide a non-tag declaration.
1992      if ((*I)->getIdentifierNamespace() == Decl::IDNS_Tag &&
1993          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
1994                   Decl::IDNS_ObjCProtocol)))
1995        continue;
1996
1997      // Protocols are in distinct namespaces from everything else.
1998      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
1999           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2000          (*I)->getIdentifierNamespace() != IDNS)
2001        continue;
2002
2003      // Functions and function templates in the same scope overload
2004      // rather than hide.  FIXME: Look for hiding based on function
2005      // signatures!
2006      if ((*I)->isFunctionOrFunctionTemplate() &&
2007          ND->isFunctionOrFunctionTemplate() &&
2008          SM == ShadowMaps.rbegin())
2009        continue;
2010
2011      // We've found a declaration that hides this one.
2012      return *I;
2013    }
2014  }
2015
2016  return 0;
2017}
2018
2019static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2020                               bool QualifiedNameLookup,
2021                               bool InBaseClass,
2022                               VisibleDeclConsumer &Consumer,
2023                               VisibleDeclsRecord &Visited) {
2024  // Make sure we don't visit the same context twice.
2025  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2026    return;
2027
2028  // Enumerate all of the results in this context.
2029  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2030       CurCtx = CurCtx->getNextContext()) {
2031    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2032                                 DEnd = CurCtx->decls_end();
2033         D != DEnd; ++D) {
2034      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2035        if (Result.isAcceptableDecl(ND)) {
2036          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2037          Visited.add(ND);
2038        }
2039
2040      // Visit transparent contexts inside this context.
2041      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2042        if (InnerCtx->isTransparentContext())
2043          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2044                             Consumer, Visited);
2045      }
2046    }
2047  }
2048
2049  // Traverse using directives for qualified name lookup.
2050  if (QualifiedNameLookup) {
2051    ShadowContextRAII Shadow(Visited);
2052    DeclContext::udir_iterator I, E;
2053    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2054      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2055                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2056    }
2057  }
2058
2059  // Traverse the contexts of inherited C++ classes.
2060  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2061    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2062                                         BEnd = Record->bases_end();
2063         B != BEnd; ++B) {
2064      QualType BaseType = B->getType();
2065
2066      // Don't look into dependent bases, because name lookup can't look
2067      // there anyway.
2068      if (BaseType->isDependentType())
2069        continue;
2070
2071      const RecordType *Record = BaseType->getAs<RecordType>();
2072      if (!Record)
2073        continue;
2074
2075      // FIXME: It would be nice to be able to determine whether referencing
2076      // a particular member would be ambiguous. For example, given
2077      //
2078      //   struct A { int member; };
2079      //   struct B { int member; };
2080      //   struct C : A, B { };
2081      //
2082      //   void f(C *c) { c->### }
2083      //
2084      // accessing 'member' would result in an ambiguity. However, we
2085      // could be smart enough to qualify the member with the base
2086      // class, e.g.,
2087      //
2088      //   c->B::member
2089      //
2090      // or
2091      //
2092      //   c->A::member
2093
2094      // Find results in this base class (and its bases).
2095      ShadowContextRAII Shadow(Visited);
2096      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2097                         true, Consumer, Visited);
2098    }
2099  }
2100
2101  // Traverse the contexts of Objective-C classes.
2102  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2103    // Traverse categories.
2104    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2105         Category; Category = Category->getNextClassCategory()) {
2106      ShadowContextRAII Shadow(Visited);
2107      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2108                         Consumer, Visited);
2109    }
2110
2111    // Traverse protocols.
2112    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2113         E = IFace->protocol_end(); I != E; ++I) {
2114      ShadowContextRAII Shadow(Visited);
2115      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2116                         Visited);
2117    }
2118
2119    // Traverse the superclass.
2120    if (IFace->getSuperClass()) {
2121      ShadowContextRAII Shadow(Visited);
2122      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2123                         true, Consumer, Visited);
2124    }
2125  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2126    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2127           E = Protocol->protocol_end(); I != E; ++I) {
2128      ShadowContextRAII Shadow(Visited);
2129      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2130                         Visited);
2131    }
2132  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2133    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2134           E = Category->protocol_end(); I != E; ++I) {
2135      ShadowContextRAII Shadow(Visited);
2136      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2137                         Visited);
2138    }
2139  }
2140}
2141
2142static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2143                               UnqualUsingDirectiveSet &UDirs,
2144                               VisibleDeclConsumer &Consumer,
2145                               VisibleDeclsRecord &Visited) {
2146  if (!S)
2147    return;
2148
2149  if (!S->getEntity() || !S->getParent() ||
2150      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2151    // Walk through the declarations in this Scope.
2152    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2153         D != DEnd; ++D) {
2154      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
2155        if (Result.isAcceptableDecl(ND)) {
2156          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2157          Visited.add(ND);
2158        }
2159    }
2160  }
2161
2162  DeclContext *Entity = 0;
2163  if (S->getEntity()) {
2164    // Look into this scope's declaration context, along with any of its
2165    // parent lookup contexts (e.g., enclosing classes), up to the point
2166    // where we hit the context stored in the next outer scope.
2167    Entity = (DeclContext *)S->getEntity();
2168    DeclContext *OuterCtx = findOuterContext(S);
2169
2170    for (DeclContext *Ctx = Entity; Ctx && Ctx->getPrimaryContext() != OuterCtx;
2171         Ctx = Ctx->getLookupParent()) {
2172      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2173        if (Method->isInstanceMethod()) {
2174          // For instance methods, look for ivars in the method's interface.
2175          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2176                                  Result.getNameLoc(), Sema::LookupMemberName);
2177          ObjCInterfaceDecl *IFace = Method->getClassInterface();
2178          LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2179                             /*InBaseClass=*/false, Consumer, Visited);
2180        }
2181
2182        // We've already performed all of the name lookup that we need
2183        // to for Objective-C methods; the next context will be the
2184        // outer scope.
2185        break;
2186      }
2187
2188      if (Ctx->isFunctionOrMethod())
2189        continue;
2190
2191      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2192                         /*InBaseClass=*/false, Consumer, Visited);
2193    }
2194  } else if (!S->getParent()) {
2195    // Look into the translation unit scope. We walk through the translation
2196    // unit's declaration context, because the Scope itself won't have all of
2197    // the declarations if we loaded a precompiled header.
2198    // FIXME: We would like the translation unit's Scope object to point to the
2199    // translation unit, so we don't need this special "if" branch. However,
2200    // doing so would force the normal C++ name-lookup code to look into the
2201    // translation unit decl when the IdentifierInfo chains would suffice.
2202    // Once we fix that problem (which is part of a more general "don't look
2203    // in DeclContexts unless we have to" optimization), we can eliminate this.
2204    Entity = Result.getSema().Context.getTranslationUnitDecl();
2205    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2206                       /*InBaseClass=*/false, Consumer, Visited);
2207  }
2208
2209  if (Entity) {
2210    // Lookup visible declarations in any namespaces found by using
2211    // directives.
2212    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2213    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2214    for (; UI != UEnd; ++UI)
2215      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2216                         Result, /*QualifiedNameLookup=*/false,
2217                         /*InBaseClass=*/false, Consumer, Visited);
2218  }
2219
2220  // Lookup names in the parent scope.
2221  ShadowContextRAII Shadow(Visited);
2222  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2223}
2224
2225void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2226                              VisibleDeclConsumer &Consumer) {
2227  // Determine the set of using directives available during
2228  // unqualified name lookup.
2229  Scope *Initial = S;
2230  UnqualUsingDirectiveSet UDirs;
2231  if (getLangOptions().CPlusPlus) {
2232    // Find the first namespace or translation-unit scope.
2233    while (S && !isNamespaceOrTranslationUnitScope(S))
2234      S = S->getParent();
2235
2236    UDirs.visitScopeChain(Initial, S);
2237  }
2238  UDirs.done();
2239
2240  // Look for visible declarations.
2241  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2242  VisibleDeclsRecord Visited;
2243  ShadowContextRAII Shadow(Visited);
2244  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2245}
2246
2247void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2248                              VisibleDeclConsumer &Consumer) {
2249  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2250  VisibleDeclsRecord Visited;
2251  ShadowContextRAII Shadow(Visited);
2252  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2253                       /*InBaseClass=*/false, Consumer, Visited);
2254}
2255
2256//----------------------------------------------------------------------------
2257// Typo correction
2258//----------------------------------------------------------------------------
2259
2260namespace {
2261class TypoCorrectionConsumer : public VisibleDeclConsumer {
2262  /// \brief The name written that is a typo in the source.
2263  llvm::StringRef Typo;
2264
2265  /// \brief The results found that have the smallest edit distance
2266  /// found (so far) with the typo name.
2267  llvm::SmallVector<NamedDecl *, 4> BestResults;
2268
2269  /// \brief The best edit distance found so far.
2270  unsigned BestEditDistance;
2271
2272public:
2273  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2274    : Typo(Typo->getName()) { }
2275
2276  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2277
2278  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2279  iterator begin() const { return BestResults.begin(); }
2280  iterator end() const { return BestResults.end(); }
2281  bool empty() const { return BestResults.empty(); }
2282
2283  unsigned getBestEditDistance() const { return BestEditDistance; }
2284};
2285
2286}
2287
2288void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2289                                       bool InBaseClass) {
2290  // Don't consider hidden names for typo correction.
2291  if (Hiding)
2292    return;
2293
2294  // Only consider entities with identifiers for names, ignoring
2295  // special names (constructors, overloaded operators, selectors,
2296  // etc.).
2297  IdentifierInfo *Name = ND->getIdentifier();
2298  if (!Name)
2299    return;
2300
2301  // Compute the edit distance between the typo and the name of this
2302  // entity. If this edit distance is not worse than the best edit
2303  // distance we've seen so far, add it to the list of results.
2304  unsigned ED = Typo.edit_distance(Name->getName());
2305  if (!BestResults.empty()) {
2306    if (ED < BestEditDistance) {
2307      // This result is better than any we've seen before; clear out
2308      // the previous results.
2309      BestResults.clear();
2310      BestEditDistance = ED;
2311    } else if (ED > BestEditDistance) {
2312      // This result is worse than the best results we've seen so far;
2313      // ignore it.
2314      return;
2315    }
2316  } else
2317    BestEditDistance = ED;
2318
2319  BestResults.push_back(ND);
2320}
2321
2322/// \brief Try to "correct" a typo in the source code by finding
2323/// visible declarations whose names are similar to the name that was
2324/// present in the source code.
2325///
2326/// \param Res the \c LookupResult structure that contains the name
2327/// that was present in the source code along with the name-lookup
2328/// criteria used to search for the name. On success, this structure
2329/// will contain the results of name lookup.
2330///
2331/// \param S the scope in which name lookup occurs.
2332///
2333/// \param SS the nested-name-specifier that precedes the name we're
2334/// looking for, if present.
2335///
2336/// \param MemberContext if non-NULL, the context in which to look for
2337/// a member access expression.
2338///
2339/// \param EnteringContext whether we're entering the context described by
2340/// the nested-name-specifier SS.
2341///
2342/// \param OPT when non-NULL, the search for visible declarations will
2343/// also walk the protocols in the qualified interfaces of \p OPT.
2344///
2345/// \returns true if the typo was corrected, in which case the \p Res
2346/// structure will contain the results of name lookup for the
2347/// corrected name. Otherwise, returns false.
2348bool Sema::CorrectTypo(LookupResult &Res, Scope *S, const CXXScopeSpec *SS,
2349                       DeclContext *MemberContext, bool EnteringContext,
2350                       const ObjCObjectPointerType *OPT) {
2351
2352  if (Diags.hasFatalErrorOccurred())
2353    return false;
2354
2355  // We only attempt to correct typos for identifiers.
2356  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2357  if (!Typo)
2358    return false;
2359
2360  // If the scope specifier itself was invalid, don't try to correct
2361  // typos.
2362  if (SS && SS->isInvalid())
2363    return false;
2364
2365  // Never try to correct typos during template deduction or
2366  // instantiation.
2367  if (!ActiveTemplateInstantiations.empty())
2368    return false;
2369
2370  TypoCorrectionConsumer Consumer(Typo);
2371  if (MemberContext) {
2372    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2373
2374    // Look in qualified interfaces.
2375    if (OPT) {
2376      for (ObjCObjectPointerType::qual_iterator
2377             I = OPT->qual_begin(), E = OPT->qual_end();
2378           I != E; ++I)
2379        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2380    }
2381  } else if (SS && SS->isSet()) {
2382    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2383    if (!DC)
2384      return false;
2385
2386    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2387  } else {
2388    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2389  }
2390
2391  if (Consumer.empty())
2392    return false;
2393
2394  // Only allow a single, closest name in the result set (it's okay to
2395  // have overloads of that name, though).
2396  TypoCorrectionConsumer::iterator I = Consumer.begin();
2397  DeclarationName BestName = (*I)->getDeclName();
2398
2399  // If we've found an Objective-C ivar or property, don't perform
2400  // name lookup again; we'll just return the result directly.
2401  NamedDecl *FoundBest = 0;
2402  if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I))
2403    FoundBest = *I;
2404  ++I;
2405  for(TypoCorrectionConsumer::iterator IEnd = Consumer.end(); I != IEnd; ++I) {
2406    if (BestName != (*I)->getDeclName())
2407      return false;
2408
2409    // FIXME: If there are both ivars and properties of the same name,
2410    // don't return both because the callee can't handle two
2411    // results. We really need to separate ivar lookup from property
2412    // lookup to avoid this problem.
2413    FoundBest = 0;
2414  }
2415
2416  // BestName is the closest viable name to what the user
2417  // typed. However, to make sure that we don't pick something that's
2418  // way off, make sure that the user typed at least 3 characters for
2419  // each correction.
2420  unsigned ED = Consumer.getBestEditDistance();
2421  if (ED == 0 || (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
2422    return false;
2423
2424  // Perform name lookup again with the name we chose, and declare
2425  // success if we found something that was not ambiguous.
2426  Res.clear();
2427  Res.setLookupName(BestName);
2428
2429  // If we found an ivar or property, add that result; no further
2430  // lookup is required.
2431  if (FoundBest)
2432    Res.addDecl(FoundBest);
2433  // If we're looking into the context of a member, perform qualified
2434  // name lookup on the best name.
2435  else if (MemberContext)
2436    LookupQualifiedName(Res, MemberContext);
2437  // Perform lookup as if we had just parsed the best name.
2438  else
2439    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2440                     EnteringContext);
2441
2442  if (Res.isAmbiguous()) {
2443    Res.suppressDiagnostics();
2444    return false;
2445  }
2446
2447  return Res.getResultKind() != LookupResult::NotFound;
2448}
2449