SemaLookup.cpp revision f17b58c98b57537e9abfaaa8b5f19ea7e6de01ee
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/LangOptions.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/StringMap.h"
35#include "llvm/Support/ErrorHandling.h"
36#include <limits>
37#include <list>
38#include <set>
39#include <vector>
40#include <iterator>
41#include <utility>
42#include <algorithm>
43
44using namespace clang;
45using namespace sema;
46
47namespace {
48  class UnqualUsingEntry {
49    const DeclContext *Nominated;
50    const DeclContext *CommonAncestor;
51
52  public:
53    UnqualUsingEntry(const DeclContext *Nominated,
54                     const DeclContext *CommonAncestor)
55      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
56    }
57
58    const DeclContext *getCommonAncestor() const {
59      return CommonAncestor;
60    }
61
62    const DeclContext *getNominatedNamespace() const {
63      return Nominated;
64    }
65
66    // Sort by the pointer value of the common ancestor.
67    struct Comparator {
68      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
69        return L.getCommonAncestor() < R.getCommonAncestor();
70      }
71
72      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
73        return E.getCommonAncestor() < DC;
74      }
75
76      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
77        return DC < E.getCommonAncestor();
78      }
79    };
80  };
81
82  /// A collection of using directives, as used by C++ unqualified
83  /// lookup.
84  class UnqualUsingDirectiveSet {
85    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
86
87    ListTy list;
88    llvm::SmallPtrSet<DeclContext*, 8> visited;
89
90  public:
91    UnqualUsingDirectiveSet() {}
92
93    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
94      // C++ [namespace.udir]p1:
95      //   During unqualified name lookup, the names appear as if they
96      //   were declared in the nearest enclosing namespace which contains
97      //   both the using-directive and the nominated namespace.
98      DeclContext *InnermostFileDC
99        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
100      assert(InnermostFileDC && InnermostFileDC->isFileContext());
101
102      for (; S; S = S->getParent()) {
103        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
104          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
105          visit(Ctx, EffectiveDC);
106        } else {
107          Scope::udir_iterator I = S->using_directives_begin(),
108                             End = S->using_directives_end();
109
110          for (; I != End; ++I)
111            visit(*I, InnermostFileDC);
112        }
113      }
114    }
115
116    // Visits a context and collect all of its using directives
117    // recursively.  Treats all using directives as if they were
118    // declared in the context.
119    //
120    // A given context is only every visited once, so it is important
121    // that contexts be visited from the inside out in order to get
122    // the effective DCs right.
123    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
124      if (!visited.insert(DC))
125        return;
126
127      addUsingDirectives(DC, EffectiveDC);
128    }
129
130    // Visits a using directive and collects all of its using
131    // directives recursively.  Treats all using directives as if they
132    // were declared in the effective DC.
133    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
134      DeclContext *NS = UD->getNominatedNamespace();
135      if (!visited.insert(NS))
136        return;
137
138      addUsingDirective(UD, EffectiveDC);
139      addUsingDirectives(NS, EffectiveDC);
140    }
141
142    // Adds all the using directives in a context (and those nominated
143    // by its using directives, transitively) as if they appeared in
144    // the given effective context.
145    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
146      llvm::SmallVector<DeclContext*,4> queue;
147      while (true) {
148        DeclContext::udir_iterator I, End;
149        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
150          UsingDirectiveDecl *UD = *I;
151          DeclContext *NS = UD->getNominatedNamespace();
152          if (visited.insert(NS)) {
153            addUsingDirective(UD, EffectiveDC);
154            queue.push_back(NS);
155          }
156        }
157
158        if (queue.empty())
159          return;
160
161        DC = queue.back();
162        queue.pop_back();
163      }
164    }
165
166    // Add a using directive as if it had been declared in the given
167    // context.  This helps implement C++ [namespace.udir]p3:
168    //   The using-directive is transitive: if a scope contains a
169    //   using-directive that nominates a second namespace that itself
170    //   contains using-directives, the effect is as if the
171    //   using-directives from the second namespace also appeared in
172    //   the first.
173    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
174      // Find the common ancestor between the effective context and
175      // the nominated namespace.
176      DeclContext *Common = UD->getNominatedNamespace();
177      while (!Common->Encloses(EffectiveDC))
178        Common = Common->getParent();
179      Common = Common->getPrimaryContext();
180
181      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
182    }
183
184    void done() {
185      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
186    }
187
188    typedef ListTy::const_iterator const_iterator;
189
190    const_iterator begin() const { return list.begin(); }
191    const_iterator end() const { return list.end(); }
192
193    std::pair<const_iterator,const_iterator>
194    getNamespacesFor(DeclContext *DC) const {
195      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
196                              UnqualUsingEntry::Comparator());
197    }
198  };
199}
200
201// Retrieve the set of identifier namespaces that correspond to a
202// specific kind of name lookup.
203static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
204                               bool CPlusPlus,
205                               bool Redeclaration) {
206  unsigned IDNS = 0;
207  switch (NameKind) {
208  case Sema::LookupOrdinaryName:
209  case Sema::LookupRedeclarationWithLinkage:
210    IDNS = Decl::IDNS_Ordinary;
211    if (CPlusPlus) {
212      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
213      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
214    }
215    break;
216
217  case Sema::LookupOperatorName:
218    // Operator lookup is its own crazy thing;  it is not the same
219    // as (e.g.) looking up an operator name for redeclaration.
220    assert(!Redeclaration && "cannot do redeclaration operator lookup");
221    IDNS = Decl::IDNS_NonMemberOperator;
222    break;
223
224  case Sema::LookupTagName:
225    if (CPlusPlus) {
226      IDNS = Decl::IDNS_Type;
227
228      // When looking for a redeclaration of a tag name, we add:
229      // 1) TagFriend to find undeclared friend decls
230      // 2) Namespace because they can't "overload" with tag decls.
231      // 3) Tag because it includes class templates, which can't
232      //    "overload" with tag decls.
233      if (Redeclaration)
234        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
235    } else {
236      IDNS = Decl::IDNS_Tag;
237    }
238    break;
239
240  case Sema::LookupMemberName:
241    IDNS = Decl::IDNS_Member;
242    if (CPlusPlus)
243      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
244    break;
245
246  case Sema::LookupNestedNameSpecifierName:
247    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
248    break;
249
250  case Sema::LookupNamespaceName:
251    IDNS = Decl::IDNS_Namespace;
252    break;
253
254  case Sema::LookupUsingDeclName:
255    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
256         | Decl::IDNS_Member | Decl::IDNS_Using;
257    break;
258
259  case Sema::LookupObjCProtocolName:
260    IDNS = Decl::IDNS_ObjCProtocol;
261    break;
262
263  case Sema::LookupAnyName:
264    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
265      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
266      | Decl::IDNS_Type;
267    break;
268  }
269  return IDNS;
270}
271
272void LookupResult::configure() {
273  IDNS = getIDNS(LookupKind,
274                 SemaRef.getLangOptions().CPlusPlus,
275                 isForRedeclaration());
276
277  // If we're looking for one of the allocation or deallocation
278  // operators, make sure that the implicitly-declared new and delete
279  // operators can be found.
280  if (!isForRedeclaration()) {
281    switch (NameInfo.getName().getCXXOverloadedOperator()) {
282    case OO_New:
283    case OO_Delete:
284    case OO_Array_New:
285    case OO_Array_Delete:
286      SemaRef.DeclareGlobalNewDelete();
287      break;
288
289    default:
290      break;
291    }
292  }
293}
294
295#ifndef NDEBUG
296void LookupResult::sanity() const {
297  assert(ResultKind != NotFound || Decls.size() == 0);
298  assert(ResultKind != Found || Decls.size() == 1);
299  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
300         (Decls.size() == 1 &&
301          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
302  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
303  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
304         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
305                                Ambiguity == AmbiguousBaseSubobjectTypes)));
306  assert((Paths != NULL) == (ResultKind == Ambiguous &&
307                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
308                              Ambiguity == AmbiguousBaseSubobjects)));
309}
310#endif
311
312// Necessary because CXXBasePaths is not complete in Sema.h
313void LookupResult::deletePaths(CXXBasePaths *Paths) {
314  delete Paths;
315}
316
317/// Resolves the result kind of this lookup.
318void LookupResult::resolveKind() {
319  unsigned N = Decls.size();
320
321  // Fast case: no possible ambiguity.
322  if (N == 0) {
323    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
324    return;
325  }
326
327  // If there's a single decl, we need to examine it to decide what
328  // kind of lookup this is.
329  if (N == 1) {
330    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
331    if (isa<FunctionTemplateDecl>(D))
332      ResultKind = FoundOverloaded;
333    else if (isa<UnresolvedUsingValueDecl>(D))
334      ResultKind = FoundUnresolvedValue;
335    return;
336  }
337
338  // Don't do any extra resolution if we've already resolved as ambiguous.
339  if (ResultKind == Ambiguous) return;
340
341  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
342  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
343
344  bool Ambiguous = false;
345  bool HasTag = false, HasFunction = false, HasNonFunction = false;
346  bool HasFunctionTemplate = false, HasUnresolved = false;
347
348  unsigned UniqueTagIndex = 0;
349
350  unsigned I = 0;
351  while (I < N) {
352    NamedDecl *D = Decls[I]->getUnderlyingDecl();
353    D = cast<NamedDecl>(D->getCanonicalDecl());
354
355    // Redeclarations of types via typedef can occur both within a scope
356    // and, through using declarations and directives, across scopes. There is
357    // no ambiguity if they all refer to the same type, so unique based on the
358    // canonical type.
359    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
360      if (!TD->getDeclContext()->isRecord()) {
361        QualType T = SemaRef.Context.getTypeDeclType(TD);
362        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
363          // The type is not unique; pull something off the back and continue
364          // at this index.
365          Decls[I] = Decls[--N];
366          continue;
367        }
368      }
369    }
370
371    if (!Unique.insert(D)) {
372      // If it's not unique, pull something off the back (and
373      // continue at this index).
374      Decls[I] = Decls[--N];
375      continue;
376    }
377
378    // Otherwise, do some decl type analysis and then continue.
379
380    if (isa<UnresolvedUsingValueDecl>(D)) {
381      HasUnresolved = true;
382    } else if (isa<TagDecl>(D)) {
383      if (HasTag)
384        Ambiguous = true;
385      UniqueTagIndex = I;
386      HasTag = true;
387    } else if (isa<FunctionTemplateDecl>(D)) {
388      HasFunction = true;
389      HasFunctionTemplate = true;
390    } else if (isa<FunctionDecl>(D)) {
391      HasFunction = true;
392    } else {
393      if (HasNonFunction)
394        Ambiguous = true;
395      HasNonFunction = true;
396    }
397    I++;
398  }
399
400  // C++ [basic.scope.hiding]p2:
401  //   A class name or enumeration name can be hidden by the name of
402  //   an object, function, or enumerator declared in the same
403  //   scope. If a class or enumeration name and an object, function,
404  //   or enumerator are declared in the same scope (in any order)
405  //   with the same name, the class or enumeration name is hidden
406  //   wherever the object, function, or enumerator name is visible.
407  // But it's still an error if there are distinct tag types found,
408  // even if they're not visible. (ref?)
409  if (HideTags && HasTag && !Ambiguous &&
410      (HasFunction || HasNonFunction || HasUnresolved))
411    Decls[UniqueTagIndex] = Decls[--N];
412
413  Decls.set_size(N);
414
415  if (HasNonFunction && (HasFunction || HasUnresolved))
416    Ambiguous = true;
417
418  if (Ambiguous)
419    setAmbiguous(LookupResult::AmbiguousReference);
420  else if (HasUnresolved)
421    ResultKind = LookupResult::FoundUnresolvedValue;
422  else if (N > 1 || HasFunctionTemplate)
423    ResultKind = LookupResult::FoundOverloaded;
424  else
425    ResultKind = LookupResult::Found;
426}
427
428void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
429  CXXBasePaths::const_paths_iterator I, E;
430  DeclContext::lookup_iterator DI, DE;
431  for (I = P.begin(), E = P.end(); I != E; ++I)
432    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
433      addDecl(*DI);
434}
435
436void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
437  Paths = new CXXBasePaths;
438  Paths->swap(P);
439  addDeclsFromBasePaths(*Paths);
440  resolveKind();
441  setAmbiguous(AmbiguousBaseSubobjects);
442}
443
444void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
445  Paths = new CXXBasePaths;
446  Paths->swap(P);
447  addDeclsFromBasePaths(*Paths);
448  resolveKind();
449  setAmbiguous(AmbiguousBaseSubobjectTypes);
450}
451
452void LookupResult::print(llvm::raw_ostream &Out) {
453  Out << Decls.size() << " result(s)";
454  if (isAmbiguous()) Out << ", ambiguous";
455  if (Paths) Out << ", base paths present";
456
457  for (iterator I = begin(), E = end(); I != E; ++I) {
458    Out << "\n";
459    (*I)->print(Out, 2);
460  }
461}
462
463/// \brief Lookup a builtin function, when name lookup would otherwise
464/// fail.
465static bool LookupBuiltin(Sema &S, LookupResult &R) {
466  Sema::LookupNameKind NameKind = R.getLookupKind();
467
468  // If we didn't find a use of this identifier, and if the identifier
469  // corresponds to a compiler builtin, create the decl object for the builtin
470  // now, injecting it into translation unit scope, and return it.
471  if (NameKind == Sema::LookupOrdinaryName ||
472      NameKind == Sema::LookupRedeclarationWithLinkage) {
473    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
474    if (II) {
475      // If this is a builtin on this (or all) targets, create the decl.
476      if (unsigned BuiltinID = II->getBuiltinID()) {
477        // In C++, we don't have any predefined library functions like
478        // 'malloc'. Instead, we'll just error.
479        if (S.getLangOptions().CPlusPlus &&
480            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
481          return false;
482
483        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
484                                             S.TUScope, R.isForRedeclaration(),
485                                             R.getNameLoc());
486        if (D)
487          R.addDecl(D);
488        return (D != NULL);
489      }
490    }
491  }
492
493  return false;
494}
495
496/// \brief Determine whether we can declare a special member function within
497/// the class at this point.
498static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
499                                            const CXXRecordDecl *Class) {
500  // Don't do it if the class is invalid.
501  if (Class->isInvalidDecl())
502    return false;
503
504  // We need to have a definition for the class.
505  if (!Class->getDefinition() || Class->isDependentContext())
506    return false;
507
508  // We can't be in the middle of defining the class.
509  if (const RecordType *RecordTy
510                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
511    return !RecordTy->isBeingDefined();
512
513  return false;
514}
515
516void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
517  if (!CanDeclareSpecialMemberFunction(Context, Class))
518    return;
519
520  // If the default constructor has not yet been declared, do so now.
521  if (!Class->hasDeclaredDefaultConstructor())
522    DeclareImplicitDefaultConstructor(Class);
523
524  // If the copy constructor has not yet been declared, do so now.
525  if (!Class->hasDeclaredCopyConstructor())
526    DeclareImplicitCopyConstructor(Class);
527
528  // If the copy assignment operator has not yet been declared, do so now.
529  if (!Class->hasDeclaredCopyAssignment())
530    DeclareImplicitCopyAssignment(Class);
531
532  // If the destructor has not yet been declared, do so now.
533  if (!Class->hasDeclaredDestructor())
534    DeclareImplicitDestructor(Class);
535}
536
537/// \brief Determine whether this is the name of an implicitly-declared
538/// special member function.
539static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
540  switch (Name.getNameKind()) {
541  case DeclarationName::CXXConstructorName:
542  case DeclarationName::CXXDestructorName:
543    return true;
544
545  case DeclarationName::CXXOperatorName:
546    return Name.getCXXOverloadedOperator() == OO_Equal;
547
548  default:
549    break;
550  }
551
552  return false;
553}
554
555/// \brief If there are any implicit member functions with the given name
556/// that need to be declared in the given declaration context, do so.
557static void DeclareImplicitMemberFunctionsWithName(Sema &S,
558                                                   DeclarationName Name,
559                                                   const DeclContext *DC) {
560  if (!DC)
561    return;
562
563  switch (Name.getNameKind()) {
564  case DeclarationName::CXXConstructorName:
565    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
566      if (Record->getDefinition() &&
567          CanDeclareSpecialMemberFunction(S.Context, Record)) {
568        if (!Record->hasDeclaredDefaultConstructor())
569          S.DeclareImplicitDefaultConstructor(
570                                           const_cast<CXXRecordDecl *>(Record));
571        if (!Record->hasDeclaredCopyConstructor())
572          S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
573      }
574    break;
575
576  case DeclarationName::CXXDestructorName:
577    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
578      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
579          CanDeclareSpecialMemberFunction(S.Context, Record))
580        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
581    break;
582
583  case DeclarationName::CXXOperatorName:
584    if (Name.getCXXOverloadedOperator() != OO_Equal)
585      break;
586
587    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
588      if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
589          CanDeclareSpecialMemberFunction(S.Context, Record))
590        S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
591    break;
592
593  default:
594    break;
595  }
596}
597
598// Adds all qualifying matches for a name within a decl context to the
599// given lookup result.  Returns true if any matches were found.
600static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
601  bool Found = false;
602
603  // Lazily declare C++ special member functions.
604  if (S.getLangOptions().CPlusPlus)
605    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
606
607  // Perform lookup into this declaration context.
608  DeclContext::lookup_const_iterator I, E;
609  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
610    NamedDecl *D = *I;
611    if (R.isAcceptableDecl(D)) {
612      R.addDecl(D);
613      Found = true;
614    }
615  }
616
617  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
618    return true;
619
620  if (R.getLookupName().getNameKind()
621        != DeclarationName::CXXConversionFunctionName ||
622      R.getLookupName().getCXXNameType()->isDependentType() ||
623      !isa<CXXRecordDecl>(DC))
624    return Found;
625
626  // C++ [temp.mem]p6:
627  //   A specialization of a conversion function template is not found by
628  //   name lookup. Instead, any conversion function templates visible in the
629  //   context of the use are considered. [...]
630  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
631  if (!Record->isDefinition())
632    return Found;
633
634  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
635  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
636         UEnd = Unresolved->end(); U != UEnd; ++U) {
637    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
638    if (!ConvTemplate)
639      continue;
640
641    // When we're performing lookup for the purposes of redeclaration, just
642    // add the conversion function template. When we deduce template
643    // arguments for specializations, we'll end up unifying the return
644    // type of the new declaration with the type of the function template.
645    if (R.isForRedeclaration()) {
646      R.addDecl(ConvTemplate);
647      Found = true;
648      continue;
649    }
650
651    // C++ [temp.mem]p6:
652    //   [...] For each such operator, if argument deduction succeeds
653    //   (14.9.2.3), the resulting specialization is used as if found by
654    //   name lookup.
655    //
656    // When referencing a conversion function for any purpose other than
657    // a redeclaration (such that we'll be building an expression with the
658    // result), perform template argument deduction and place the
659    // specialization into the result set. We do this to avoid forcing all
660    // callers to perform special deduction for conversion functions.
661    TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
662    FunctionDecl *Specialization = 0;
663
664    const FunctionProtoType *ConvProto
665      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
666    assert(ConvProto && "Nonsensical conversion function template type");
667
668    // Compute the type of the function that we would expect the conversion
669    // function to have, if it were to match the name given.
670    // FIXME: Calling convention!
671    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
672    QualType ExpectedType
673      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
674                                            0, 0, ConvProto->isVariadic(),
675                                            ConvProto->getTypeQuals(),
676                                            false, false, 0, 0,
677                                    ConvProtoInfo.withCallingConv(CC_Default));
678
679    // Perform template argument deduction against the type that we would
680    // expect the function to have.
681    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
682                                            Specialization, Info)
683          == Sema::TDK_Success) {
684      R.addDecl(Specialization);
685      Found = true;
686    }
687  }
688
689  return Found;
690}
691
692// Performs C++ unqualified lookup into the given file context.
693static bool
694CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
695                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
696
697  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
698
699  // Perform direct name lookup into the LookupCtx.
700  bool Found = LookupDirect(S, R, NS);
701
702  // Perform direct name lookup into the namespaces nominated by the
703  // using directives whose common ancestor is this namespace.
704  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
705  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
706
707  for (; UI != UEnd; ++UI)
708    if (LookupDirect(S, R, UI->getNominatedNamespace()))
709      Found = true;
710
711  R.resolveKind();
712
713  return Found;
714}
715
716static bool isNamespaceOrTranslationUnitScope(Scope *S) {
717  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
718    return Ctx->isFileContext();
719  return false;
720}
721
722// Find the next outer declaration context from this scope. This
723// routine actually returns the semantic outer context, which may
724// differ from the lexical context (encoded directly in the Scope
725// stack) when we are parsing a member of a class template. In this
726// case, the second element of the pair will be true, to indicate that
727// name lookup should continue searching in this semantic context when
728// it leaves the current template parameter scope.
729static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
730  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
731  DeclContext *Lexical = 0;
732  for (Scope *OuterS = S->getParent(); OuterS;
733       OuterS = OuterS->getParent()) {
734    if (OuterS->getEntity()) {
735      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
736      break;
737    }
738  }
739
740  // C++ [temp.local]p8:
741  //   In the definition of a member of a class template that appears
742  //   outside of the namespace containing the class template
743  //   definition, the name of a template-parameter hides the name of
744  //   a member of this namespace.
745  //
746  // Example:
747  //
748  //   namespace N {
749  //     class C { };
750  //
751  //     template<class T> class B {
752  //       void f(T);
753  //     };
754  //   }
755  //
756  //   template<class C> void N::B<C>::f(C) {
757  //     C b;  // C is the template parameter, not N::C
758  //   }
759  //
760  // In this example, the lexical context we return is the
761  // TranslationUnit, while the semantic context is the namespace N.
762  if (!Lexical || !DC || !S->getParent() ||
763      !S->getParent()->isTemplateParamScope())
764    return std::make_pair(Lexical, false);
765
766  // Find the outermost template parameter scope.
767  // For the example, this is the scope for the template parameters of
768  // template<class C>.
769  Scope *OutermostTemplateScope = S->getParent();
770  while (OutermostTemplateScope->getParent() &&
771         OutermostTemplateScope->getParent()->isTemplateParamScope())
772    OutermostTemplateScope = OutermostTemplateScope->getParent();
773
774  // Find the namespace context in which the original scope occurs. In
775  // the example, this is namespace N.
776  DeclContext *Semantic = DC;
777  while (!Semantic->isFileContext())
778    Semantic = Semantic->getParent();
779
780  // Find the declaration context just outside of the template
781  // parameter scope. This is the context in which the template is
782  // being lexically declaration (a namespace context). In the
783  // example, this is the global scope.
784  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
785      Lexical->Encloses(Semantic))
786    return std::make_pair(Semantic, true);
787
788  return std::make_pair(Lexical, false);
789}
790
791bool Sema::CppLookupName(LookupResult &R, Scope *S) {
792  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
793
794  DeclarationName Name = R.getLookupName();
795
796  // If this is the name of an implicitly-declared special member function,
797  // go through the scope stack to implicitly declare
798  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
799    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
800      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
801        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
802  }
803
804  // Implicitly declare member functions with the name we're looking for, if in
805  // fact we are in a scope where it matters.
806
807  Scope *Initial = S;
808  IdentifierResolver::iterator
809    I = IdResolver.begin(Name),
810    IEnd = IdResolver.end();
811
812  // First we lookup local scope.
813  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
814  // ...During unqualified name lookup (3.4.1), the names appear as if
815  // they were declared in the nearest enclosing namespace which contains
816  // both the using-directive and the nominated namespace.
817  // [Note: in this context, "contains" means "contains directly or
818  // indirectly".
819  //
820  // For example:
821  // namespace A { int i; }
822  // void foo() {
823  //   int i;
824  //   {
825  //     using namespace A;
826  //     ++i; // finds local 'i', A::i appears at global scope
827  //   }
828  // }
829  //
830  DeclContext *OutsideOfTemplateParamDC = 0;
831  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
832    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
833
834    // Check whether the IdResolver has anything in this scope.
835    bool Found = false;
836    for (; I != IEnd && S->isDeclScope(*I); ++I) {
837      if (R.isAcceptableDecl(*I)) {
838        Found = true;
839        R.addDecl(*I);
840      }
841    }
842    if (Found) {
843      R.resolveKind();
844      if (S->isClassScope())
845        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
846          R.setNamingClass(Record);
847      return true;
848    }
849
850    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
851        S->getParent() && !S->getParent()->isTemplateParamScope()) {
852      // We've just searched the last template parameter scope and
853      // found nothing, so look into the the contexts between the
854      // lexical and semantic declaration contexts returned by
855      // findOuterContext(). This implements the name lookup behavior
856      // of C++ [temp.local]p8.
857      Ctx = OutsideOfTemplateParamDC;
858      OutsideOfTemplateParamDC = 0;
859    }
860
861    if (Ctx) {
862      DeclContext *OuterCtx;
863      bool SearchAfterTemplateScope;
864      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
865      if (SearchAfterTemplateScope)
866        OutsideOfTemplateParamDC = OuterCtx;
867
868      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
869        // We do not directly look into transparent contexts, since
870        // those entities will be found in the nearest enclosing
871        // non-transparent context.
872        if (Ctx->isTransparentContext())
873          continue;
874
875        // We do not look directly into function or method contexts,
876        // since all of the local variables and parameters of the
877        // function/method are present within the Scope.
878        if (Ctx->isFunctionOrMethod()) {
879          // If we have an Objective-C instance method, look for ivars
880          // in the corresponding interface.
881          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
882            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
883              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
884                ObjCInterfaceDecl *ClassDeclared;
885                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
886                                                 Name.getAsIdentifierInfo(),
887                                                             ClassDeclared)) {
888                  if (R.isAcceptableDecl(Ivar)) {
889                    R.addDecl(Ivar);
890                    R.resolveKind();
891                    return true;
892                  }
893                }
894              }
895          }
896
897          continue;
898        }
899
900        // Perform qualified name lookup into this context.
901        // FIXME: In some cases, we know that every name that could be found by
902        // this qualified name lookup will also be on the identifier chain. For
903        // example, inside a class without any base classes, we never need to
904        // perform qualified lookup because all of the members are on top of the
905        // identifier chain.
906        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
907          return true;
908      }
909    }
910  }
911
912  // Stop if we ran out of scopes.
913  // FIXME:  This really, really shouldn't be happening.
914  if (!S) return false;
915
916  // Collect UsingDirectiveDecls in all scopes, and recursively all
917  // nominated namespaces by those using-directives.
918  //
919  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
920  // don't build it for each lookup!
921
922  UnqualUsingDirectiveSet UDirs;
923  UDirs.visitScopeChain(Initial, S);
924  UDirs.done();
925
926  // Lookup namespace scope, and global scope.
927  // Unqualified name lookup in C++ requires looking into scopes
928  // that aren't strictly lexical, and therefore we walk through the
929  // context as well as walking through the scopes.
930
931  for (; S; S = S->getParent()) {
932    // Check whether the IdResolver has anything in this scope.
933    bool Found = false;
934    for (; I != IEnd && S->isDeclScope(*I); ++I) {
935      if (R.isAcceptableDecl(*I)) {
936        // We found something.  Look for anything else in our scope
937        // with this same name and in an acceptable identifier
938        // namespace, so that we can construct an overload set if we
939        // need to.
940        Found = true;
941        R.addDecl(*I);
942      }
943    }
944
945    if (Found && S->isTemplateParamScope()) {
946      R.resolveKind();
947      return true;
948    }
949
950    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
951    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
952        S->getParent() && !S->getParent()->isTemplateParamScope()) {
953      // We've just searched the last template parameter scope and
954      // found nothing, so look into the the contexts between the
955      // lexical and semantic declaration contexts returned by
956      // findOuterContext(). This implements the name lookup behavior
957      // of C++ [temp.local]p8.
958      Ctx = OutsideOfTemplateParamDC;
959      OutsideOfTemplateParamDC = 0;
960    }
961
962    if (Ctx) {
963      DeclContext *OuterCtx;
964      bool SearchAfterTemplateScope;
965      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
966      if (SearchAfterTemplateScope)
967        OutsideOfTemplateParamDC = OuterCtx;
968
969      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
970        // We do not directly look into transparent contexts, since
971        // those entities will be found in the nearest enclosing
972        // non-transparent context.
973        if (Ctx->isTransparentContext())
974          continue;
975
976        // If we have a context, and it's not a context stashed in the
977        // template parameter scope for an out-of-line definition, also
978        // look into that context.
979        if (!(Found && S && S->isTemplateParamScope())) {
980          assert(Ctx->isFileContext() &&
981              "We should have been looking only at file context here already.");
982
983          // Look into context considering using-directives.
984          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
985            Found = true;
986        }
987
988        if (Found) {
989          R.resolveKind();
990          return true;
991        }
992
993        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
994          return false;
995      }
996    }
997
998    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
999      return false;
1000  }
1001
1002  return !R.empty();
1003}
1004
1005/// @brief Perform unqualified name lookup starting from a given
1006/// scope.
1007///
1008/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1009/// used to find names within the current scope. For example, 'x' in
1010/// @code
1011/// int x;
1012/// int f() {
1013///   return x; // unqualified name look finds 'x' in the global scope
1014/// }
1015/// @endcode
1016///
1017/// Different lookup criteria can find different names. For example, a
1018/// particular scope can have both a struct and a function of the same
1019/// name, and each can be found by certain lookup criteria. For more
1020/// information about lookup criteria, see the documentation for the
1021/// class LookupCriteria.
1022///
1023/// @param S        The scope from which unqualified name lookup will
1024/// begin. If the lookup criteria permits, name lookup may also search
1025/// in the parent scopes.
1026///
1027/// @param Name     The name of the entity that we are searching for.
1028///
1029/// @param Loc      If provided, the source location where we're performing
1030/// name lookup. At present, this is only used to produce diagnostics when
1031/// C library functions (like "malloc") are implicitly declared.
1032///
1033/// @returns The result of name lookup, which includes zero or more
1034/// declarations and possibly additional information used to diagnose
1035/// ambiguities.
1036bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1037  DeclarationName Name = R.getLookupName();
1038  if (!Name) return false;
1039
1040  LookupNameKind NameKind = R.getLookupKind();
1041
1042  if (!getLangOptions().CPlusPlus) {
1043    // Unqualified name lookup in C/Objective-C is purely lexical, so
1044    // search in the declarations attached to the name.
1045
1046    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1047      // Find the nearest non-transparent declaration scope.
1048      while (!(S->getFlags() & Scope::DeclScope) ||
1049             (S->getEntity() &&
1050              static_cast<DeclContext *>(S->getEntity())
1051                ->isTransparentContext()))
1052        S = S->getParent();
1053    }
1054
1055    unsigned IDNS = R.getIdentifierNamespace();
1056
1057    // Scan up the scope chain looking for a decl that matches this
1058    // identifier that is in the appropriate namespace.  This search
1059    // should not take long, as shadowing of names is uncommon, and
1060    // deep shadowing is extremely uncommon.
1061    bool LeftStartingScope = false;
1062
1063    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1064                                   IEnd = IdResolver.end();
1065         I != IEnd; ++I)
1066      if ((*I)->isInIdentifierNamespace(IDNS)) {
1067        if (NameKind == LookupRedeclarationWithLinkage) {
1068          // Determine whether this (or a previous) declaration is
1069          // out-of-scope.
1070          if (!LeftStartingScope && !S->isDeclScope(*I))
1071            LeftStartingScope = true;
1072
1073          // If we found something outside of our starting scope that
1074          // does not have linkage, skip it.
1075          if (LeftStartingScope && !((*I)->hasLinkage()))
1076            continue;
1077        }
1078
1079        R.addDecl(*I);
1080
1081        if ((*I)->getAttr<OverloadableAttr>()) {
1082          // If this declaration has the "overloadable" attribute, we
1083          // might have a set of overloaded functions.
1084
1085          // Figure out what scope the identifier is in.
1086          while (!(S->getFlags() & Scope::DeclScope) ||
1087                 !S->isDeclScope(*I))
1088            S = S->getParent();
1089
1090          // Find the last declaration in this scope (with the same
1091          // name, naturally).
1092          IdentifierResolver::iterator LastI = I;
1093          for (++LastI; LastI != IEnd; ++LastI) {
1094            if (!S->isDeclScope(*LastI))
1095              break;
1096            R.addDecl(*LastI);
1097          }
1098        }
1099
1100        R.resolveKind();
1101
1102        return true;
1103      }
1104  } else {
1105    // Perform C++ unqualified name lookup.
1106    if (CppLookupName(R, S))
1107      return true;
1108  }
1109
1110  // If we didn't find a use of this identifier, and if the identifier
1111  // corresponds to a compiler builtin, create the decl object for the builtin
1112  // now, injecting it into translation unit scope, and return it.
1113  if (AllowBuiltinCreation)
1114    return LookupBuiltin(*this, R);
1115
1116  return false;
1117}
1118
1119/// @brief Perform qualified name lookup in the namespaces nominated by
1120/// using directives by the given context.
1121///
1122/// C++98 [namespace.qual]p2:
1123///   Given X::m (where X is a user-declared namespace), or given ::m
1124///   (where X is the global namespace), let S be the set of all
1125///   declarations of m in X and in the transitive closure of all
1126///   namespaces nominated by using-directives in X and its used
1127///   namespaces, except that using-directives are ignored in any
1128///   namespace, including X, directly containing one or more
1129///   declarations of m. No namespace is searched more than once in
1130///   the lookup of a name. If S is the empty set, the program is
1131///   ill-formed. Otherwise, if S has exactly one member, or if the
1132///   context of the reference is a using-declaration
1133///   (namespace.udecl), S is the required set of declarations of
1134///   m. Otherwise if the use of m is not one that allows a unique
1135///   declaration to be chosen from S, the program is ill-formed.
1136/// C++98 [namespace.qual]p5:
1137///   During the lookup of a qualified namespace member name, if the
1138///   lookup finds more than one declaration of the member, and if one
1139///   declaration introduces a class name or enumeration name and the
1140///   other declarations either introduce the same object, the same
1141///   enumerator or a set of functions, the non-type name hides the
1142///   class or enumeration name if and only if the declarations are
1143///   from the same namespace; otherwise (the declarations are from
1144///   different namespaces), the program is ill-formed.
1145static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1146                                                 DeclContext *StartDC) {
1147  assert(StartDC->isFileContext() && "start context is not a file context");
1148
1149  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1150  DeclContext::udir_iterator E = StartDC->using_directives_end();
1151
1152  if (I == E) return false;
1153
1154  // We have at least added all these contexts to the queue.
1155  llvm::DenseSet<DeclContext*> Visited;
1156  Visited.insert(StartDC);
1157
1158  // We have not yet looked into these namespaces, much less added
1159  // their "using-children" to the queue.
1160  llvm::SmallVector<NamespaceDecl*, 8> Queue;
1161
1162  // We have already looked into the initial namespace; seed the queue
1163  // with its using-children.
1164  for (; I != E; ++I) {
1165    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1166    if (Visited.insert(ND).second)
1167      Queue.push_back(ND);
1168  }
1169
1170  // The easiest way to implement the restriction in [namespace.qual]p5
1171  // is to check whether any of the individual results found a tag
1172  // and, if so, to declare an ambiguity if the final result is not
1173  // a tag.
1174  bool FoundTag = false;
1175  bool FoundNonTag = false;
1176
1177  LookupResult LocalR(LookupResult::Temporary, R);
1178
1179  bool Found = false;
1180  while (!Queue.empty()) {
1181    NamespaceDecl *ND = Queue.back();
1182    Queue.pop_back();
1183
1184    // We go through some convolutions here to avoid copying results
1185    // between LookupResults.
1186    bool UseLocal = !R.empty();
1187    LookupResult &DirectR = UseLocal ? LocalR : R;
1188    bool FoundDirect = LookupDirect(S, DirectR, ND);
1189
1190    if (FoundDirect) {
1191      // First do any local hiding.
1192      DirectR.resolveKind();
1193
1194      // If the local result is a tag, remember that.
1195      if (DirectR.isSingleTagDecl())
1196        FoundTag = true;
1197      else
1198        FoundNonTag = true;
1199
1200      // Append the local results to the total results if necessary.
1201      if (UseLocal) {
1202        R.addAllDecls(LocalR);
1203        LocalR.clear();
1204      }
1205    }
1206
1207    // If we find names in this namespace, ignore its using directives.
1208    if (FoundDirect) {
1209      Found = true;
1210      continue;
1211    }
1212
1213    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1214      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1215      if (Visited.insert(Nom).second)
1216        Queue.push_back(Nom);
1217    }
1218  }
1219
1220  if (Found) {
1221    if (FoundTag && FoundNonTag)
1222      R.setAmbiguousQualifiedTagHiding();
1223    else
1224      R.resolveKind();
1225  }
1226
1227  return Found;
1228}
1229
1230/// \brief Callback that looks for any member of a class with the given name.
1231static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1232                            CXXBasePath &Path,
1233                            void *Name) {
1234  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1235
1236  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1237  Path.Decls = BaseRecord->lookup(N);
1238  return Path.Decls.first != Path.Decls.second;
1239}
1240
1241/// \brief Determine whether the given set of member declarations contains only
1242/// static members, nested types, and enumerators.
1243template<typename InputIterator>
1244static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1245  Decl *D = (*First)->getUnderlyingDecl();
1246  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1247    return true;
1248
1249  if (isa<CXXMethodDecl>(D)) {
1250    // Determine whether all of the methods are static.
1251    bool AllMethodsAreStatic = true;
1252    for(; First != Last; ++First) {
1253      D = (*First)->getUnderlyingDecl();
1254
1255      if (!isa<CXXMethodDecl>(D)) {
1256        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1257        break;
1258      }
1259
1260      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1261        AllMethodsAreStatic = false;
1262        break;
1263      }
1264    }
1265
1266    if (AllMethodsAreStatic)
1267      return true;
1268  }
1269
1270  return false;
1271}
1272
1273/// \brief Perform qualified name lookup into a given context.
1274///
1275/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1276/// names when the context of those names is explicit specified, e.g.,
1277/// "std::vector" or "x->member", or as part of unqualified name lookup.
1278///
1279/// Different lookup criteria can find different names. For example, a
1280/// particular scope can have both a struct and a function of the same
1281/// name, and each can be found by certain lookup criteria. For more
1282/// information about lookup criteria, see the documentation for the
1283/// class LookupCriteria.
1284///
1285/// \param R captures both the lookup criteria and any lookup results found.
1286///
1287/// \param LookupCtx The context in which qualified name lookup will
1288/// search. If the lookup criteria permits, name lookup may also search
1289/// in the parent contexts or (for C++ classes) base classes.
1290///
1291/// \param InUnqualifiedLookup true if this is qualified name lookup that
1292/// occurs as part of unqualified name lookup.
1293///
1294/// \returns true if lookup succeeded, false if it failed.
1295bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1296                               bool InUnqualifiedLookup) {
1297  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1298
1299  if (!R.getLookupName())
1300    return false;
1301
1302  // Make sure that the declaration context is complete.
1303  assert((!isa<TagDecl>(LookupCtx) ||
1304          LookupCtx->isDependentContext() ||
1305          cast<TagDecl>(LookupCtx)->isDefinition() ||
1306          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1307            ->isBeingDefined()) &&
1308         "Declaration context must already be complete!");
1309
1310  // Perform qualified name lookup into the LookupCtx.
1311  if (LookupDirect(*this, R, LookupCtx)) {
1312    R.resolveKind();
1313    if (isa<CXXRecordDecl>(LookupCtx))
1314      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1315    return true;
1316  }
1317
1318  // Don't descend into implied contexts for redeclarations.
1319  // C++98 [namespace.qual]p6:
1320  //   In a declaration for a namespace member in which the
1321  //   declarator-id is a qualified-id, given that the qualified-id
1322  //   for the namespace member has the form
1323  //     nested-name-specifier unqualified-id
1324  //   the unqualified-id shall name a member of the namespace
1325  //   designated by the nested-name-specifier.
1326  // See also [class.mfct]p5 and [class.static.data]p2.
1327  if (R.isForRedeclaration())
1328    return false;
1329
1330  // If this is a namespace, look it up in the implied namespaces.
1331  if (LookupCtx->isFileContext())
1332    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1333
1334  // If this isn't a C++ class, we aren't allowed to look into base
1335  // classes, we're done.
1336  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1337  if (!LookupRec || !LookupRec->getDefinition())
1338    return false;
1339
1340  // If we're performing qualified name lookup into a dependent class,
1341  // then we are actually looking into a current instantiation. If we have any
1342  // dependent base classes, then we either have to delay lookup until
1343  // template instantiation time (at which point all bases will be available)
1344  // or we have to fail.
1345  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1346      LookupRec->hasAnyDependentBases()) {
1347    R.setNotFoundInCurrentInstantiation();
1348    return false;
1349  }
1350
1351  // Perform lookup into our base classes.
1352  CXXBasePaths Paths;
1353  Paths.setOrigin(LookupRec);
1354
1355  // Look for this member in our base classes
1356  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1357  switch (R.getLookupKind()) {
1358    case LookupOrdinaryName:
1359    case LookupMemberName:
1360    case LookupRedeclarationWithLinkage:
1361      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1362      break;
1363
1364    case LookupTagName:
1365      BaseCallback = &CXXRecordDecl::FindTagMember;
1366      break;
1367
1368    case LookupAnyName:
1369      BaseCallback = &LookupAnyMember;
1370      break;
1371
1372    case LookupUsingDeclName:
1373      // This lookup is for redeclarations only.
1374
1375    case LookupOperatorName:
1376    case LookupNamespaceName:
1377    case LookupObjCProtocolName:
1378      // These lookups will never find a member in a C++ class (or base class).
1379      return false;
1380
1381    case LookupNestedNameSpecifierName:
1382      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1383      break;
1384  }
1385
1386  if (!LookupRec->lookupInBases(BaseCallback,
1387                                R.getLookupName().getAsOpaquePtr(), Paths))
1388    return false;
1389
1390  R.setNamingClass(LookupRec);
1391
1392  // C++ [class.member.lookup]p2:
1393  //   [...] If the resulting set of declarations are not all from
1394  //   sub-objects of the same type, or the set has a nonstatic member
1395  //   and includes members from distinct sub-objects, there is an
1396  //   ambiguity and the program is ill-formed. Otherwise that set is
1397  //   the result of the lookup.
1398  QualType SubobjectType;
1399  int SubobjectNumber = 0;
1400  AccessSpecifier SubobjectAccess = AS_none;
1401
1402  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1403       Path != PathEnd; ++Path) {
1404    const CXXBasePathElement &PathElement = Path->back();
1405
1406    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1407    // across all paths.
1408    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1409
1410    // Determine whether we're looking at a distinct sub-object or not.
1411    if (SubobjectType.isNull()) {
1412      // This is the first subobject we've looked at. Record its type.
1413      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1414      SubobjectNumber = PathElement.SubobjectNumber;
1415      continue;
1416    }
1417
1418    if (SubobjectType
1419                 != Context.getCanonicalType(PathElement.Base->getType())) {
1420      // We found members of the given name in two subobjects of
1421      // different types. If the declaration sets aren't the same, this
1422      // this lookup is ambiguous.
1423      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1424        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1425        DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1426        DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1427
1428        while (FirstD != FirstPath->Decls.second &&
1429               CurrentD != Path->Decls.second) {
1430         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1431             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1432           break;
1433
1434          ++FirstD;
1435          ++CurrentD;
1436        }
1437
1438        if (FirstD == FirstPath->Decls.second &&
1439            CurrentD == Path->Decls.second)
1440          continue;
1441      }
1442
1443      R.setAmbiguousBaseSubobjectTypes(Paths);
1444      return true;
1445    }
1446
1447    if (SubobjectNumber != PathElement.SubobjectNumber) {
1448      // We have a different subobject of the same type.
1449
1450      // C++ [class.member.lookup]p5:
1451      //   A static member, a nested type or an enumerator defined in
1452      //   a base class T can unambiguously be found even if an object
1453      //   has more than one base class subobject of type T.
1454      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1455        continue;
1456
1457      // We have found a nonstatic member name in multiple, distinct
1458      // subobjects. Name lookup is ambiguous.
1459      R.setAmbiguousBaseSubobjects(Paths);
1460      return true;
1461    }
1462  }
1463
1464  // Lookup in a base class succeeded; return these results.
1465
1466  DeclContext::lookup_iterator I, E;
1467  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1468    NamedDecl *D = *I;
1469    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1470                                                    D->getAccess());
1471    R.addDecl(D, AS);
1472  }
1473  R.resolveKind();
1474  return true;
1475}
1476
1477/// @brief Performs name lookup for a name that was parsed in the
1478/// source code, and may contain a C++ scope specifier.
1479///
1480/// This routine is a convenience routine meant to be called from
1481/// contexts that receive a name and an optional C++ scope specifier
1482/// (e.g., "N::M::x"). It will then perform either qualified or
1483/// unqualified name lookup (with LookupQualifiedName or LookupName,
1484/// respectively) on the given name and return those results.
1485///
1486/// @param S        The scope from which unqualified name lookup will
1487/// begin.
1488///
1489/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1490///
1491/// @param Name     The name of the entity that name lookup will
1492/// search for.
1493///
1494/// @param Loc      If provided, the source location where we're performing
1495/// name lookup. At present, this is only used to produce diagnostics when
1496/// C library functions (like "malloc") are implicitly declared.
1497///
1498/// @param EnteringContext Indicates whether we are going to enter the
1499/// context of the scope-specifier SS (if present).
1500///
1501/// @returns True if any decls were found (but possibly ambiguous)
1502bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1503                            bool AllowBuiltinCreation, bool EnteringContext) {
1504  if (SS && SS->isInvalid()) {
1505    // When the scope specifier is invalid, don't even look for
1506    // anything.
1507    return false;
1508  }
1509
1510  if (SS && SS->isSet()) {
1511    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1512      // We have resolved the scope specifier to a particular declaration
1513      // contex, and will perform name lookup in that context.
1514      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1515        return false;
1516
1517      R.setContextRange(SS->getRange());
1518
1519      return LookupQualifiedName(R, DC);
1520    }
1521
1522    // We could not resolve the scope specified to a specific declaration
1523    // context, which means that SS refers to an unknown specialization.
1524    // Name lookup can't find anything in this case.
1525    return false;
1526  }
1527
1528  // Perform unqualified name lookup starting in the given scope.
1529  return LookupName(R, S, AllowBuiltinCreation);
1530}
1531
1532
1533/// @brief Produce a diagnostic describing the ambiguity that resulted
1534/// from name lookup.
1535///
1536/// @param Result       The ambiguous name lookup result.
1537///
1538/// @param Name         The name of the entity that name lookup was
1539/// searching for.
1540///
1541/// @param NameLoc      The location of the name within the source code.
1542///
1543/// @param LookupRange  A source range that provides more
1544/// source-location information concerning the lookup itself. For
1545/// example, this range might highlight a nested-name-specifier that
1546/// precedes the name.
1547///
1548/// @returns true
1549bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1550  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1551
1552  DeclarationName Name = Result.getLookupName();
1553  SourceLocation NameLoc = Result.getNameLoc();
1554  SourceRange LookupRange = Result.getContextRange();
1555
1556  switch (Result.getAmbiguityKind()) {
1557  case LookupResult::AmbiguousBaseSubobjects: {
1558    CXXBasePaths *Paths = Result.getBasePaths();
1559    QualType SubobjectType = Paths->front().back().Base->getType();
1560    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1561      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1562      << LookupRange;
1563
1564    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1565    while (isa<CXXMethodDecl>(*Found) &&
1566           cast<CXXMethodDecl>(*Found)->isStatic())
1567      ++Found;
1568
1569    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1570
1571    return true;
1572  }
1573
1574  case LookupResult::AmbiguousBaseSubobjectTypes: {
1575    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1576      << Name << LookupRange;
1577
1578    CXXBasePaths *Paths = Result.getBasePaths();
1579    std::set<Decl *> DeclsPrinted;
1580    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1581                                      PathEnd = Paths->end();
1582         Path != PathEnd; ++Path) {
1583      Decl *D = *Path->Decls.first;
1584      if (DeclsPrinted.insert(D).second)
1585        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1586    }
1587
1588    return true;
1589  }
1590
1591  case LookupResult::AmbiguousTagHiding: {
1592    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1593
1594    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1595
1596    LookupResult::iterator DI, DE = Result.end();
1597    for (DI = Result.begin(); DI != DE; ++DI)
1598      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1599        TagDecls.insert(TD);
1600        Diag(TD->getLocation(), diag::note_hidden_tag);
1601      }
1602
1603    for (DI = Result.begin(); DI != DE; ++DI)
1604      if (!isa<TagDecl>(*DI))
1605        Diag((*DI)->getLocation(), diag::note_hiding_object);
1606
1607    // For recovery purposes, go ahead and implement the hiding.
1608    LookupResult::Filter F = Result.makeFilter();
1609    while (F.hasNext()) {
1610      if (TagDecls.count(F.next()))
1611        F.erase();
1612    }
1613    F.done();
1614
1615    return true;
1616  }
1617
1618  case LookupResult::AmbiguousReference: {
1619    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1620
1621    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1622    for (; DI != DE; ++DI)
1623      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1624
1625    return true;
1626  }
1627  }
1628
1629  llvm_unreachable("unknown ambiguity kind");
1630  return true;
1631}
1632
1633namespace {
1634  struct AssociatedLookup {
1635    AssociatedLookup(Sema &S,
1636                     Sema::AssociatedNamespaceSet &Namespaces,
1637                     Sema::AssociatedClassSet &Classes)
1638      : S(S), Namespaces(Namespaces), Classes(Classes) {
1639    }
1640
1641    Sema &S;
1642    Sema::AssociatedNamespaceSet &Namespaces;
1643    Sema::AssociatedClassSet &Classes;
1644  };
1645}
1646
1647static void
1648addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1649
1650static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1651                                      DeclContext *Ctx) {
1652  // Add the associated namespace for this class.
1653
1654  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1655  // be a locally scoped record.
1656
1657  // We skip out of inline namespaces. The innermost non-inline namespace
1658  // contains all names of all its nested inline namespaces anyway, so we can
1659  // replace the entire inline namespace tree with its root.
1660  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1661         Ctx->isInlineNamespace())
1662    Ctx = Ctx->getParent();
1663
1664  if (Ctx->isFileContext())
1665    Namespaces.insert(Ctx->getPrimaryContext());
1666}
1667
1668// \brief Add the associated classes and namespaces for argument-dependent
1669// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1670static void
1671addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1672                                  const TemplateArgument &Arg) {
1673  // C++ [basic.lookup.koenig]p2, last bullet:
1674  //   -- [...] ;
1675  switch (Arg.getKind()) {
1676    case TemplateArgument::Null:
1677      break;
1678
1679    case TemplateArgument::Type:
1680      // [...] the namespaces and classes associated with the types of the
1681      // template arguments provided for template type parameters (excluding
1682      // template template parameters)
1683      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1684      break;
1685
1686    case TemplateArgument::Template: {
1687      // [...] the namespaces in which any template template arguments are
1688      // defined; and the classes in which any member templates used as
1689      // template template arguments are defined.
1690      TemplateName Template = Arg.getAsTemplate();
1691      if (ClassTemplateDecl *ClassTemplate
1692                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1693        DeclContext *Ctx = ClassTemplate->getDeclContext();
1694        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1695          Result.Classes.insert(EnclosingClass);
1696        // Add the associated namespace for this class.
1697        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1698      }
1699      break;
1700    }
1701
1702    case TemplateArgument::Declaration:
1703    case TemplateArgument::Integral:
1704    case TemplateArgument::Expression:
1705      // [Note: non-type template arguments do not contribute to the set of
1706      //  associated namespaces. ]
1707      break;
1708
1709    case TemplateArgument::Pack:
1710      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1711                                        PEnd = Arg.pack_end();
1712           P != PEnd; ++P)
1713        addAssociatedClassesAndNamespaces(Result, *P);
1714      break;
1715  }
1716}
1717
1718// \brief Add the associated classes and namespaces for
1719// argument-dependent lookup with an argument of class type
1720// (C++ [basic.lookup.koenig]p2).
1721static void
1722addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1723                                  CXXRecordDecl *Class) {
1724
1725  // Just silently ignore anything whose name is __va_list_tag.
1726  if (Class->getDeclName() == Result.S.VAListTagName)
1727    return;
1728
1729  // C++ [basic.lookup.koenig]p2:
1730  //   [...]
1731  //     -- If T is a class type (including unions), its associated
1732  //        classes are: the class itself; the class of which it is a
1733  //        member, if any; and its direct and indirect base
1734  //        classes. Its associated namespaces are the namespaces in
1735  //        which its associated classes are defined.
1736
1737  // Add the class of which it is a member, if any.
1738  DeclContext *Ctx = Class->getDeclContext();
1739  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1740    Result.Classes.insert(EnclosingClass);
1741  // Add the associated namespace for this class.
1742  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1743
1744  // Add the class itself. If we've already seen this class, we don't
1745  // need to visit base classes.
1746  if (!Result.Classes.insert(Class))
1747    return;
1748
1749  // -- If T is a template-id, its associated namespaces and classes are
1750  //    the namespace in which the template is defined; for member
1751  //    templates, the member template’s class; the namespaces and classes
1752  //    associated with the types of the template arguments provided for
1753  //    template type parameters (excluding template template parameters); the
1754  //    namespaces in which any template template arguments are defined; and
1755  //    the classes in which any member templates used as template template
1756  //    arguments are defined. [Note: non-type template arguments do not
1757  //    contribute to the set of associated namespaces. ]
1758  if (ClassTemplateSpecializationDecl *Spec
1759        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1760    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1761    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1762      Result.Classes.insert(EnclosingClass);
1763    // Add the associated namespace for this class.
1764    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1765
1766    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1767    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1768      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1769  }
1770
1771  // Only recurse into base classes for complete types.
1772  if (!Class->hasDefinition()) {
1773    // FIXME: we might need to instantiate templates here
1774    return;
1775  }
1776
1777  // Add direct and indirect base classes along with their associated
1778  // namespaces.
1779  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1780  Bases.push_back(Class);
1781  while (!Bases.empty()) {
1782    // Pop this class off the stack.
1783    Class = Bases.back();
1784    Bases.pop_back();
1785
1786    // Visit the base classes.
1787    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1788                                         BaseEnd = Class->bases_end();
1789         Base != BaseEnd; ++Base) {
1790      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1791      // In dependent contexts, we do ADL twice, and the first time around,
1792      // the base type might be a dependent TemplateSpecializationType, or a
1793      // TemplateTypeParmType. If that happens, simply ignore it.
1794      // FIXME: If we want to support export, we probably need to add the
1795      // namespace of the template in a TemplateSpecializationType, or even
1796      // the classes and namespaces of known non-dependent arguments.
1797      if (!BaseType)
1798        continue;
1799      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1800      if (Result.Classes.insert(BaseDecl)) {
1801        // Find the associated namespace for this base class.
1802        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1803        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1804
1805        // Make sure we visit the bases of this base class.
1806        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1807          Bases.push_back(BaseDecl);
1808      }
1809    }
1810  }
1811}
1812
1813// \brief Add the associated classes and namespaces for
1814// argument-dependent lookup with an argument of type T
1815// (C++ [basic.lookup.koenig]p2).
1816static void
1817addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1818  // C++ [basic.lookup.koenig]p2:
1819  //
1820  //   For each argument type T in the function call, there is a set
1821  //   of zero or more associated namespaces and a set of zero or more
1822  //   associated classes to be considered. The sets of namespaces and
1823  //   classes is determined entirely by the types of the function
1824  //   arguments (and the namespace of any template template
1825  //   argument). Typedef names and using-declarations used to specify
1826  //   the types do not contribute to this set. The sets of namespaces
1827  //   and classes are determined in the following way:
1828
1829  llvm::SmallVector<const Type *, 16> Queue;
1830  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1831
1832  while (true) {
1833    switch (T->getTypeClass()) {
1834
1835#define TYPE(Class, Base)
1836#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1837#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1838#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1839#define ABSTRACT_TYPE(Class, Base)
1840#include "clang/AST/TypeNodes.def"
1841      // T is canonical.  We can also ignore dependent types because
1842      // we don't need to do ADL at the definition point, but if we
1843      // wanted to implement template export (or if we find some other
1844      // use for associated classes and namespaces...) this would be
1845      // wrong.
1846      break;
1847
1848    //    -- If T is a pointer to U or an array of U, its associated
1849    //       namespaces and classes are those associated with U.
1850    case Type::Pointer:
1851      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1852      continue;
1853    case Type::ConstantArray:
1854    case Type::IncompleteArray:
1855    case Type::VariableArray:
1856      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1857      continue;
1858
1859    //     -- If T is a fundamental type, its associated sets of
1860    //        namespaces and classes are both empty.
1861    case Type::Builtin:
1862      break;
1863
1864    //     -- If T is a class type (including unions), its associated
1865    //        classes are: the class itself; the class of which it is a
1866    //        member, if any; and its direct and indirect base
1867    //        classes. Its associated namespaces are the namespaces in
1868    //        which its associated classes are defined.
1869    case Type::Record: {
1870      CXXRecordDecl *Class
1871        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1872      addAssociatedClassesAndNamespaces(Result, Class);
1873      break;
1874    }
1875
1876    //     -- If T is an enumeration type, its associated namespace is
1877    //        the namespace in which it is defined. If it is class
1878    //        member, its associated class is the member’s class; else
1879    //        it has no associated class.
1880    case Type::Enum: {
1881      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1882
1883      DeclContext *Ctx = Enum->getDeclContext();
1884      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1885        Result.Classes.insert(EnclosingClass);
1886
1887      // Add the associated namespace for this class.
1888      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1889
1890      break;
1891    }
1892
1893    //     -- If T is a function type, its associated namespaces and
1894    //        classes are those associated with the function parameter
1895    //        types and those associated with the return type.
1896    case Type::FunctionProto: {
1897      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1898      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1899                                             ArgEnd = Proto->arg_type_end();
1900             Arg != ArgEnd; ++Arg)
1901        Queue.push_back(Arg->getTypePtr());
1902      // fallthrough
1903    }
1904    case Type::FunctionNoProto: {
1905      const FunctionType *FnType = cast<FunctionType>(T);
1906      T = FnType->getResultType().getTypePtr();
1907      continue;
1908    }
1909
1910    //     -- If T is a pointer to a member function of a class X, its
1911    //        associated namespaces and classes are those associated
1912    //        with the function parameter types and return type,
1913    //        together with those associated with X.
1914    //
1915    //     -- If T is a pointer to a data member of class X, its
1916    //        associated namespaces and classes are those associated
1917    //        with the member type together with those associated with
1918    //        X.
1919    case Type::MemberPointer: {
1920      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1921
1922      // Queue up the class type into which this points.
1923      Queue.push_back(MemberPtr->getClass());
1924
1925      // And directly continue with the pointee type.
1926      T = MemberPtr->getPointeeType().getTypePtr();
1927      continue;
1928    }
1929
1930    // As an extension, treat this like a normal pointer.
1931    case Type::BlockPointer:
1932      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1933      continue;
1934
1935    // References aren't covered by the standard, but that's such an
1936    // obvious defect that we cover them anyway.
1937    case Type::LValueReference:
1938    case Type::RValueReference:
1939      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1940      continue;
1941
1942    // These are fundamental types.
1943    case Type::Vector:
1944    case Type::ExtVector:
1945    case Type::Complex:
1946      break;
1947
1948    // These are ignored by ADL.
1949    case Type::ObjCObject:
1950    case Type::ObjCInterface:
1951    case Type::ObjCObjectPointer:
1952      break;
1953    }
1954
1955    if (Queue.empty()) break;
1956    T = Queue.back();
1957    Queue.pop_back();
1958  }
1959}
1960
1961/// \brief Find the associated classes and namespaces for
1962/// argument-dependent lookup for a call with the given set of
1963/// arguments.
1964///
1965/// This routine computes the sets of associated classes and associated
1966/// namespaces searched by argument-dependent lookup
1967/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1968void
1969Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1970                                 AssociatedNamespaceSet &AssociatedNamespaces,
1971                                 AssociatedClassSet &AssociatedClasses) {
1972  AssociatedNamespaces.clear();
1973  AssociatedClasses.clear();
1974
1975  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1976
1977  // C++ [basic.lookup.koenig]p2:
1978  //   For each argument type T in the function call, there is a set
1979  //   of zero or more associated namespaces and a set of zero or more
1980  //   associated classes to be considered. The sets of namespaces and
1981  //   classes is determined entirely by the types of the function
1982  //   arguments (and the namespace of any template template
1983  //   argument).
1984  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1985    Expr *Arg = Args[ArgIdx];
1986
1987    if (Arg->getType() != Context.OverloadTy) {
1988      addAssociatedClassesAndNamespaces(Result, Arg->getType());
1989      continue;
1990    }
1991
1992    // [...] In addition, if the argument is the name or address of a
1993    // set of overloaded functions and/or function templates, its
1994    // associated classes and namespaces are the union of those
1995    // associated with each of the members of the set: the namespace
1996    // in which the function or function template is defined and the
1997    // classes and namespaces associated with its (non-dependent)
1998    // parameter types and return type.
1999    Arg = Arg->IgnoreParens();
2000    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2001      if (unaryOp->getOpcode() == UO_AddrOf)
2002        Arg = unaryOp->getSubExpr();
2003
2004    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2005    if (!ULE) continue;
2006
2007    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2008           I != E; ++I) {
2009      // Look through any using declarations to find the underlying function.
2010      NamedDecl *Fn = (*I)->getUnderlyingDecl();
2011
2012      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2013      if (!FDecl)
2014        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2015
2016      // Add the classes and namespaces associated with the parameter
2017      // types and return type of this function.
2018      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2019    }
2020  }
2021}
2022
2023/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2024/// an acceptable non-member overloaded operator for a call whose
2025/// arguments have types T1 (and, if non-empty, T2). This routine
2026/// implements the check in C++ [over.match.oper]p3b2 concerning
2027/// enumeration types.
2028static bool
2029IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2030                                       QualType T1, QualType T2,
2031                                       ASTContext &Context) {
2032  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2033    return true;
2034
2035  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2036    return true;
2037
2038  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2039  if (Proto->getNumArgs() < 1)
2040    return false;
2041
2042  if (T1->isEnumeralType()) {
2043    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2044    if (Context.hasSameUnqualifiedType(T1, ArgType))
2045      return true;
2046  }
2047
2048  if (Proto->getNumArgs() < 2)
2049    return false;
2050
2051  if (!T2.isNull() && T2->isEnumeralType()) {
2052    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2053    if (Context.hasSameUnqualifiedType(T2, ArgType))
2054      return true;
2055  }
2056
2057  return false;
2058}
2059
2060NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2061                                  SourceLocation Loc,
2062                                  LookupNameKind NameKind,
2063                                  RedeclarationKind Redecl) {
2064  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2065  LookupName(R, S);
2066  return R.getAsSingle<NamedDecl>();
2067}
2068
2069/// \brief Find the protocol with the given name, if any.
2070ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2071                                       SourceLocation IdLoc) {
2072  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2073                             LookupObjCProtocolName);
2074  return cast_or_null<ObjCProtocolDecl>(D);
2075}
2076
2077void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2078                                        QualType T1, QualType T2,
2079                                        UnresolvedSetImpl &Functions) {
2080  // C++ [over.match.oper]p3:
2081  //     -- The set of non-member candidates is the result of the
2082  //        unqualified lookup of operator@ in the context of the
2083  //        expression according to the usual rules for name lookup in
2084  //        unqualified function calls (3.4.2) except that all member
2085  //        functions are ignored. However, if no operand has a class
2086  //        type, only those non-member functions in the lookup set
2087  //        that have a first parameter of type T1 or "reference to
2088  //        (possibly cv-qualified) T1", when T1 is an enumeration
2089  //        type, or (if there is a right operand) a second parameter
2090  //        of type T2 or "reference to (possibly cv-qualified) T2",
2091  //        when T2 is an enumeration type, are candidate functions.
2092  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2093  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2094  LookupName(Operators, S);
2095
2096  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2097
2098  if (Operators.empty())
2099    return;
2100
2101  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2102       Op != OpEnd; ++Op) {
2103    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2104    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2105      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2106        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2107    } else if (FunctionTemplateDecl *FunTmpl
2108                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2109      // FIXME: friend operators?
2110      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2111      // later?
2112      if (!FunTmpl->getDeclContext()->isRecord())
2113        Functions.addDecl(*Op, Op.getAccess());
2114    }
2115  }
2116}
2117
2118/// \brief Look up the constructors for the given class.
2119DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2120  // If the copy constructor has not yet been declared, do so now.
2121  if (CanDeclareSpecialMemberFunction(Context, Class)) {
2122    if (!Class->hasDeclaredDefaultConstructor())
2123      DeclareImplicitDefaultConstructor(Class);
2124    if (!Class->hasDeclaredCopyConstructor())
2125      DeclareImplicitCopyConstructor(Class);
2126  }
2127
2128  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2129  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2130  return Class->lookup(Name);
2131}
2132
2133/// \brief Look for the destructor of the given class.
2134///
2135/// During semantic analysis, this routine should be used in lieu of
2136/// CXXRecordDecl::getDestructor().
2137///
2138/// \returns The destructor for this class.
2139CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2140  // If the destructor has not yet been declared, do so now.
2141  if (CanDeclareSpecialMemberFunction(Context, Class) &&
2142      !Class->hasDeclaredDestructor())
2143    DeclareImplicitDestructor(Class);
2144
2145  return Class->getDestructor();
2146}
2147
2148void ADLResult::insert(NamedDecl *New) {
2149  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2150
2151  // If we haven't yet seen a decl for this key, or the last decl
2152  // was exactly this one, we're done.
2153  if (Old == 0 || Old == New) {
2154    Old = New;
2155    return;
2156  }
2157
2158  // Otherwise, decide which is a more recent redeclaration.
2159  FunctionDecl *OldFD, *NewFD;
2160  if (isa<FunctionTemplateDecl>(New)) {
2161    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2162    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2163  } else {
2164    OldFD = cast<FunctionDecl>(Old);
2165    NewFD = cast<FunctionDecl>(New);
2166  }
2167
2168  FunctionDecl *Cursor = NewFD;
2169  while (true) {
2170    Cursor = Cursor->getPreviousDeclaration();
2171
2172    // If we got to the end without finding OldFD, OldFD is the newer
2173    // declaration;  leave things as they are.
2174    if (!Cursor) return;
2175
2176    // If we do find OldFD, then NewFD is newer.
2177    if (Cursor == OldFD) break;
2178
2179    // Otherwise, keep looking.
2180  }
2181
2182  Old = New;
2183}
2184
2185void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2186                                   Expr **Args, unsigned NumArgs,
2187                                   ADLResult &Result) {
2188  // Find all of the associated namespaces and classes based on the
2189  // arguments we have.
2190  AssociatedNamespaceSet AssociatedNamespaces;
2191  AssociatedClassSet AssociatedClasses;
2192  FindAssociatedClassesAndNamespaces(Args, NumArgs,
2193                                     AssociatedNamespaces,
2194                                     AssociatedClasses);
2195
2196  QualType T1, T2;
2197  if (Operator) {
2198    T1 = Args[0]->getType();
2199    if (NumArgs >= 2)
2200      T2 = Args[1]->getType();
2201  }
2202
2203  // C++ [basic.lookup.argdep]p3:
2204  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2205  //   and let Y be the lookup set produced by argument dependent
2206  //   lookup (defined as follows). If X contains [...] then Y is
2207  //   empty. Otherwise Y is the set of declarations found in the
2208  //   namespaces associated with the argument types as described
2209  //   below. The set of declarations found by the lookup of the name
2210  //   is the union of X and Y.
2211  //
2212  // Here, we compute Y and add its members to the overloaded
2213  // candidate set.
2214  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2215                                     NSEnd = AssociatedNamespaces.end();
2216       NS != NSEnd; ++NS) {
2217    //   When considering an associated namespace, the lookup is the
2218    //   same as the lookup performed when the associated namespace is
2219    //   used as a qualifier (3.4.3.2) except that:
2220    //
2221    //     -- Any using-directives in the associated namespace are
2222    //        ignored.
2223    //
2224    //     -- Any namespace-scope friend functions declared in
2225    //        associated classes are visible within their respective
2226    //        namespaces even if they are not visible during an ordinary
2227    //        lookup (11.4).
2228    DeclContext::lookup_iterator I, E;
2229    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2230      NamedDecl *D = *I;
2231      // If the only declaration here is an ordinary friend, consider
2232      // it only if it was declared in an associated classes.
2233      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2234        DeclContext *LexDC = D->getLexicalDeclContext();
2235        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2236          continue;
2237      }
2238
2239      if (isa<UsingShadowDecl>(D))
2240        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2241
2242      if (isa<FunctionDecl>(D)) {
2243        if (Operator &&
2244            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2245                                                    T1, T2, Context))
2246          continue;
2247      } else if (!isa<FunctionTemplateDecl>(D))
2248        continue;
2249
2250      Result.insert(D);
2251    }
2252  }
2253}
2254
2255//----------------------------------------------------------------------------
2256// Search for all visible declarations.
2257//----------------------------------------------------------------------------
2258VisibleDeclConsumer::~VisibleDeclConsumer() { }
2259
2260namespace {
2261
2262class ShadowContextRAII;
2263
2264class VisibleDeclsRecord {
2265public:
2266  /// \brief An entry in the shadow map, which is optimized to store a
2267  /// single declaration (the common case) but can also store a list
2268  /// of declarations.
2269  class ShadowMapEntry {
2270    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2271
2272    /// \brief Contains either the solitary NamedDecl * or a vector
2273    /// of declarations.
2274    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2275
2276  public:
2277    ShadowMapEntry() : DeclOrVector() { }
2278
2279    void Add(NamedDecl *ND);
2280    void Destroy();
2281
2282    // Iteration.
2283    typedef NamedDecl **iterator;
2284    iterator begin();
2285    iterator end();
2286  };
2287
2288private:
2289  /// \brief A mapping from declaration names to the declarations that have
2290  /// this name within a particular scope.
2291  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2292
2293  /// \brief A list of shadow maps, which is used to model name hiding.
2294  std::list<ShadowMap> ShadowMaps;
2295
2296  /// \brief The declaration contexts we have already visited.
2297  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2298
2299  friend class ShadowContextRAII;
2300
2301public:
2302  /// \brief Determine whether we have already visited this context
2303  /// (and, if not, note that we are going to visit that context now).
2304  bool visitedContext(DeclContext *Ctx) {
2305    return !VisitedContexts.insert(Ctx);
2306  }
2307
2308  bool alreadyVisitedContext(DeclContext *Ctx) {
2309    return VisitedContexts.count(Ctx);
2310  }
2311
2312  /// \brief Determine whether the given declaration is hidden in the
2313  /// current scope.
2314  ///
2315  /// \returns the declaration that hides the given declaration, or
2316  /// NULL if no such declaration exists.
2317  NamedDecl *checkHidden(NamedDecl *ND);
2318
2319  /// \brief Add a declaration to the current shadow map.
2320  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2321};
2322
2323/// \brief RAII object that records when we've entered a shadow context.
2324class ShadowContextRAII {
2325  VisibleDeclsRecord &Visible;
2326
2327  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2328
2329public:
2330  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2331    Visible.ShadowMaps.push_back(ShadowMap());
2332  }
2333
2334  ~ShadowContextRAII() {
2335    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2336                          EEnd = Visible.ShadowMaps.back().end();
2337         E != EEnd;
2338         ++E)
2339      E->second.Destroy();
2340
2341    Visible.ShadowMaps.pop_back();
2342  }
2343};
2344
2345} // end anonymous namespace
2346
2347void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2348  if (DeclOrVector.isNull()) {
2349    // 0 - > 1 elements: just set the single element information.
2350    DeclOrVector = ND;
2351    return;
2352  }
2353
2354  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2355    // 1 -> 2 elements: create the vector of results and push in the
2356    // existing declaration.
2357    DeclVector *Vec = new DeclVector;
2358    Vec->push_back(PrevND);
2359    DeclOrVector = Vec;
2360  }
2361
2362  // Add the new element to the end of the vector.
2363  DeclOrVector.get<DeclVector*>()->push_back(ND);
2364}
2365
2366void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2367  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2368    delete Vec;
2369    DeclOrVector = ((NamedDecl *)0);
2370  }
2371}
2372
2373VisibleDeclsRecord::ShadowMapEntry::iterator
2374VisibleDeclsRecord::ShadowMapEntry::begin() {
2375  if (DeclOrVector.isNull())
2376    return 0;
2377
2378  if (DeclOrVector.dyn_cast<NamedDecl *>())
2379    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2380
2381  return DeclOrVector.get<DeclVector *>()->begin();
2382}
2383
2384VisibleDeclsRecord::ShadowMapEntry::iterator
2385VisibleDeclsRecord::ShadowMapEntry::end() {
2386  if (DeclOrVector.isNull())
2387    return 0;
2388
2389  if (DeclOrVector.dyn_cast<NamedDecl *>())
2390    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2391
2392  return DeclOrVector.get<DeclVector *>()->end();
2393}
2394
2395NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2396  // Look through using declarations.
2397  ND = ND->getUnderlyingDecl();
2398
2399  unsigned IDNS = ND->getIdentifierNamespace();
2400  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2401  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2402       SM != SMEnd; ++SM) {
2403    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2404    if (Pos == SM->end())
2405      continue;
2406
2407    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2408                               IEnd = Pos->second.end();
2409         I != IEnd; ++I) {
2410      // A tag declaration does not hide a non-tag declaration.
2411      if ((*I)->hasTagIdentifierNamespace() &&
2412          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2413                   Decl::IDNS_ObjCProtocol)))
2414        continue;
2415
2416      // Protocols are in distinct namespaces from everything else.
2417      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2418           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2419          (*I)->getIdentifierNamespace() != IDNS)
2420        continue;
2421
2422      // Functions and function templates in the same scope overload
2423      // rather than hide.  FIXME: Look for hiding based on function
2424      // signatures!
2425      if ((*I)->isFunctionOrFunctionTemplate() &&
2426          ND->isFunctionOrFunctionTemplate() &&
2427          SM == ShadowMaps.rbegin())
2428        continue;
2429
2430      // We've found a declaration that hides this one.
2431      return *I;
2432    }
2433  }
2434
2435  return 0;
2436}
2437
2438static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2439                               bool QualifiedNameLookup,
2440                               bool InBaseClass,
2441                               VisibleDeclConsumer &Consumer,
2442                               VisibleDeclsRecord &Visited) {
2443  if (!Ctx)
2444    return;
2445
2446  // Make sure we don't visit the same context twice.
2447  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2448    return;
2449
2450  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2451    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2452
2453  // Enumerate all of the results in this context.
2454  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2455       CurCtx = CurCtx->getNextContext()) {
2456    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2457                                 DEnd = CurCtx->decls_end();
2458         D != DEnd; ++D) {
2459      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2460        if (Result.isAcceptableDecl(ND)) {
2461          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2462          Visited.add(ND);
2463        }
2464
2465      // Visit transparent contexts and inline namespaces inside this context.
2466      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2467        if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
2468          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2469                             Consumer, Visited);
2470      }
2471    }
2472  }
2473
2474  // Traverse using directives for qualified name lookup.
2475  if (QualifiedNameLookup) {
2476    ShadowContextRAII Shadow(Visited);
2477    DeclContext::udir_iterator I, E;
2478    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2479      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2480                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2481    }
2482  }
2483
2484  // Traverse the contexts of inherited C++ classes.
2485  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2486    if (!Record->hasDefinition())
2487      return;
2488
2489    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2490                                         BEnd = Record->bases_end();
2491         B != BEnd; ++B) {
2492      QualType BaseType = B->getType();
2493
2494      // Don't look into dependent bases, because name lookup can't look
2495      // there anyway.
2496      if (BaseType->isDependentType())
2497        continue;
2498
2499      const RecordType *Record = BaseType->getAs<RecordType>();
2500      if (!Record)
2501        continue;
2502
2503      // FIXME: It would be nice to be able to determine whether referencing
2504      // a particular member would be ambiguous. For example, given
2505      //
2506      //   struct A { int member; };
2507      //   struct B { int member; };
2508      //   struct C : A, B { };
2509      //
2510      //   void f(C *c) { c->### }
2511      //
2512      // accessing 'member' would result in an ambiguity. However, we
2513      // could be smart enough to qualify the member with the base
2514      // class, e.g.,
2515      //
2516      //   c->B::member
2517      //
2518      // or
2519      //
2520      //   c->A::member
2521
2522      // Find results in this base class (and its bases).
2523      ShadowContextRAII Shadow(Visited);
2524      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2525                         true, Consumer, Visited);
2526    }
2527  }
2528
2529  // Traverse the contexts of Objective-C classes.
2530  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2531    // Traverse categories.
2532    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2533         Category; Category = Category->getNextClassCategory()) {
2534      ShadowContextRAII Shadow(Visited);
2535      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2536                         Consumer, Visited);
2537    }
2538
2539    // Traverse protocols.
2540    for (ObjCInterfaceDecl::all_protocol_iterator
2541         I = IFace->all_referenced_protocol_begin(),
2542         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2543      ShadowContextRAII Shadow(Visited);
2544      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2545                         Visited);
2546    }
2547
2548    // Traverse the superclass.
2549    if (IFace->getSuperClass()) {
2550      ShadowContextRAII Shadow(Visited);
2551      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2552                         true, Consumer, Visited);
2553    }
2554
2555    // If there is an implementation, traverse it. We do this to find
2556    // synthesized ivars.
2557    if (IFace->getImplementation()) {
2558      ShadowContextRAII Shadow(Visited);
2559      LookupVisibleDecls(IFace->getImplementation(), Result,
2560                         QualifiedNameLookup, true, Consumer, Visited);
2561    }
2562  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2563    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2564           E = Protocol->protocol_end(); I != E; ++I) {
2565      ShadowContextRAII Shadow(Visited);
2566      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2567                         Visited);
2568    }
2569  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2570    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2571           E = Category->protocol_end(); I != E; ++I) {
2572      ShadowContextRAII Shadow(Visited);
2573      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2574                         Visited);
2575    }
2576
2577    // If there is an implementation, traverse it.
2578    if (Category->getImplementation()) {
2579      ShadowContextRAII Shadow(Visited);
2580      LookupVisibleDecls(Category->getImplementation(), Result,
2581                         QualifiedNameLookup, true, Consumer, Visited);
2582    }
2583  }
2584}
2585
2586static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2587                               UnqualUsingDirectiveSet &UDirs,
2588                               VisibleDeclConsumer &Consumer,
2589                               VisibleDeclsRecord &Visited) {
2590  if (!S)
2591    return;
2592
2593  if (!S->getEntity() ||
2594      (!S->getParent() &&
2595       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2596      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2597    // Walk through the declarations in this Scope.
2598    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2599         D != DEnd; ++D) {
2600      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2601        if (Result.isAcceptableDecl(ND)) {
2602          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2603          Visited.add(ND);
2604        }
2605    }
2606  }
2607
2608  // FIXME: C++ [temp.local]p8
2609  DeclContext *Entity = 0;
2610  if (S->getEntity()) {
2611    // Look into this scope's declaration context, along with any of its
2612    // parent lookup contexts (e.g., enclosing classes), up to the point
2613    // where we hit the context stored in the next outer scope.
2614    Entity = (DeclContext *)S->getEntity();
2615    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2616
2617    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2618         Ctx = Ctx->getLookupParent()) {
2619      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2620        if (Method->isInstanceMethod()) {
2621          // For instance methods, look for ivars in the method's interface.
2622          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2623                                  Result.getNameLoc(), Sema::LookupMemberName);
2624          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2625            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2626                               /*InBaseClass=*/false, Consumer, Visited);
2627        }
2628
2629        // We've already performed all of the name lookup that we need
2630        // to for Objective-C methods; the next context will be the
2631        // outer scope.
2632        break;
2633      }
2634
2635      if (Ctx->isFunctionOrMethod())
2636        continue;
2637
2638      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2639                         /*InBaseClass=*/false, Consumer, Visited);
2640    }
2641  } else if (!S->getParent()) {
2642    // Look into the translation unit scope. We walk through the translation
2643    // unit's declaration context, because the Scope itself won't have all of
2644    // the declarations if we loaded a precompiled header.
2645    // FIXME: We would like the translation unit's Scope object to point to the
2646    // translation unit, so we don't need this special "if" branch. However,
2647    // doing so would force the normal C++ name-lookup code to look into the
2648    // translation unit decl when the IdentifierInfo chains would suffice.
2649    // Once we fix that problem (which is part of a more general "don't look
2650    // in DeclContexts unless we have to" optimization), we can eliminate this.
2651    Entity = Result.getSema().Context.getTranslationUnitDecl();
2652    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2653                       /*InBaseClass=*/false, Consumer, Visited);
2654  }
2655
2656  if (Entity) {
2657    // Lookup visible declarations in any namespaces found by using
2658    // directives.
2659    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2660    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2661    for (; UI != UEnd; ++UI)
2662      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2663                         Result, /*QualifiedNameLookup=*/false,
2664                         /*InBaseClass=*/false, Consumer, Visited);
2665  }
2666
2667  // Lookup names in the parent scope.
2668  ShadowContextRAII Shadow(Visited);
2669  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2670}
2671
2672void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2673                              VisibleDeclConsumer &Consumer,
2674                              bool IncludeGlobalScope) {
2675  // Determine the set of using directives available during
2676  // unqualified name lookup.
2677  Scope *Initial = S;
2678  UnqualUsingDirectiveSet UDirs;
2679  if (getLangOptions().CPlusPlus) {
2680    // Find the first namespace or translation-unit scope.
2681    while (S && !isNamespaceOrTranslationUnitScope(S))
2682      S = S->getParent();
2683
2684    UDirs.visitScopeChain(Initial, S);
2685  }
2686  UDirs.done();
2687
2688  // Look for visible declarations.
2689  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2690  VisibleDeclsRecord Visited;
2691  if (!IncludeGlobalScope)
2692    Visited.visitedContext(Context.getTranslationUnitDecl());
2693  ShadowContextRAII Shadow(Visited);
2694  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2695}
2696
2697void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2698                              VisibleDeclConsumer &Consumer,
2699                              bool IncludeGlobalScope) {
2700  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2701  VisibleDeclsRecord Visited;
2702  if (!IncludeGlobalScope)
2703    Visited.visitedContext(Context.getTranslationUnitDecl());
2704  ShadowContextRAII Shadow(Visited);
2705  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2706                       /*InBaseClass=*/false, Consumer, Visited);
2707}
2708
2709//----------------------------------------------------------------------------
2710// Typo correction
2711//----------------------------------------------------------------------------
2712
2713namespace {
2714class TypoCorrectionConsumer : public VisibleDeclConsumer {
2715  /// \brief The name written that is a typo in the source.
2716  llvm::StringRef Typo;
2717
2718  /// \brief The results found that have the smallest edit distance
2719  /// found (so far) with the typo name.
2720  ///
2721  /// The boolean value indicates whether there is a keyword with this name.
2722  llvm::StringMap<bool, llvm::BumpPtrAllocator> BestResults;
2723
2724  /// \brief The best edit distance found so far.
2725  unsigned BestEditDistance;
2726
2727public:
2728  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2729    : Typo(Typo->getName()),
2730      BestEditDistance((std::numeric_limits<unsigned>::max)()) { }
2731
2732  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2733  void FoundName(llvm::StringRef Name);
2734  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2735
2736  typedef llvm::StringMap<bool, llvm::BumpPtrAllocator>::iterator iterator;
2737  iterator begin() { return BestResults.begin(); }
2738  iterator end()  { return BestResults.end(); }
2739  void erase(iterator I) { BestResults.erase(I); }
2740  unsigned size() const { return BestResults.size(); }
2741  bool empty() const { return BestResults.empty(); }
2742
2743  bool &operator[](llvm::StringRef Name) {
2744    return BestResults[Name];
2745  }
2746
2747  unsigned getBestEditDistance() const { return BestEditDistance; }
2748};
2749
2750}
2751
2752void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2753                                       bool InBaseClass) {
2754  // Don't consider hidden names for typo correction.
2755  if (Hiding)
2756    return;
2757
2758  // Only consider entities with identifiers for names, ignoring
2759  // special names (constructors, overloaded operators, selectors,
2760  // etc.).
2761  IdentifierInfo *Name = ND->getIdentifier();
2762  if (!Name)
2763    return;
2764
2765  FoundName(Name->getName());
2766}
2767
2768void TypoCorrectionConsumer::FoundName(llvm::StringRef Name) {
2769  using namespace std;
2770
2771  // Use a simple length-based heuristic to determine the minimum possible
2772  // edit distance. If the minimum isn't good enough, bail out early.
2773  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
2774  if (MinED > BestEditDistance || (MinED && Typo.size() / MinED < 3))
2775    return;
2776
2777  // Compute an upper bound on the allowable edit distance, so that the
2778  // edit-distance algorithm can short-circuit.
2779  unsigned UpperBound = min(unsigned((Typo.size() + 2) / 3), BestEditDistance);
2780
2781  // Compute the edit distance between the typo and the name of this
2782  // entity. If this edit distance is not worse than the best edit
2783  // distance we've seen so far, add it to the list of results.
2784  unsigned ED = Typo.edit_distance(Name, true, UpperBound);
2785  if (ED == 0)
2786    return;
2787
2788  if (ED < BestEditDistance) {
2789    // This result is better than any we've seen before; clear out
2790    // the previous results.
2791    BestResults.clear();
2792    BestEditDistance = ED;
2793  } else if (ED > BestEditDistance) {
2794    // This result is worse than the best results we've seen so far;
2795    // ignore it.
2796    return;
2797  }
2798
2799  // Add this name to the list of results. By not assigning a value, we
2800  // keep the current value if we've seen this name before (either as a
2801  // keyword or as a declaration), or get the default value (not a keyword)
2802  // if we haven't seen it before.
2803  (void)BestResults[Name];
2804}
2805
2806void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2807                                              llvm::StringRef Keyword) {
2808  // Compute the edit distance between the typo and this keyword.
2809  // If this edit distance is not worse than the best edit
2810  // distance we've seen so far, add it to the list of results.
2811  unsigned ED = Typo.edit_distance(Keyword);
2812  if (ED < BestEditDistance) {
2813    BestResults.clear();
2814    BestEditDistance = ED;
2815  } else if (ED > BestEditDistance) {
2816    // This result is worse than the best results we've seen so far;
2817    // ignore it.
2818    return;
2819  }
2820
2821  BestResults[Keyword] = true;
2822}
2823
2824/// \brief Perform name lookup for a possible result for typo correction.
2825static void LookupPotentialTypoResult(Sema &SemaRef,
2826                                      LookupResult &Res,
2827                                      IdentifierInfo *Name,
2828                                      Scope *S, CXXScopeSpec *SS,
2829                                      DeclContext *MemberContext,
2830                                      bool EnteringContext,
2831                                      Sema::CorrectTypoContext CTC) {
2832  Res.suppressDiagnostics();
2833  Res.clear();
2834  Res.setLookupName(Name);
2835  if (MemberContext) {
2836    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
2837      if (CTC == Sema::CTC_ObjCIvarLookup) {
2838        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
2839          Res.addDecl(Ivar);
2840          Res.resolveKind();
2841          return;
2842        }
2843      }
2844
2845      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
2846        Res.addDecl(Prop);
2847        Res.resolveKind();
2848        return;
2849      }
2850    }
2851
2852    SemaRef.LookupQualifiedName(Res, MemberContext);
2853    return;
2854  }
2855
2856  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2857                           EnteringContext);
2858
2859  // Fake ivar lookup; this should really be part of
2860  // LookupParsedName.
2861  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
2862    if (Method->isInstanceMethod() && Method->getClassInterface() &&
2863        (Res.empty() ||
2864         (Res.isSingleResult() &&
2865          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
2866       if (ObjCIvarDecl *IV
2867             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
2868         Res.addDecl(IV);
2869         Res.resolveKind();
2870       }
2871     }
2872  }
2873}
2874
2875/// \brief Try to "correct" a typo in the source code by finding
2876/// visible declarations whose names are similar to the name that was
2877/// present in the source code.
2878///
2879/// \param Res the \c LookupResult structure that contains the name
2880/// that was present in the source code along with the name-lookup
2881/// criteria used to search for the name. On success, this structure
2882/// will contain the results of name lookup.
2883///
2884/// \param S the scope in which name lookup occurs.
2885///
2886/// \param SS the nested-name-specifier that precedes the name we're
2887/// looking for, if present.
2888///
2889/// \param MemberContext if non-NULL, the context in which to look for
2890/// a member access expression.
2891///
2892/// \param EnteringContext whether we're entering the context described by
2893/// the nested-name-specifier SS.
2894///
2895/// \param CTC The context in which typo correction occurs, which impacts the
2896/// set of keywords permitted.
2897///
2898/// \param OPT when non-NULL, the search for visible declarations will
2899/// also walk the protocols in the qualified interfaces of \p OPT.
2900///
2901/// \returns the corrected name if the typo was corrected, otherwise returns an
2902/// empty \c DeclarationName. When a typo was corrected, the result structure
2903/// may contain the results of name lookup for the correct name or it may be
2904/// empty.
2905DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2906                                  DeclContext *MemberContext,
2907                                  bool EnteringContext,
2908                                  CorrectTypoContext CTC,
2909                                  const ObjCObjectPointerType *OPT) {
2910  if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
2911    return DeclarationName();
2912
2913  // We only attempt to correct typos for identifiers.
2914  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2915  if (!Typo)
2916    return DeclarationName();
2917
2918  // If the scope specifier itself was invalid, don't try to correct
2919  // typos.
2920  if (SS && SS->isInvalid())
2921    return DeclarationName();
2922
2923  // Never try to correct typos during template deduction or
2924  // instantiation.
2925  if (!ActiveTemplateInstantiations.empty())
2926    return DeclarationName();
2927
2928  TypoCorrectionConsumer Consumer(Typo);
2929
2930  // Perform name lookup to find visible, similarly-named entities.
2931  bool IsUnqualifiedLookup = false;
2932  if (MemberContext) {
2933    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2934
2935    // Look in qualified interfaces.
2936    if (OPT) {
2937      for (ObjCObjectPointerType::qual_iterator
2938             I = OPT->qual_begin(), E = OPT->qual_end();
2939           I != E; ++I)
2940        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2941    }
2942  } else if (SS && SS->isSet()) {
2943    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2944    if (!DC)
2945      return DeclarationName();
2946
2947    // Provide a stop gap for files that are just seriously broken.  Trying
2948    // to correct all typos can turn into a HUGE performance penalty, causing
2949    // some files to take minutes to get rejected by the parser.
2950    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
2951      return DeclarationName();
2952    ++TyposCorrected;
2953
2954    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2955  } else {
2956    IsUnqualifiedLookup = true;
2957    UnqualifiedTyposCorrectedMap::iterator Cached
2958      = UnqualifiedTyposCorrected.find(Typo);
2959    if (Cached == UnqualifiedTyposCorrected.end()) {
2960      // Provide a stop gap for files that are just seriously broken.  Trying
2961      // to correct all typos can turn into a HUGE performance penalty, causing
2962      // some files to take minutes to get rejected by the parser.
2963      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
2964        return DeclarationName();
2965
2966      // For unqualified lookup, look through all of the names that we have
2967      // seen in this translation unit.
2968      for (IdentifierTable::iterator I = Context.Idents.begin(),
2969                                  IEnd = Context.Idents.end();
2970           I != IEnd; ++I)
2971        Consumer.FoundName(I->getKey());
2972
2973      // Walk through identifiers in external identifier sources.
2974      if (IdentifierInfoLookup *External
2975                              = Context.Idents.getExternalIdentifierLookup()) {
2976        IdentifierIterator *Iter = External->getIdentifiers();
2977        do {
2978          llvm::StringRef Name = Iter->Next();
2979          if (Name.empty())
2980            break;
2981
2982          Consumer.FoundName(Name);
2983        } while (true);
2984      }
2985    } else {
2986      // Use the cached value, unless it's a keyword. In the keyword case, we'll
2987      // end up adding the keyword below.
2988      if (Cached->second.first.empty())
2989        return DeclarationName();
2990
2991      if (!Cached->second.second)
2992        Consumer.FoundName(Cached->second.first);
2993    }
2994  }
2995
2996  // Add context-dependent keywords.
2997  bool WantTypeSpecifiers = false;
2998  bool WantExpressionKeywords = false;
2999  bool WantCXXNamedCasts = false;
3000  bool WantRemainingKeywords = false;
3001  switch (CTC) {
3002    case CTC_Unknown:
3003      WantTypeSpecifiers = true;
3004      WantExpressionKeywords = true;
3005      WantCXXNamedCasts = true;
3006      WantRemainingKeywords = true;
3007
3008      if (ObjCMethodDecl *Method = getCurMethodDecl())
3009        if (Method->getClassInterface() &&
3010            Method->getClassInterface()->getSuperClass())
3011          Consumer.addKeywordResult(Context, "super");
3012
3013      break;
3014
3015    case CTC_NoKeywords:
3016      break;
3017
3018    case CTC_Type:
3019      WantTypeSpecifiers = true;
3020      break;
3021
3022    case CTC_ObjCMessageReceiver:
3023      Consumer.addKeywordResult(Context, "super");
3024      // Fall through to handle message receivers like expressions.
3025
3026    case CTC_Expression:
3027      if (getLangOptions().CPlusPlus)
3028        WantTypeSpecifiers = true;
3029      WantExpressionKeywords = true;
3030      // Fall through to get C++ named casts.
3031
3032    case CTC_CXXCasts:
3033      WantCXXNamedCasts = true;
3034      break;
3035
3036    case CTC_ObjCPropertyLookup:
3037      // FIXME: Add "isa"?
3038      break;
3039
3040    case CTC_MemberLookup:
3041      if (getLangOptions().CPlusPlus)
3042        Consumer.addKeywordResult(Context, "template");
3043      break;
3044
3045    case CTC_ObjCIvarLookup:
3046      break;
3047  }
3048
3049  if (WantTypeSpecifiers) {
3050    // Add type-specifier keywords to the set of results.
3051    const char *CTypeSpecs[] = {
3052      "char", "const", "double", "enum", "float", "int", "long", "short",
3053      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
3054      "_Complex", "_Imaginary",
3055      // storage-specifiers as well
3056      "extern", "inline", "static", "typedef"
3057    };
3058
3059    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3060    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3061      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
3062
3063    if (getLangOptions().C99)
3064      Consumer.addKeywordResult(Context, "restrict");
3065    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
3066      Consumer.addKeywordResult(Context, "bool");
3067
3068    if (getLangOptions().CPlusPlus) {
3069      Consumer.addKeywordResult(Context, "class");
3070      Consumer.addKeywordResult(Context, "typename");
3071      Consumer.addKeywordResult(Context, "wchar_t");
3072
3073      if (getLangOptions().CPlusPlus0x) {
3074        Consumer.addKeywordResult(Context, "char16_t");
3075        Consumer.addKeywordResult(Context, "char32_t");
3076        Consumer.addKeywordResult(Context, "constexpr");
3077        Consumer.addKeywordResult(Context, "decltype");
3078        Consumer.addKeywordResult(Context, "thread_local");
3079      }
3080    }
3081
3082    if (getLangOptions().GNUMode)
3083      Consumer.addKeywordResult(Context, "typeof");
3084  }
3085
3086  if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
3087    Consumer.addKeywordResult(Context, "const_cast");
3088    Consumer.addKeywordResult(Context, "dynamic_cast");
3089    Consumer.addKeywordResult(Context, "reinterpret_cast");
3090    Consumer.addKeywordResult(Context, "static_cast");
3091  }
3092
3093  if (WantExpressionKeywords) {
3094    Consumer.addKeywordResult(Context, "sizeof");
3095    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
3096      Consumer.addKeywordResult(Context, "false");
3097      Consumer.addKeywordResult(Context, "true");
3098    }
3099
3100    if (getLangOptions().CPlusPlus) {
3101      const char *CXXExprs[] = {
3102        "delete", "new", "operator", "throw", "typeid"
3103      };
3104      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3105      for (unsigned I = 0; I != NumCXXExprs; ++I)
3106        Consumer.addKeywordResult(Context, CXXExprs[I]);
3107
3108      if (isa<CXXMethodDecl>(CurContext) &&
3109          cast<CXXMethodDecl>(CurContext)->isInstance())
3110        Consumer.addKeywordResult(Context, "this");
3111
3112      if (getLangOptions().CPlusPlus0x) {
3113        Consumer.addKeywordResult(Context, "alignof");
3114        Consumer.addKeywordResult(Context, "nullptr");
3115      }
3116    }
3117  }
3118
3119  if (WantRemainingKeywords) {
3120    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
3121      // Statements.
3122      const char *CStmts[] = {
3123        "do", "else", "for", "goto", "if", "return", "switch", "while" };
3124      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3125      for (unsigned I = 0; I != NumCStmts; ++I)
3126        Consumer.addKeywordResult(Context, CStmts[I]);
3127
3128      if (getLangOptions().CPlusPlus) {
3129        Consumer.addKeywordResult(Context, "catch");
3130        Consumer.addKeywordResult(Context, "try");
3131      }
3132
3133      if (S && S->getBreakParent())
3134        Consumer.addKeywordResult(Context, "break");
3135
3136      if (S && S->getContinueParent())
3137        Consumer.addKeywordResult(Context, "continue");
3138
3139      if (!getCurFunction()->SwitchStack.empty()) {
3140        Consumer.addKeywordResult(Context, "case");
3141        Consumer.addKeywordResult(Context, "default");
3142      }
3143    } else {
3144      if (getLangOptions().CPlusPlus) {
3145        Consumer.addKeywordResult(Context, "namespace");
3146        Consumer.addKeywordResult(Context, "template");
3147      }
3148
3149      if (S && S->isClassScope()) {
3150        Consumer.addKeywordResult(Context, "explicit");
3151        Consumer.addKeywordResult(Context, "friend");
3152        Consumer.addKeywordResult(Context, "mutable");
3153        Consumer.addKeywordResult(Context, "private");
3154        Consumer.addKeywordResult(Context, "protected");
3155        Consumer.addKeywordResult(Context, "public");
3156        Consumer.addKeywordResult(Context, "virtual");
3157      }
3158    }
3159
3160    if (getLangOptions().CPlusPlus) {
3161      Consumer.addKeywordResult(Context, "using");
3162
3163      if (getLangOptions().CPlusPlus0x)
3164        Consumer.addKeywordResult(Context, "static_assert");
3165    }
3166  }
3167
3168  // If we haven't found anything, we're done.
3169  if (Consumer.empty()) {
3170    // If this was an unqualified lookup, note that no correction was found.
3171    if (IsUnqualifiedLookup)
3172      (void)UnqualifiedTyposCorrected[Typo];
3173
3174    return DeclarationName();
3175  }
3176
3177  // Make sure that the user typed at least 3 characters for each correction
3178  // made. Otherwise, we don't even both looking at the results.
3179  unsigned ED = Consumer.getBestEditDistance();
3180  if (ED > 0 && Typo->getName().size() / ED < 3) {
3181    // If this was an unqualified lookup, note that no correction was found.
3182    if (IsUnqualifiedLookup)
3183      (void)UnqualifiedTyposCorrected[Typo];
3184
3185    return DeclarationName();
3186  }
3187
3188  // Weed out any names that could not be found by name lookup.
3189  bool LastLookupWasAccepted = false;
3190  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3191                                     IEnd = Consumer.end();
3192       I != IEnd; /* Increment in loop. */) {
3193    // Keywords are always found.
3194    if (I->second) {
3195      ++I;
3196      continue;
3197    }
3198
3199    // Perform name lookup on this name.
3200    IdentifierInfo *Name = &Context.Idents.get(I->getKey());
3201    LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3202                              EnteringContext, CTC);
3203
3204    switch (Res.getResultKind()) {
3205    case LookupResult::NotFound:
3206    case LookupResult::NotFoundInCurrentInstantiation:
3207    case LookupResult::Ambiguous:
3208      // We didn't find this name in our scope, or didn't like what we found;
3209      // ignore it.
3210      Res.suppressDiagnostics();
3211      {
3212        TypoCorrectionConsumer::iterator Next = I;
3213        ++Next;
3214        Consumer.erase(I);
3215        I = Next;
3216      }
3217      LastLookupWasAccepted = false;
3218      break;
3219
3220    case LookupResult::Found:
3221    case LookupResult::FoundOverloaded:
3222    case LookupResult::FoundUnresolvedValue:
3223      ++I;
3224      LastLookupWasAccepted = true;
3225      break;
3226    }
3227
3228    if (Res.isAmbiguous()) {
3229      // We don't deal with ambiguities.
3230      Res.suppressDiagnostics();
3231      Res.clear();
3232      return DeclarationName();
3233    }
3234  }
3235
3236  // If only a single name remains, return that result.
3237  if (Consumer.size() == 1) {
3238    IdentifierInfo *Name = &Context.Idents.get(Consumer.begin()->getKey());
3239    if (Consumer.begin()->second) {
3240      Res.suppressDiagnostics();
3241      Res.clear();
3242    } else if (!LastLookupWasAccepted) {
3243      // Perform name lookup on this name.
3244      LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3245                                EnteringContext, CTC);
3246    }
3247
3248    // Record the correction for unqualified lookup.
3249    if (IsUnqualifiedLookup)
3250      UnqualifiedTyposCorrected[Typo]
3251        = std::make_pair(Name->getName(), Consumer.begin()->second);
3252
3253    return &Context.Idents.get(Consumer.begin()->getKey());
3254  }
3255  else if (Consumer.size() > 1 && CTC == CTC_ObjCMessageReceiver
3256           && Consumer["super"]) {
3257    // Prefix 'super' when we're completing in a message-receiver
3258    // context.
3259    Res.suppressDiagnostics();
3260    Res.clear();
3261
3262    // Record the correction for unqualified lookup.
3263    if (IsUnqualifiedLookup)
3264      UnqualifiedTyposCorrected[Typo]
3265        = std::make_pair("super", Consumer.begin()->second);
3266
3267    return &Context.Idents.get("super");
3268  }
3269
3270  Res.suppressDiagnostics();
3271  Res.setLookupName(Typo);
3272  Res.clear();
3273  // Record the correction for unqualified lookup.
3274  if (IsUnqualifiedLookup)
3275    (void)UnqualifiedTyposCorrected[Typo];
3276
3277  return DeclarationName();
3278}
3279