SemaLookup.cpp revision f4bae14c1c2cb086d42aecf84c6779787c6c7d89
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/DeclSpec.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(*I, InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196// Retrieve the set of identifier namespaces that correspond to a
197// specific kind of name lookup.
198static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
199                               bool CPlusPlus,
200                               bool Redeclaration) {
201  unsigned IDNS = 0;
202  switch (NameKind) {
203  case Sema::LookupOrdinaryName:
204  case Sema::LookupRedeclarationWithLinkage:
205    IDNS = Decl::IDNS_Ordinary;
206    if (CPlusPlus) {
207      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
208      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
209    }
210    break;
211
212  case Sema::LookupOperatorName:
213    // Operator lookup is its own crazy thing;  it is not the same
214    // as (e.g.) looking up an operator name for redeclaration.
215    assert(!Redeclaration && "cannot do redeclaration operator lookup");
216    IDNS = Decl::IDNS_NonMemberOperator;
217    break;
218
219  case Sema::LookupTagName:
220    if (CPlusPlus) {
221      IDNS = Decl::IDNS_Type;
222
223      // When looking for a redeclaration of a tag name, we add:
224      // 1) TagFriend to find undeclared friend decls
225      // 2) Namespace because they can't "overload" with tag decls.
226      // 3) Tag because it includes class templates, which can't
227      //    "overload" with tag decls.
228      if (Redeclaration)
229        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
230    } else {
231      IDNS = Decl::IDNS_Tag;
232    }
233    break;
234
235  case Sema::LookupMemberName:
236    IDNS = Decl::IDNS_Member;
237    if (CPlusPlus)
238      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
239    break;
240
241  case Sema::LookupNestedNameSpecifierName:
242    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
243    break;
244
245  case Sema::LookupNamespaceName:
246    IDNS = Decl::IDNS_Namespace;
247    break;
248
249  case Sema::LookupUsingDeclName:
250    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
251         | Decl::IDNS_Member | Decl::IDNS_Using;
252    break;
253
254  case Sema::LookupObjCProtocolName:
255    IDNS = Decl::IDNS_ObjCProtocol;
256    break;
257
258  case Sema::LookupAnyName:
259    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
260      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
261      | Decl::IDNS_Type;
262    break;
263  }
264  return IDNS;
265}
266
267void LookupResult::configure() {
268  IDNS = getIDNS(LookupKind,
269                 SemaRef.getLangOptions().CPlusPlus,
270                 isForRedeclaration());
271
272  // If we're looking for one of the allocation or deallocation
273  // operators, make sure that the implicitly-declared new and delete
274  // operators can be found.
275  if (!isForRedeclaration()) {
276    switch (NameInfo.getName().getCXXOverloadedOperator()) {
277    case OO_New:
278    case OO_Delete:
279    case OO_Array_New:
280    case OO_Array_Delete:
281      SemaRef.DeclareGlobalNewDelete();
282      break;
283
284    default:
285      break;
286    }
287  }
288}
289
290// Necessary because CXXBasePaths is not complete in Sema.h
291void LookupResult::deletePaths(CXXBasePaths *Paths) {
292  delete Paths;
293}
294
295/// Resolves the result kind of this lookup.
296void LookupResult::resolveKind() {
297  unsigned N = Decls.size();
298
299  // Fast case: no possible ambiguity.
300  if (N == 0) {
301    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
302    return;
303  }
304
305  // If there's a single decl, we need to examine it to decide what
306  // kind of lookup this is.
307  if (N == 1) {
308    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
309    if (isa<FunctionTemplateDecl>(D))
310      ResultKind = FoundOverloaded;
311    else if (isa<UnresolvedUsingValueDecl>(D))
312      ResultKind = FoundUnresolvedValue;
313    return;
314  }
315
316  // Don't do any extra resolution if we've already resolved as ambiguous.
317  if (ResultKind == Ambiguous) return;
318
319  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
320  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
321
322  bool Ambiguous = false;
323  bool HasTag = false, HasFunction = false, HasNonFunction = false;
324  bool HasFunctionTemplate = false, HasUnresolved = false;
325
326  unsigned UniqueTagIndex = 0;
327
328  unsigned I = 0;
329  while (I < N) {
330    NamedDecl *D = Decls[I]->getUnderlyingDecl();
331    D = cast<NamedDecl>(D->getCanonicalDecl());
332
333    // Redeclarations of types via typedef can occur both within a scope
334    // and, through using declarations and directives, across scopes. There is
335    // no ambiguity if they all refer to the same type, so unique based on the
336    // canonical type.
337    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
338      if (!TD->getDeclContext()->isRecord()) {
339        QualType T = SemaRef.Context.getTypeDeclType(TD);
340        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
341          // The type is not unique; pull something off the back and continue
342          // at this index.
343          Decls[I] = Decls[--N];
344          continue;
345        }
346      }
347    }
348
349    if (!Unique.insert(D)) {
350      // If it's not unique, pull something off the back (and
351      // continue at this index).
352      Decls[I] = Decls[--N];
353      continue;
354    }
355
356    // Otherwise, do some decl type analysis and then continue.
357
358    if (isa<UnresolvedUsingValueDecl>(D)) {
359      HasUnresolved = true;
360    } else if (isa<TagDecl>(D)) {
361      if (HasTag)
362        Ambiguous = true;
363      UniqueTagIndex = I;
364      HasTag = true;
365    } else if (isa<FunctionTemplateDecl>(D)) {
366      HasFunction = true;
367      HasFunctionTemplate = true;
368    } else if (isa<FunctionDecl>(D)) {
369      HasFunction = true;
370    } else {
371      if (HasNonFunction)
372        Ambiguous = true;
373      HasNonFunction = true;
374    }
375    I++;
376  }
377
378  // C++ [basic.scope.hiding]p2:
379  //   A class name or enumeration name can be hidden by the name of
380  //   an object, function, or enumerator declared in the same
381  //   scope. If a class or enumeration name and an object, function,
382  //   or enumerator are declared in the same scope (in any order)
383  //   with the same name, the class or enumeration name is hidden
384  //   wherever the object, function, or enumerator name is visible.
385  // But it's still an error if there are distinct tag types found,
386  // even if they're not visible. (ref?)
387  if (HideTags && HasTag && !Ambiguous &&
388      (HasFunction || HasNonFunction || HasUnresolved))
389    Decls[UniqueTagIndex] = Decls[--N];
390
391  Decls.set_size(N);
392
393  if (HasNonFunction && (HasFunction || HasUnresolved))
394    Ambiguous = true;
395
396  if (Ambiguous)
397    setAmbiguous(LookupResult::AmbiguousReference);
398  else if (HasUnresolved)
399    ResultKind = LookupResult::FoundUnresolvedValue;
400  else if (N > 1 || HasFunctionTemplate)
401    ResultKind = LookupResult::FoundOverloaded;
402  else
403    ResultKind = LookupResult::Found;
404}
405
406void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
407  CXXBasePaths::const_paths_iterator I, E;
408  DeclContext::lookup_iterator DI, DE;
409  for (I = P.begin(), E = P.end(); I != E; ++I)
410    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
411      addDecl(*DI);
412}
413
414void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
415  Paths = new CXXBasePaths;
416  Paths->swap(P);
417  addDeclsFromBasePaths(*Paths);
418  resolveKind();
419  setAmbiguous(AmbiguousBaseSubobjects);
420}
421
422void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
423  Paths = new CXXBasePaths;
424  Paths->swap(P);
425  addDeclsFromBasePaths(*Paths);
426  resolveKind();
427  setAmbiguous(AmbiguousBaseSubobjectTypes);
428}
429
430void LookupResult::print(llvm::raw_ostream &Out) {
431  Out << Decls.size() << " result(s)";
432  if (isAmbiguous()) Out << ", ambiguous";
433  if (Paths) Out << ", base paths present";
434
435  for (iterator I = begin(), E = end(); I != E; ++I) {
436    Out << "\n";
437    (*I)->print(Out, 2);
438  }
439}
440
441/// \brief Lookup a builtin function, when name lookup would otherwise
442/// fail.
443static bool LookupBuiltin(Sema &S, LookupResult &R) {
444  Sema::LookupNameKind NameKind = R.getLookupKind();
445
446  // If we didn't find a use of this identifier, and if the identifier
447  // corresponds to a compiler builtin, create the decl object for the builtin
448  // now, injecting it into translation unit scope, and return it.
449  if (NameKind == Sema::LookupOrdinaryName ||
450      NameKind == Sema::LookupRedeclarationWithLinkage) {
451    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
452    if (II) {
453      // If this is a builtin on this (or all) targets, create the decl.
454      if (unsigned BuiltinID = II->getBuiltinID()) {
455        // In C++, we don't have any predefined library functions like
456        // 'malloc'. Instead, we'll just error.
457        if (S.getLangOptions().CPlusPlus &&
458            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
459          return false;
460
461        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
462                                             S.TUScope, R.isForRedeclaration(),
463                                             R.getNameLoc());
464        if (D)
465          R.addDecl(D);
466        return (D != NULL);
467      }
468    }
469  }
470
471  return false;
472}
473
474/// \brief Determine whether we can declare a special member function within
475/// the class at this point.
476static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
477                                            const CXXRecordDecl *Class) {
478  // Don't do it if the class is invalid.
479  if (Class->isInvalidDecl())
480    return false;
481
482  // We need to have a definition for the class.
483  if (!Class->getDefinition() || Class->isDependentContext())
484    return false;
485
486  // We can't be in the middle of defining the class.
487  if (const RecordType *RecordTy
488                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
489    return !RecordTy->isBeingDefined();
490
491  return false;
492}
493
494void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
495  if (!CanDeclareSpecialMemberFunction(Context, Class))
496    return;
497
498  // If the default constructor has not yet been declared, do so now.
499  if (!Class->hasDeclaredDefaultConstructor())
500    DeclareImplicitDefaultConstructor(Class);
501
502  // If the copy constructor has not yet been declared, do so now.
503  if (!Class->hasDeclaredCopyConstructor())
504    DeclareImplicitCopyConstructor(Class);
505
506  // If the copy assignment operator has not yet been declared, do so now.
507  if (!Class->hasDeclaredCopyAssignment())
508    DeclareImplicitCopyAssignment(Class);
509
510  // If the destructor has not yet been declared, do so now.
511  if (!Class->hasDeclaredDestructor())
512    DeclareImplicitDestructor(Class);
513}
514
515/// \brief Determine whether this is the name of an implicitly-declared
516/// special member function.
517static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
518  switch (Name.getNameKind()) {
519  case DeclarationName::CXXConstructorName:
520  case DeclarationName::CXXDestructorName:
521    return true;
522
523  case DeclarationName::CXXOperatorName:
524    return Name.getCXXOverloadedOperator() == OO_Equal;
525
526  default:
527    break;
528  }
529
530  return false;
531}
532
533/// \brief If there are any implicit member functions with the given name
534/// that need to be declared in the given declaration context, do so.
535static void DeclareImplicitMemberFunctionsWithName(Sema &S,
536                                                   DeclarationName Name,
537                                                   const DeclContext *DC) {
538  if (!DC)
539    return;
540
541  switch (Name.getNameKind()) {
542  case DeclarationName::CXXConstructorName:
543    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
544      if (Record->getDefinition() &&
545          CanDeclareSpecialMemberFunction(S.Context, Record)) {
546        if (!Record->hasDeclaredDefaultConstructor())
547          S.DeclareImplicitDefaultConstructor(
548                                           const_cast<CXXRecordDecl *>(Record));
549        if (!Record->hasDeclaredCopyConstructor())
550          S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
551      }
552    break;
553
554  case DeclarationName::CXXDestructorName:
555    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
556      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
557          CanDeclareSpecialMemberFunction(S.Context, Record))
558        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
559    break;
560
561  case DeclarationName::CXXOperatorName:
562    if (Name.getCXXOverloadedOperator() != OO_Equal)
563      break;
564
565    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
566      if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
567          CanDeclareSpecialMemberFunction(S.Context, Record))
568        S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
569    break;
570
571  default:
572    break;
573  }
574}
575
576// Adds all qualifying matches for a name within a decl context to the
577// given lookup result.  Returns true if any matches were found.
578static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
579  bool Found = false;
580
581  // Lazily declare C++ special member functions.
582  if (S.getLangOptions().CPlusPlus)
583    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
584
585  // Perform lookup into this declaration context.
586  DeclContext::lookup_const_iterator I, E;
587  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
588    NamedDecl *D = *I;
589    if (R.isAcceptableDecl(D)) {
590      R.addDecl(D);
591      Found = true;
592    }
593  }
594
595  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
596    return true;
597
598  if (R.getLookupName().getNameKind()
599        != DeclarationName::CXXConversionFunctionName ||
600      R.getLookupName().getCXXNameType()->isDependentType() ||
601      !isa<CXXRecordDecl>(DC))
602    return Found;
603
604  // C++ [temp.mem]p6:
605  //   A specialization of a conversion function template is not found by
606  //   name lookup. Instead, any conversion function templates visible in the
607  //   context of the use are considered. [...]
608  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
609  if (!Record->isDefinition())
610    return Found;
611
612  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
613  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
614         UEnd = Unresolved->end(); U != UEnd; ++U) {
615    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
616    if (!ConvTemplate)
617      continue;
618
619    // When we're performing lookup for the purposes of redeclaration, just
620    // add the conversion function template. When we deduce template
621    // arguments for specializations, we'll end up unifying the return
622    // type of the new declaration with the type of the function template.
623    if (R.isForRedeclaration()) {
624      R.addDecl(ConvTemplate);
625      Found = true;
626      continue;
627    }
628
629    // C++ [temp.mem]p6:
630    //   [...] For each such operator, if argument deduction succeeds
631    //   (14.9.2.3), the resulting specialization is used as if found by
632    //   name lookup.
633    //
634    // When referencing a conversion function for any purpose other than
635    // a redeclaration (such that we'll be building an expression with the
636    // result), perform template argument deduction and place the
637    // specialization into the result set. We do this to avoid forcing all
638    // callers to perform special deduction for conversion functions.
639    Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
640    FunctionDecl *Specialization = 0;
641
642    const FunctionProtoType *ConvProto
643      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
644    assert(ConvProto && "Nonsensical conversion function template type");
645
646    // Compute the type of the function that we would expect the conversion
647    // function to have, if it were to match the name given.
648    // FIXME: Calling convention!
649    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
650    QualType ExpectedType
651      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
652                                            0, 0, ConvProto->isVariadic(),
653                                            ConvProto->getTypeQuals(),
654                                            false, false, 0, 0,
655                                    ConvProtoInfo.withCallingConv(CC_Default));
656
657    // Perform template argument deduction against the type that we would
658    // expect the function to have.
659    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
660                                            Specialization, Info)
661          == Sema::TDK_Success) {
662      R.addDecl(Specialization);
663      Found = true;
664    }
665  }
666
667  return Found;
668}
669
670// Performs C++ unqualified lookup into the given file context.
671static bool
672CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
673                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
674
675  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
676
677  // Perform direct name lookup into the LookupCtx.
678  bool Found = LookupDirect(S, R, NS);
679
680  // Perform direct name lookup into the namespaces nominated by the
681  // using directives whose common ancestor is this namespace.
682  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
683  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
684
685  for (; UI != UEnd; ++UI)
686    if (LookupDirect(S, R, UI->getNominatedNamespace()))
687      Found = true;
688
689  R.resolveKind();
690
691  return Found;
692}
693
694static bool isNamespaceOrTranslationUnitScope(Scope *S) {
695  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
696    return Ctx->isFileContext();
697  return false;
698}
699
700// Find the next outer declaration context from this scope. This
701// routine actually returns the semantic outer context, which may
702// differ from the lexical context (encoded directly in the Scope
703// stack) when we are parsing a member of a class template. In this
704// case, the second element of the pair will be true, to indicate that
705// name lookup should continue searching in this semantic context when
706// it leaves the current template parameter scope.
707static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
708  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
709  DeclContext *Lexical = 0;
710  for (Scope *OuterS = S->getParent(); OuterS;
711       OuterS = OuterS->getParent()) {
712    if (OuterS->getEntity()) {
713      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
714      break;
715    }
716  }
717
718  // C++ [temp.local]p8:
719  //   In the definition of a member of a class template that appears
720  //   outside of the namespace containing the class template
721  //   definition, the name of a template-parameter hides the name of
722  //   a member of this namespace.
723  //
724  // Example:
725  //
726  //   namespace N {
727  //     class C { };
728  //
729  //     template<class T> class B {
730  //       void f(T);
731  //     };
732  //   }
733  //
734  //   template<class C> void N::B<C>::f(C) {
735  //     C b;  // C is the template parameter, not N::C
736  //   }
737  //
738  // In this example, the lexical context we return is the
739  // TranslationUnit, while the semantic context is the namespace N.
740  if (!Lexical || !DC || !S->getParent() ||
741      !S->getParent()->isTemplateParamScope())
742    return std::make_pair(Lexical, false);
743
744  // Find the outermost template parameter scope.
745  // For the example, this is the scope for the template parameters of
746  // template<class C>.
747  Scope *OutermostTemplateScope = S->getParent();
748  while (OutermostTemplateScope->getParent() &&
749         OutermostTemplateScope->getParent()->isTemplateParamScope())
750    OutermostTemplateScope = OutermostTemplateScope->getParent();
751
752  // Find the namespace context in which the original scope occurs. In
753  // the example, this is namespace N.
754  DeclContext *Semantic = DC;
755  while (!Semantic->isFileContext())
756    Semantic = Semantic->getParent();
757
758  // Find the declaration context just outside of the template
759  // parameter scope. This is the context in which the template is
760  // being lexically declaration (a namespace context). In the
761  // example, this is the global scope.
762  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
763      Lexical->Encloses(Semantic))
764    return std::make_pair(Semantic, true);
765
766  return std::make_pair(Lexical, false);
767}
768
769bool Sema::CppLookupName(LookupResult &R, Scope *S) {
770  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
771
772  DeclarationName Name = R.getLookupName();
773
774  // If this is the name of an implicitly-declared special member function,
775  // go through the scope stack to implicitly declare
776  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
777    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
778      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
779        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
780  }
781
782  // Implicitly declare member functions with the name we're looking for, if in
783  // fact we are in a scope where it matters.
784
785  Scope *Initial = S;
786  IdentifierResolver::iterator
787    I = IdResolver.begin(Name),
788    IEnd = IdResolver.end();
789
790  // First we lookup local scope.
791  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
792  // ...During unqualified name lookup (3.4.1), the names appear as if
793  // they were declared in the nearest enclosing namespace which contains
794  // both the using-directive and the nominated namespace.
795  // [Note: in this context, "contains" means "contains directly or
796  // indirectly".
797  //
798  // For example:
799  // namespace A { int i; }
800  // void foo() {
801  //   int i;
802  //   {
803  //     using namespace A;
804  //     ++i; // finds local 'i', A::i appears at global scope
805  //   }
806  // }
807  //
808  DeclContext *OutsideOfTemplateParamDC = 0;
809  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
810    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
811
812    // Check whether the IdResolver has anything in this scope.
813    bool Found = false;
814    for (; I != IEnd && S->isDeclScope(*I); ++I) {
815      if (R.isAcceptableDecl(*I)) {
816        Found = true;
817        R.addDecl(*I);
818      }
819    }
820    if (Found) {
821      R.resolveKind();
822      if (S->isClassScope())
823        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
824          R.setNamingClass(Record);
825      return true;
826    }
827
828    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
829        S->getParent() && !S->getParent()->isTemplateParamScope()) {
830      // We've just searched the last template parameter scope and
831      // found nothing, so look into the the contexts between the
832      // lexical and semantic declaration contexts returned by
833      // findOuterContext(). This implements the name lookup behavior
834      // of C++ [temp.local]p8.
835      Ctx = OutsideOfTemplateParamDC;
836      OutsideOfTemplateParamDC = 0;
837    }
838
839    if (Ctx) {
840      DeclContext *OuterCtx;
841      bool SearchAfterTemplateScope;
842      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
843      if (SearchAfterTemplateScope)
844        OutsideOfTemplateParamDC = OuterCtx;
845
846      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
847        // We do not directly look into transparent contexts, since
848        // those entities will be found in the nearest enclosing
849        // non-transparent context.
850        if (Ctx->isTransparentContext())
851          continue;
852
853        // We do not look directly into function or method contexts,
854        // since all of the local variables and parameters of the
855        // function/method are present within the Scope.
856        if (Ctx->isFunctionOrMethod()) {
857          // If we have an Objective-C instance method, look for ivars
858          // in the corresponding interface.
859          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
860            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
861              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
862                ObjCInterfaceDecl *ClassDeclared;
863                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
864                                                 Name.getAsIdentifierInfo(),
865                                                             ClassDeclared)) {
866                  if (R.isAcceptableDecl(Ivar)) {
867                    R.addDecl(Ivar);
868                    R.resolveKind();
869                    return true;
870                  }
871                }
872              }
873          }
874
875          continue;
876        }
877
878        // Perform qualified name lookup into this context.
879        // FIXME: In some cases, we know that every name that could be found by
880        // this qualified name lookup will also be on the identifier chain. For
881        // example, inside a class without any base classes, we never need to
882        // perform qualified lookup because all of the members are on top of the
883        // identifier chain.
884        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
885          return true;
886      }
887    }
888  }
889
890  // Stop if we ran out of scopes.
891  // FIXME:  This really, really shouldn't be happening.
892  if (!S) return false;
893
894  // Collect UsingDirectiveDecls in all scopes, and recursively all
895  // nominated namespaces by those using-directives.
896  //
897  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
898  // don't build it for each lookup!
899
900  UnqualUsingDirectiveSet UDirs;
901  UDirs.visitScopeChain(Initial, S);
902  UDirs.done();
903
904  // Lookup namespace scope, and global scope.
905  // Unqualified name lookup in C++ requires looking into scopes
906  // that aren't strictly lexical, and therefore we walk through the
907  // context as well as walking through the scopes.
908
909  for (; S; S = S->getParent()) {
910    // Check whether the IdResolver has anything in this scope.
911    bool Found = false;
912    for (; I != IEnd && S->isDeclScope(*I); ++I) {
913      if (R.isAcceptableDecl(*I)) {
914        // We found something.  Look for anything else in our scope
915        // with this same name and in an acceptable identifier
916        // namespace, so that we can construct an overload set if we
917        // need to.
918        Found = true;
919        R.addDecl(*I);
920      }
921    }
922
923    if (Found && S->isTemplateParamScope()) {
924      R.resolveKind();
925      return true;
926    }
927
928    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
929    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
930        S->getParent() && !S->getParent()->isTemplateParamScope()) {
931      // We've just searched the last template parameter scope and
932      // found nothing, so look into the the contexts between the
933      // lexical and semantic declaration contexts returned by
934      // findOuterContext(). This implements the name lookup behavior
935      // of C++ [temp.local]p8.
936      Ctx = OutsideOfTemplateParamDC;
937      OutsideOfTemplateParamDC = 0;
938    }
939
940    if (Ctx) {
941      DeclContext *OuterCtx;
942      bool SearchAfterTemplateScope;
943      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
944      if (SearchAfterTemplateScope)
945        OutsideOfTemplateParamDC = OuterCtx;
946
947      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
948        // We do not directly look into transparent contexts, since
949        // those entities will be found in the nearest enclosing
950        // non-transparent context.
951        if (Ctx->isTransparentContext())
952          continue;
953
954        // If we have a context, and it's not a context stashed in the
955        // template parameter scope for an out-of-line definition, also
956        // look into that context.
957        if (!(Found && S && S->isTemplateParamScope())) {
958          assert(Ctx->isFileContext() &&
959              "We should have been looking only at file context here already.");
960
961          // Look into context considering using-directives.
962          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
963            Found = true;
964        }
965
966        if (Found) {
967          R.resolveKind();
968          return true;
969        }
970
971        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
972          return false;
973      }
974    }
975
976    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
977      return false;
978  }
979
980  return !R.empty();
981}
982
983/// @brief Perform unqualified name lookup starting from a given
984/// scope.
985///
986/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
987/// used to find names within the current scope. For example, 'x' in
988/// @code
989/// int x;
990/// int f() {
991///   return x; // unqualified name look finds 'x' in the global scope
992/// }
993/// @endcode
994///
995/// Different lookup criteria can find different names. For example, a
996/// particular scope can have both a struct and a function of the same
997/// name, and each can be found by certain lookup criteria. For more
998/// information about lookup criteria, see the documentation for the
999/// class LookupCriteria.
1000///
1001/// @param S        The scope from which unqualified name lookup will
1002/// begin. If the lookup criteria permits, name lookup may also search
1003/// in the parent scopes.
1004///
1005/// @param Name     The name of the entity that we are searching for.
1006///
1007/// @param Loc      If provided, the source location where we're performing
1008/// name lookup. At present, this is only used to produce diagnostics when
1009/// C library functions (like "malloc") are implicitly declared.
1010///
1011/// @returns The result of name lookup, which includes zero or more
1012/// declarations and possibly additional information used to diagnose
1013/// ambiguities.
1014bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1015  DeclarationName Name = R.getLookupName();
1016  if (!Name) return false;
1017
1018  LookupNameKind NameKind = R.getLookupKind();
1019
1020  if (!getLangOptions().CPlusPlus) {
1021    // Unqualified name lookup in C/Objective-C is purely lexical, so
1022    // search in the declarations attached to the name.
1023
1024    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1025      // Find the nearest non-transparent declaration scope.
1026      while (!(S->getFlags() & Scope::DeclScope) ||
1027             (S->getEntity() &&
1028              static_cast<DeclContext *>(S->getEntity())
1029                ->isTransparentContext()))
1030        S = S->getParent();
1031    }
1032
1033    unsigned IDNS = R.getIdentifierNamespace();
1034
1035    // Scan up the scope chain looking for a decl that matches this
1036    // identifier that is in the appropriate namespace.  This search
1037    // should not take long, as shadowing of names is uncommon, and
1038    // deep shadowing is extremely uncommon.
1039    bool LeftStartingScope = false;
1040
1041    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1042                                   IEnd = IdResolver.end();
1043         I != IEnd; ++I)
1044      if ((*I)->isInIdentifierNamespace(IDNS)) {
1045        if (NameKind == LookupRedeclarationWithLinkage) {
1046          // Determine whether this (or a previous) declaration is
1047          // out-of-scope.
1048          if (!LeftStartingScope && !S->isDeclScope(*I))
1049            LeftStartingScope = true;
1050
1051          // If we found something outside of our starting scope that
1052          // does not have linkage, skip it.
1053          if (LeftStartingScope && !((*I)->hasLinkage()))
1054            continue;
1055        }
1056
1057        R.addDecl(*I);
1058
1059        if ((*I)->getAttr<OverloadableAttr>()) {
1060          // If this declaration has the "overloadable" attribute, we
1061          // might have a set of overloaded functions.
1062
1063          // Figure out what scope the identifier is in.
1064          while (!(S->getFlags() & Scope::DeclScope) ||
1065                 !S->isDeclScope(*I))
1066            S = S->getParent();
1067
1068          // Find the last declaration in this scope (with the same
1069          // name, naturally).
1070          IdentifierResolver::iterator LastI = I;
1071          for (++LastI; LastI != IEnd; ++LastI) {
1072            if (!S->isDeclScope(*LastI))
1073              break;
1074            R.addDecl(*LastI);
1075          }
1076        }
1077
1078        R.resolveKind();
1079
1080        return true;
1081      }
1082  } else {
1083    // Perform C++ unqualified name lookup.
1084    if (CppLookupName(R, S))
1085      return true;
1086  }
1087
1088  // If we didn't find a use of this identifier, and if the identifier
1089  // corresponds to a compiler builtin, create the decl object for the builtin
1090  // now, injecting it into translation unit scope, and return it.
1091  if (AllowBuiltinCreation)
1092    return LookupBuiltin(*this, R);
1093
1094  return false;
1095}
1096
1097/// @brief Perform qualified name lookup in the namespaces nominated by
1098/// using directives by the given context.
1099///
1100/// C++98 [namespace.qual]p2:
1101///   Given X::m (where X is a user-declared namespace), or given ::m
1102///   (where X is the global namespace), let S be the set of all
1103///   declarations of m in X and in the transitive closure of all
1104///   namespaces nominated by using-directives in X and its used
1105///   namespaces, except that using-directives are ignored in any
1106///   namespace, including X, directly containing one or more
1107///   declarations of m. No namespace is searched more than once in
1108///   the lookup of a name. If S is the empty set, the program is
1109///   ill-formed. Otherwise, if S has exactly one member, or if the
1110///   context of the reference is a using-declaration
1111///   (namespace.udecl), S is the required set of declarations of
1112///   m. Otherwise if the use of m is not one that allows a unique
1113///   declaration to be chosen from S, the program is ill-formed.
1114/// C++98 [namespace.qual]p5:
1115///   During the lookup of a qualified namespace member name, if the
1116///   lookup finds more than one declaration of the member, and if one
1117///   declaration introduces a class name or enumeration name and the
1118///   other declarations either introduce the same object, the same
1119///   enumerator or a set of functions, the non-type name hides the
1120///   class or enumeration name if and only if the declarations are
1121///   from the same namespace; otherwise (the declarations are from
1122///   different namespaces), the program is ill-formed.
1123static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1124                                                 DeclContext *StartDC) {
1125  assert(StartDC->isFileContext() && "start context is not a file context");
1126
1127  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1128  DeclContext::udir_iterator E = StartDC->using_directives_end();
1129
1130  if (I == E) return false;
1131
1132  // We have at least added all these contexts to the queue.
1133  llvm::DenseSet<DeclContext*> Visited;
1134  Visited.insert(StartDC);
1135
1136  // We have not yet looked into these namespaces, much less added
1137  // their "using-children" to the queue.
1138  llvm::SmallVector<NamespaceDecl*, 8> Queue;
1139
1140  // We have already looked into the initial namespace; seed the queue
1141  // with its using-children.
1142  for (; I != E; ++I) {
1143    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1144    if (Visited.insert(ND).second)
1145      Queue.push_back(ND);
1146  }
1147
1148  // The easiest way to implement the restriction in [namespace.qual]p5
1149  // is to check whether any of the individual results found a tag
1150  // and, if so, to declare an ambiguity if the final result is not
1151  // a tag.
1152  bool FoundTag = false;
1153  bool FoundNonTag = false;
1154
1155  LookupResult LocalR(LookupResult::Temporary, R);
1156
1157  bool Found = false;
1158  while (!Queue.empty()) {
1159    NamespaceDecl *ND = Queue.back();
1160    Queue.pop_back();
1161
1162    // We go through some convolutions here to avoid copying results
1163    // between LookupResults.
1164    bool UseLocal = !R.empty();
1165    LookupResult &DirectR = UseLocal ? LocalR : R;
1166    bool FoundDirect = LookupDirect(S, DirectR, ND);
1167
1168    if (FoundDirect) {
1169      // First do any local hiding.
1170      DirectR.resolveKind();
1171
1172      // If the local result is a tag, remember that.
1173      if (DirectR.isSingleTagDecl())
1174        FoundTag = true;
1175      else
1176        FoundNonTag = true;
1177
1178      // Append the local results to the total results if necessary.
1179      if (UseLocal) {
1180        R.addAllDecls(LocalR);
1181        LocalR.clear();
1182      }
1183    }
1184
1185    // If we find names in this namespace, ignore its using directives.
1186    if (FoundDirect) {
1187      Found = true;
1188      continue;
1189    }
1190
1191    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1192      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1193      if (Visited.insert(Nom).second)
1194        Queue.push_back(Nom);
1195    }
1196  }
1197
1198  if (Found) {
1199    if (FoundTag && FoundNonTag)
1200      R.setAmbiguousQualifiedTagHiding();
1201    else
1202      R.resolveKind();
1203  }
1204
1205  return Found;
1206}
1207
1208/// \brief Callback that looks for any member of a class with the given name.
1209static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1210                            CXXBasePath &Path,
1211                            void *Name) {
1212  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1213
1214  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1215  Path.Decls = BaseRecord->lookup(N);
1216  return Path.Decls.first != Path.Decls.second;
1217}
1218
1219/// \brief Perform qualified name lookup into a given context.
1220///
1221/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1222/// names when the context of those names is explicit specified, e.g.,
1223/// "std::vector" or "x->member", or as part of unqualified name lookup.
1224///
1225/// Different lookup criteria can find different names. For example, a
1226/// particular scope can have both a struct and a function of the same
1227/// name, and each can be found by certain lookup criteria. For more
1228/// information about lookup criteria, see the documentation for the
1229/// class LookupCriteria.
1230///
1231/// \param R captures both the lookup criteria and any lookup results found.
1232///
1233/// \param LookupCtx The context in which qualified name lookup will
1234/// search. If the lookup criteria permits, name lookup may also search
1235/// in the parent contexts or (for C++ classes) base classes.
1236///
1237/// \param InUnqualifiedLookup true if this is qualified name lookup that
1238/// occurs as part of unqualified name lookup.
1239///
1240/// \returns true if lookup succeeded, false if it failed.
1241bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1242                               bool InUnqualifiedLookup) {
1243  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1244
1245  if (!R.getLookupName())
1246    return false;
1247
1248  // Make sure that the declaration context is complete.
1249  assert((!isa<TagDecl>(LookupCtx) ||
1250          LookupCtx->isDependentContext() ||
1251          cast<TagDecl>(LookupCtx)->isDefinition() ||
1252          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1253            ->isBeingDefined()) &&
1254         "Declaration context must already be complete!");
1255
1256  // Perform qualified name lookup into the LookupCtx.
1257  if (LookupDirect(*this, R, LookupCtx)) {
1258    R.resolveKind();
1259    if (isa<CXXRecordDecl>(LookupCtx))
1260      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1261    return true;
1262  }
1263
1264  // Don't descend into implied contexts for redeclarations.
1265  // C++98 [namespace.qual]p6:
1266  //   In a declaration for a namespace member in which the
1267  //   declarator-id is a qualified-id, given that the qualified-id
1268  //   for the namespace member has the form
1269  //     nested-name-specifier unqualified-id
1270  //   the unqualified-id shall name a member of the namespace
1271  //   designated by the nested-name-specifier.
1272  // See also [class.mfct]p5 and [class.static.data]p2.
1273  if (R.isForRedeclaration())
1274    return false;
1275
1276  // If this is a namespace, look it up in the implied namespaces.
1277  if (LookupCtx->isFileContext())
1278    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1279
1280  // If this isn't a C++ class, we aren't allowed to look into base
1281  // classes, we're done.
1282  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1283  if (!LookupRec || !LookupRec->getDefinition())
1284    return false;
1285
1286  // If we're performing qualified name lookup into a dependent class,
1287  // then we are actually looking into a current instantiation. If we have any
1288  // dependent base classes, then we either have to delay lookup until
1289  // template instantiation time (at which point all bases will be available)
1290  // or we have to fail.
1291  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1292      LookupRec->hasAnyDependentBases()) {
1293    R.setNotFoundInCurrentInstantiation();
1294    return false;
1295  }
1296
1297  // Perform lookup into our base classes.
1298  CXXBasePaths Paths;
1299  Paths.setOrigin(LookupRec);
1300
1301  // Look for this member in our base classes
1302  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1303  switch (R.getLookupKind()) {
1304    case LookupOrdinaryName:
1305    case LookupMemberName:
1306    case LookupRedeclarationWithLinkage:
1307      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1308      break;
1309
1310    case LookupTagName:
1311      BaseCallback = &CXXRecordDecl::FindTagMember;
1312      break;
1313
1314    case LookupAnyName:
1315      BaseCallback = &LookupAnyMember;
1316      break;
1317
1318    case LookupUsingDeclName:
1319      // This lookup is for redeclarations only.
1320
1321    case LookupOperatorName:
1322    case LookupNamespaceName:
1323    case LookupObjCProtocolName:
1324      // These lookups will never find a member in a C++ class (or base class).
1325      return false;
1326
1327    case LookupNestedNameSpecifierName:
1328      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1329      break;
1330  }
1331
1332  if (!LookupRec->lookupInBases(BaseCallback,
1333                                R.getLookupName().getAsOpaquePtr(), Paths))
1334    return false;
1335
1336  R.setNamingClass(LookupRec);
1337
1338  // C++ [class.member.lookup]p2:
1339  //   [...] If the resulting set of declarations are not all from
1340  //   sub-objects of the same type, or the set has a nonstatic member
1341  //   and includes members from distinct sub-objects, there is an
1342  //   ambiguity and the program is ill-formed. Otherwise that set is
1343  //   the result of the lookup.
1344  // FIXME: support using declarations!
1345  QualType SubobjectType;
1346  int SubobjectNumber = 0;
1347  AccessSpecifier SubobjectAccess = AS_none;
1348  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1349       Path != PathEnd; ++Path) {
1350    const CXXBasePathElement &PathElement = Path->back();
1351
1352    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1353    // across all paths.
1354    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1355
1356    // Determine whether we're looking at a distinct sub-object or not.
1357    if (SubobjectType.isNull()) {
1358      // This is the first subobject we've looked at. Record its type.
1359      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1360      SubobjectNumber = PathElement.SubobjectNumber;
1361    } else if (SubobjectType
1362                 != Context.getCanonicalType(PathElement.Base->getType())) {
1363      // We found members of the given name in two subobjects of
1364      // different types. This lookup is ambiguous.
1365      R.setAmbiguousBaseSubobjectTypes(Paths);
1366      return true;
1367    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1368      // We have a different subobject of the same type.
1369
1370      // C++ [class.member.lookup]p5:
1371      //   A static member, a nested type or an enumerator defined in
1372      //   a base class T can unambiguously be found even if an object
1373      //   has more than one base class subobject of type T.
1374      Decl *FirstDecl = *Path->Decls.first;
1375      if (isa<VarDecl>(FirstDecl) ||
1376          isa<TypeDecl>(FirstDecl) ||
1377          isa<EnumConstantDecl>(FirstDecl))
1378        continue;
1379
1380      if (isa<CXXMethodDecl>(FirstDecl)) {
1381        // Determine whether all of the methods are static.
1382        bool AllMethodsAreStatic = true;
1383        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1384             Func != Path->Decls.second; ++Func) {
1385          if (!isa<CXXMethodDecl>(*Func)) {
1386            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1387            break;
1388          }
1389
1390          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1391            AllMethodsAreStatic = false;
1392            break;
1393          }
1394        }
1395
1396        if (AllMethodsAreStatic)
1397          continue;
1398      }
1399
1400      // We have found a nonstatic member name in multiple, distinct
1401      // subobjects. Name lookup is ambiguous.
1402      R.setAmbiguousBaseSubobjects(Paths);
1403      return true;
1404    }
1405  }
1406
1407  // Lookup in a base class succeeded; return these results.
1408
1409  DeclContext::lookup_iterator I, E;
1410  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1411    NamedDecl *D = *I;
1412    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1413                                                    D->getAccess());
1414    R.addDecl(D, AS);
1415  }
1416  R.resolveKind();
1417  return true;
1418}
1419
1420/// @brief Performs name lookup for a name that was parsed in the
1421/// source code, and may contain a C++ scope specifier.
1422///
1423/// This routine is a convenience routine meant to be called from
1424/// contexts that receive a name and an optional C++ scope specifier
1425/// (e.g., "N::M::x"). It will then perform either qualified or
1426/// unqualified name lookup (with LookupQualifiedName or LookupName,
1427/// respectively) on the given name and return those results.
1428///
1429/// @param S        The scope from which unqualified name lookup will
1430/// begin.
1431///
1432/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1433///
1434/// @param Name     The name of the entity that name lookup will
1435/// search for.
1436///
1437/// @param Loc      If provided, the source location where we're performing
1438/// name lookup. At present, this is only used to produce diagnostics when
1439/// C library functions (like "malloc") are implicitly declared.
1440///
1441/// @param EnteringContext Indicates whether we are going to enter the
1442/// context of the scope-specifier SS (if present).
1443///
1444/// @returns True if any decls were found (but possibly ambiguous)
1445bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1446                            bool AllowBuiltinCreation, bool EnteringContext) {
1447  if (SS && SS->isInvalid()) {
1448    // When the scope specifier is invalid, don't even look for
1449    // anything.
1450    return false;
1451  }
1452
1453  if (SS && SS->isSet()) {
1454    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1455      // We have resolved the scope specifier to a particular declaration
1456      // contex, and will perform name lookup in that context.
1457      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1458        return false;
1459
1460      R.setContextRange(SS->getRange());
1461
1462      return LookupQualifiedName(R, DC);
1463    }
1464
1465    // We could not resolve the scope specified to a specific declaration
1466    // context, which means that SS refers to an unknown specialization.
1467    // Name lookup can't find anything in this case.
1468    return false;
1469  }
1470
1471  // Perform unqualified name lookup starting in the given scope.
1472  return LookupName(R, S, AllowBuiltinCreation);
1473}
1474
1475
1476/// @brief Produce a diagnostic describing the ambiguity that resulted
1477/// from name lookup.
1478///
1479/// @param Result       The ambiguous name lookup result.
1480///
1481/// @param Name         The name of the entity that name lookup was
1482/// searching for.
1483///
1484/// @param NameLoc      The location of the name within the source code.
1485///
1486/// @param LookupRange  A source range that provides more
1487/// source-location information concerning the lookup itself. For
1488/// example, this range might highlight a nested-name-specifier that
1489/// precedes the name.
1490///
1491/// @returns true
1492bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1493  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1494
1495  DeclarationName Name = Result.getLookupName();
1496  SourceLocation NameLoc = Result.getNameLoc();
1497  SourceRange LookupRange = Result.getContextRange();
1498
1499  switch (Result.getAmbiguityKind()) {
1500  case LookupResult::AmbiguousBaseSubobjects: {
1501    CXXBasePaths *Paths = Result.getBasePaths();
1502    QualType SubobjectType = Paths->front().back().Base->getType();
1503    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1504      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1505      << LookupRange;
1506
1507    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1508    while (isa<CXXMethodDecl>(*Found) &&
1509           cast<CXXMethodDecl>(*Found)->isStatic())
1510      ++Found;
1511
1512    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1513
1514    return true;
1515  }
1516
1517  case LookupResult::AmbiguousBaseSubobjectTypes: {
1518    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1519      << Name << LookupRange;
1520
1521    CXXBasePaths *Paths = Result.getBasePaths();
1522    std::set<Decl *> DeclsPrinted;
1523    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1524                                      PathEnd = Paths->end();
1525         Path != PathEnd; ++Path) {
1526      Decl *D = *Path->Decls.first;
1527      if (DeclsPrinted.insert(D).second)
1528        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1529    }
1530
1531    return true;
1532  }
1533
1534  case LookupResult::AmbiguousTagHiding: {
1535    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1536
1537    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1538
1539    LookupResult::iterator DI, DE = Result.end();
1540    for (DI = Result.begin(); DI != DE; ++DI)
1541      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1542        TagDecls.insert(TD);
1543        Diag(TD->getLocation(), diag::note_hidden_tag);
1544      }
1545
1546    for (DI = Result.begin(); DI != DE; ++DI)
1547      if (!isa<TagDecl>(*DI))
1548        Diag((*DI)->getLocation(), diag::note_hiding_object);
1549
1550    // For recovery purposes, go ahead and implement the hiding.
1551    LookupResult::Filter F = Result.makeFilter();
1552    while (F.hasNext()) {
1553      if (TagDecls.count(F.next()))
1554        F.erase();
1555    }
1556    F.done();
1557
1558    return true;
1559  }
1560
1561  case LookupResult::AmbiguousReference: {
1562    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1563
1564    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1565    for (; DI != DE; ++DI)
1566      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1567
1568    return true;
1569  }
1570  }
1571
1572  llvm_unreachable("unknown ambiguity kind");
1573  return true;
1574}
1575
1576namespace {
1577  struct AssociatedLookup {
1578    AssociatedLookup(Sema &S,
1579                     Sema::AssociatedNamespaceSet &Namespaces,
1580                     Sema::AssociatedClassSet &Classes)
1581      : S(S), Namespaces(Namespaces), Classes(Classes) {
1582    }
1583
1584    Sema &S;
1585    Sema::AssociatedNamespaceSet &Namespaces;
1586    Sema::AssociatedClassSet &Classes;
1587  };
1588}
1589
1590static void
1591addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1592
1593static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1594                                      DeclContext *Ctx) {
1595  // Add the associated namespace for this class.
1596
1597  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1598  // be a locally scoped record.
1599
1600  while (Ctx->isRecord() || Ctx->isTransparentContext())
1601    Ctx = Ctx->getParent();
1602
1603  if (Ctx->isFileContext())
1604    Namespaces.insert(Ctx->getPrimaryContext());
1605}
1606
1607// \brief Add the associated classes and namespaces for argument-dependent
1608// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1609static void
1610addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1611                                  const TemplateArgument &Arg) {
1612  // C++ [basic.lookup.koenig]p2, last bullet:
1613  //   -- [...] ;
1614  switch (Arg.getKind()) {
1615    case TemplateArgument::Null:
1616      break;
1617
1618    case TemplateArgument::Type:
1619      // [...] the namespaces and classes associated with the types of the
1620      // template arguments provided for template type parameters (excluding
1621      // template template parameters)
1622      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1623      break;
1624
1625    case TemplateArgument::Template: {
1626      // [...] the namespaces in which any template template arguments are
1627      // defined; and the classes in which any member templates used as
1628      // template template arguments are defined.
1629      TemplateName Template = Arg.getAsTemplate();
1630      if (ClassTemplateDecl *ClassTemplate
1631                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1632        DeclContext *Ctx = ClassTemplate->getDeclContext();
1633        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1634          Result.Classes.insert(EnclosingClass);
1635        // Add the associated namespace for this class.
1636        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1637      }
1638      break;
1639    }
1640
1641    case TemplateArgument::Declaration:
1642    case TemplateArgument::Integral:
1643    case TemplateArgument::Expression:
1644      // [Note: non-type template arguments do not contribute to the set of
1645      //  associated namespaces. ]
1646      break;
1647
1648    case TemplateArgument::Pack:
1649      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1650                                        PEnd = Arg.pack_end();
1651           P != PEnd; ++P)
1652        addAssociatedClassesAndNamespaces(Result, *P);
1653      break;
1654  }
1655}
1656
1657// \brief Add the associated classes and namespaces for
1658// argument-dependent lookup with an argument of class type
1659// (C++ [basic.lookup.koenig]p2).
1660static void
1661addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1662                                  CXXRecordDecl *Class) {
1663
1664  // Just silently ignore anything whose name is __va_list_tag.
1665  if (Class->getDeclName() == Result.S.VAListTagName)
1666    return;
1667
1668  // C++ [basic.lookup.koenig]p2:
1669  //   [...]
1670  //     -- If T is a class type (including unions), its associated
1671  //        classes are: the class itself; the class of which it is a
1672  //        member, if any; and its direct and indirect base
1673  //        classes. Its associated namespaces are the namespaces in
1674  //        which its associated classes are defined.
1675
1676  // Add the class of which it is a member, if any.
1677  DeclContext *Ctx = Class->getDeclContext();
1678  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1679    Result.Classes.insert(EnclosingClass);
1680  // Add the associated namespace for this class.
1681  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1682
1683  // Add the class itself. If we've already seen this class, we don't
1684  // need to visit base classes.
1685  if (!Result.Classes.insert(Class))
1686    return;
1687
1688  // -- If T is a template-id, its associated namespaces and classes are
1689  //    the namespace in which the template is defined; for member
1690  //    templates, the member template’s class; the namespaces and classes
1691  //    associated with the types of the template arguments provided for
1692  //    template type parameters (excluding template template parameters); the
1693  //    namespaces in which any template template arguments are defined; and
1694  //    the classes in which any member templates used as template template
1695  //    arguments are defined. [Note: non-type template arguments do not
1696  //    contribute to the set of associated namespaces. ]
1697  if (ClassTemplateSpecializationDecl *Spec
1698        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1699    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1700    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1701      Result.Classes.insert(EnclosingClass);
1702    // Add the associated namespace for this class.
1703    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1704
1705    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1706    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1707      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1708  }
1709
1710  // Only recurse into base classes for complete types.
1711  if (!Class->hasDefinition()) {
1712    // FIXME: we might need to instantiate templates here
1713    return;
1714  }
1715
1716  // Add direct and indirect base classes along with their associated
1717  // namespaces.
1718  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1719  Bases.push_back(Class);
1720  while (!Bases.empty()) {
1721    // Pop this class off the stack.
1722    Class = Bases.back();
1723    Bases.pop_back();
1724
1725    // Visit the base classes.
1726    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1727                                         BaseEnd = Class->bases_end();
1728         Base != BaseEnd; ++Base) {
1729      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1730      // In dependent contexts, we do ADL twice, and the first time around,
1731      // the base type might be a dependent TemplateSpecializationType, or a
1732      // TemplateTypeParmType. If that happens, simply ignore it.
1733      // FIXME: If we want to support export, we probably need to add the
1734      // namespace of the template in a TemplateSpecializationType, or even
1735      // the classes and namespaces of known non-dependent arguments.
1736      if (!BaseType)
1737        continue;
1738      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1739      if (Result.Classes.insert(BaseDecl)) {
1740        // Find the associated namespace for this base class.
1741        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1742        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1743
1744        // Make sure we visit the bases of this base class.
1745        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1746          Bases.push_back(BaseDecl);
1747      }
1748    }
1749  }
1750}
1751
1752// \brief Add the associated classes and namespaces for
1753// argument-dependent lookup with an argument of type T
1754// (C++ [basic.lookup.koenig]p2).
1755static void
1756addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1757  // C++ [basic.lookup.koenig]p2:
1758  //
1759  //   For each argument type T in the function call, there is a set
1760  //   of zero or more associated namespaces and a set of zero or more
1761  //   associated classes to be considered. The sets of namespaces and
1762  //   classes is determined entirely by the types of the function
1763  //   arguments (and the namespace of any template template
1764  //   argument). Typedef names and using-declarations used to specify
1765  //   the types do not contribute to this set. The sets of namespaces
1766  //   and classes are determined in the following way:
1767
1768  llvm::SmallVector<const Type *, 16> Queue;
1769  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1770
1771  while (true) {
1772    switch (T->getTypeClass()) {
1773
1774#define TYPE(Class, Base)
1775#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1776#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1777#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1778#define ABSTRACT_TYPE(Class, Base)
1779#include "clang/AST/TypeNodes.def"
1780      // T is canonical.  We can also ignore dependent types because
1781      // we don't need to do ADL at the definition point, but if we
1782      // wanted to implement template export (or if we find some other
1783      // use for associated classes and namespaces...) this would be
1784      // wrong.
1785      break;
1786
1787    //    -- If T is a pointer to U or an array of U, its associated
1788    //       namespaces and classes are those associated with U.
1789    case Type::Pointer:
1790      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1791      continue;
1792    case Type::ConstantArray:
1793    case Type::IncompleteArray:
1794    case Type::VariableArray:
1795      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1796      continue;
1797
1798    //     -- If T is a fundamental type, its associated sets of
1799    //        namespaces and classes are both empty.
1800    case Type::Builtin:
1801      break;
1802
1803    //     -- If T is a class type (including unions), its associated
1804    //        classes are: the class itself; the class of which it is a
1805    //        member, if any; and its direct and indirect base
1806    //        classes. Its associated namespaces are the namespaces in
1807    //        which its associated classes are defined.
1808    case Type::Record: {
1809      CXXRecordDecl *Class
1810        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1811      addAssociatedClassesAndNamespaces(Result, Class);
1812      break;
1813    }
1814
1815    //     -- If T is an enumeration type, its associated namespace is
1816    //        the namespace in which it is defined. If it is class
1817    //        member, its associated class is the member’s class; else
1818    //        it has no associated class.
1819    case Type::Enum: {
1820      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1821
1822      DeclContext *Ctx = Enum->getDeclContext();
1823      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1824        Result.Classes.insert(EnclosingClass);
1825
1826      // Add the associated namespace for this class.
1827      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1828
1829      break;
1830    }
1831
1832    //     -- If T is a function type, its associated namespaces and
1833    //        classes are those associated with the function parameter
1834    //        types and those associated with the return type.
1835    case Type::FunctionProto: {
1836      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1837      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1838                                             ArgEnd = Proto->arg_type_end();
1839             Arg != ArgEnd; ++Arg)
1840        Queue.push_back(Arg->getTypePtr());
1841      // fallthrough
1842    }
1843    case Type::FunctionNoProto: {
1844      const FunctionType *FnType = cast<FunctionType>(T);
1845      T = FnType->getResultType().getTypePtr();
1846      continue;
1847    }
1848
1849    //     -- If T is a pointer to a member function of a class X, its
1850    //        associated namespaces and classes are those associated
1851    //        with the function parameter types and return type,
1852    //        together with those associated with X.
1853    //
1854    //     -- If T is a pointer to a data member of class X, its
1855    //        associated namespaces and classes are those associated
1856    //        with the member type together with those associated with
1857    //        X.
1858    case Type::MemberPointer: {
1859      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1860
1861      // Queue up the class type into which this points.
1862      Queue.push_back(MemberPtr->getClass());
1863
1864      // And directly continue with the pointee type.
1865      T = MemberPtr->getPointeeType().getTypePtr();
1866      continue;
1867    }
1868
1869    // As an extension, treat this like a normal pointer.
1870    case Type::BlockPointer:
1871      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1872      continue;
1873
1874    // References aren't covered by the standard, but that's such an
1875    // obvious defect that we cover them anyway.
1876    case Type::LValueReference:
1877    case Type::RValueReference:
1878      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1879      continue;
1880
1881    // These are fundamental types.
1882    case Type::Vector:
1883    case Type::ExtVector:
1884    case Type::Complex:
1885      break;
1886
1887    // These are ignored by ADL.
1888    case Type::ObjCObject:
1889    case Type::ObjCInterface:
1890    case Type::ObjCObjectPointer:
1891      break;
1892    }
1893
1894    if (Queue.empty()) break;
1895    T = Queue.back();
1896    Queue.pop_back();
1897  }
1898}
1899
1900/// \brief Find the associated classes and namespaces for
1901/// argument-dependent lookup for a call with the given set of
1902/// arguments.
1903///
1904/// This routine computes the sets of associated classes and associated
1905/// namespaces searched by argument-dependent lookup
1906/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1907void
1908Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1909                                 AssociatedNamespaceSet &AssociatedNamespaces,
1910                                 AssociatedClassSet &AssociatedClasses) {
1911  AssociatedNamespaces.clear();
1912  AssociatedClasses.clear();
1913
1914  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1915
1916  // C++ [basic.lookup.koenig]p2:
1917  //   For each argument type T in the function call, there is a set
1918  //   of zero or more associated namespaces and a set of zero or more
1919  //   associated classes to be considered. The sets of namespaces and
1920  //   classes is determined entirely by the types of the function
1921  //   arguments (and the namespace of any template template
1922  //   argument).
1923  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1924    Expr *Arg = Args[ArgIdx];
1925
1926    if (Arg->getType() != Context.OverloadTy) {
1927      addAssociatedClassesAndNamespaces(Result, Arg->getType());
1928      continue;
1929    }
1930
1931    // [...] In addition, if the argument is the name or address of a
1932    // set of overloaded functions and/or function templates, its
1933    // associated classes and namespaces are the union of those
1934    // associated with each of the members of the set: the namespace
1935    // in which the function or function template is defined and the
1936    // classes and namespaces associated with its (non-dependent)
1937    // parameter types and return type.
1938    Arg = Arg->IgnoreParens();
1939    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1940      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1941        Arg = unaryOp->getSubExpr();
1942
1943    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
1944    if (!ULE) continue;
1945
1946    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
1947           I != E; ++I) {
1948      // Look through any using declarations to find the underlying function.
1949      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1950
1951      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1952      if (!FDecl)
1953        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1954
1955      // Add the classes and namespaces associated with the parameter
1956      // types and return type of this function.
1957      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
1958    }
1959  }
1960}
1961
1962/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1963/// an acceptable non-member overloaded operator for a call whose
1964/// arguments have types T1 (and, if non-empty, T2). This routine
1965/// implements the check in C++ [over.match.oper]p3b2 concerning
1966/// enumeration types.
1967static bool
1968IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1969                                       QualType T1, QualType T2,
1970                                       ASTContext &Context) {
1971  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1972    return true;
1973
1974  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1975    return true;
1976
1977  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1978  if (Proto->getNumArgs() < 1)
1979    return false;
1980
1981  if (T1->isEnumeralType()) {
1982    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1983    if (Context.hasSameUnqualifiedType(T1, ArgType))
1984      return true;
1985  }
1986
1987  if (Proto->getNumArgs() < 2)
1988    return false;
1989
1990  if (!T2.isNull() && T2->isEnumeralType()) {
1991    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1992    if (Context.hasSameUnqualifiedType(T2, ArgType))
1993      return true;
1994  }
1995
1996  return false;
1997}
1998
1999NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2000                                  SourceLocation Loc,
2001                                  LookupNameKind NameKind,
2002                                  RedeclarationKind Redecl) {
2003  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2004  LookupName(R, S);
2005  return R.getAsSingle<NamedDecl>();
2006}
2007
2008/// \brief Find the protocol with the given name, if any.
2009ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2010                                       SourceLocation IdLoc) {
2011  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2012                             LookupObjCProtocolName);
2013  return cast_or_null<ObjCProtocolDecl>(D);
2014}
2015
2016void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2017                                        QualType T1, QualType T2,
2018                                        UnresolvedSetImpl &Functions) {
2019  // C++ [over.match.oper]p3:
2020  //     -- The set of non-member candidates is the result of the
2021  //        unqualified lookup of operator@ in the context of the
2022  //        expression according to the usual rules for name lookup in
2023  //        unqualified function calls (3.4.2) except that all member
2024  //        functions are ignored. However, if no operand has a class
2025  //        type, only those non-member functions in the lookup set
2026  //        that have a first parameter of type T1 or "reference to
2027  //        (possibly cv-qualified) T1", when T1 is an enumeration
2028  //        type, or (if there is a right operand) a second parameter
2029  //        of type T2 or "reference to (possibly cv-qualified) T2",
2030  //        when T2 is an enumeration type, are candidate functions.
2031  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2032  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2033  LookupName(Operators, S);
2034
2035  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2036
2037  if (Operators.empty())
2038    return;
2039
2040  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2041       Op != OpEnd; ++Op) {
2042    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2043    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2044      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2045        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2046    } else if (FunctionTemplateDecl *FunTmpl
2047                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2048      // FIXME: friend operators?
2049      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2050      // later?
2051      if (!FunTmpl->getDeclContext()->isRecord())
2052        Functions.addDecl(*Op, Op.getAccess());
2053    }
2054  }
2055}
2056
2057/// \brief Look up the constructors for the given class.
2058DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2059  // If the copy constructor has not yet been declared, do so now.
2060  if (CanDeclareSpecialMemberFunction(Context, Class)) {
2061    if (!Class->hasDeclaredDefaultConstructor())
2062      DeclareImplicitDefaultConstructor(Class);
2063    if (!Class->hasDeclaredCopyConstructor())
2064      DeclareImplicitCopyConstructor(Class);
2065  }
2066
2067  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2068  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2069  return Class->lookup(Name);
2070}
2071
2072/// \brief Look for the destructor of the given class.
2073///
2074/// During semantic analysis, this routine should be used in lieu of
2075/// CXXRecordDecl::getDestructor().
2076///
2077/// \returns The destructor for this class.
2078CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2079  // If the destructor has not yet been declared, do so now.
2080  if (CanDeclareSpecialMemberFunction(Context, Class) &&
2081      !Class->hasDeclaredDestructor())
2082    DeclareImplicitDestructor(Class);
2083
2084  return Class->getDestructor();
2085}
2086
2087void ADLResult::insert(NamedDecl *New) {
2088  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2089
2090  // If we haven't yet seen a decl for this key, or the last decl
2091  // was exactly this one, we're done.
2092  if (Old == 0 || Old == New) {
2093    Old = New;
2094    return;
2095  }
2096
2097  // Otherwise, decide which is a more recent redeclaration.
2098  FunctionDecl *OldFD, *NewFD;
2099  if (isa<FunctionTemplateDecl>(New)) {
2100    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2101    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2102  } else {
2103    OldFD = cast<FunctionDecl>(Old);
2104    NewFD = cast<FunctionDecl>(New);
2105  }
2106
2107  FunctionDecl *Cursor = NewFD;
2108  while (true) {
2109    Cursor = Cursor->getPreviousDeclaration();
2110
2111    // If we got to the end without finding OldFD, OldFD is the newer
2112    // declaration;  leave things as they are.
2113    if (!Cursor) return;
2114
2115    // If we do find OldFD, then NewFD is newer.
2116    if (Cursor == OldFD) break;
2117
2118    // Otherwise, keep looking.
2119  }
2120
2121  Old = New;
2122}
2123
2124void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2125                                   Expr **Args, unsigned NumArgs,
2126                                   ADLResult &Result) {
2127  // Find all of the associated namespaces and classes based on the
2128  // arguments we have.
2129  AssociatedNamespaceSet AssociatedNamespaces;
2130  AssociatedClassSet AssociatedClasses;
2131  FindAssociatedClassesAndNamespaces(Args, NumArgs,
2132                                     AssociatedNamespaces,
2133                                     AssociatedClasses);
2134
2135  QualType T1, T2;
2136  if (Operator) {
2137    T1 = Args[0]->getType();
2138    if (NumArgs >= 2)
2139      T2 = Args[1]->getType();
2140  }
2141
2142  // C++ [basic.lookup.argdep]p3:
2143  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2144  //   and let Y be the lookup set produced by argument dependent
2145  //   lookup (defined as follows). If X contains [...] then Y is
2146  //   empty. Otherwise Y is the set of declarations found in the
2147  //   namespaces associated with the argument types as described
2148  //   below. The set of declarations found by the lookup of the name
2149  //   is the union of X and Y.
2150  //
2151  // Here, we compute Y and add its members to the overloaded
2152  // candidate set.
2153  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2154                                     NSEnd = AssociatedNamespaces.end();
2155       NS != NSEnd; ++NS) {
2156    //   When considering an associated namespace, the lookup is the
2157    //   same as the lookup performed when the associated namespace is
2158    //   used as a qualifier (3.4.3.2) except that:
2159    //
2160    //     -- Any using-directives in the associated namespace are
2161    //        ignored.
2162    //
2163    //     -- Any namespace-scope friend functions declared in
2164    //        associated classes are visible within their respective
2165    //        namespaces even if they are not visible during an ordinary
2166    //        lookup (11.4).
2167    DeclContext::lookup_iterator I, E;
2168    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2169      NamedDecl *D = *I;
2170      // If the only declaration here is an ordinary friend, consider
2171      // it only if it was declared in an associated classes.
2172      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2173        DeclContext *LexDC = D->getLexicalDeclContext();
2174        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2175          continue;
2176      }
2177
2178      if (isa<UsingShadowDecl>(D))
2179        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2180
2181      if (isa<FunctionDecl>(D)) {
2182        if (Operator &&
2183            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2184                                                    T1, T2, Context))
2185          continue;
2186      } else if (!isa<FunctionTemplateDecl>(D))
2187        continue;
2188
2189      Result.insert(D);
2190    }
2191  }
2192}
2193
2194//----------------------------------------------------------------------------
2195// Search for all visible declarations.
2196//----------------------------------------------------------------------------
2197VisibleDeclConsumer::~VisibleDeclConsumer() { }
2198
2199namespace {
2200
2201class ShadowContextRAII;
2202
2203class VisibleDeclsRecord {
2204public:
2205  /// \brief An entry in the shadow map, which is optimized to store a
2206  /// single declaration (the common case) but can also store a list
2207  /// of declarations.
2208  class ShadowMapEntry {
2209    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2210
2211    /// \brief Contains either the solitary NamedDecl * or a vector
2212    /// of declarations.
2213    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2214
2215  public:
2216    ShadowMapEntry() : DeclOrVector() { }
2217
2218    void Add(NamedDecl *ND);
2219    void Destroy();
2220
2221    // Iteration.
2222    typedef NamedDecl **iterator;
2223    iterator begin();
2224    iterator end();
2225  };
2226
2227private:
2228  /// \brief A mapping from declaration names to the declarations that have
2229  /// this name within a particular scope.
2230  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2231
2232  /// \brief A list of shadow maps, which is used to model name hiding.
2233  std::list<ShadowMap> ShadowMaps;
2234
2235  /// \brief The declaration contexts we have already visited.
2236  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2237
2238  friend class ShadowContextRAII;
2239
2240public:
2241  /// \brief Determine whether we have already visited this context
2242  /// (and, if not, note that we are going to visit that context now).
2243  bool visitedContext(DeclContext *Ctx) {
2244    return !VisitedContexts.insert(Ctx);
2245  }
2246
2247  bool alreadyVisitedContext(DeclContext *Ctx) {
2248    return VisitedContexts.count(Ctx);
2249  }
2250
2251  /// \brief Determine whether the given declaration is hidden in the
2252  /// current scope.
2253  ///
2254  /// \returns the declaration that hides the given declaration, or
2255  /// NULL if no such declaration exists.
2256  NamedDecl *checkHidden(NamedDecl *ND);
2257
2258  /// \brief Add a declaration to the current shadow map.
2259  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2260};
2261
2262/// \brief RAII object that records when we've entered a shadow context.
2263class ShadowContextRAII {
2264  VisibleDeclsRecord &Visible;
2265
2266  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2267
2268public:
2269  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2270    Visible.ShadowMaps.push_back(ShadowMap());
2271  }
2272
2273  ~ShadowContextRAII() {
2274    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2275                          EEnd = Visible.ShadowMaps.back().end();
2276         E != EEnd;
2277         ++E)
2278      E->second.Destroy();
2279
2280    Visible.ShadowMaps.pop_back();
2281  }
2282};
2283
2284} // end anonymous namespace
2285
2286void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2287  if (DeclOrVector.isNull()) {
2288    // 0 - > 1 elements: just set the single element information.
2289    DeclOrVector = ND;
2290    return;
2291  }
2292
2293  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2294    // 1 -> 2 elements: create the vector of results and push in the
2295    // existing declaration.
2296    DeclVector *Vec = new DeclVector;
2297    Vec->push_back(PrevND);
2298    DeclOrVector = Vec;
2299  }
2300
2301  // Add the new element to the end of the vector.
2302  DeclOrVector.get<DeclVector*>()->push_back(ND);
2303}
2304
2305void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2306  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2307    delete Vec;
2308    DeclOrVector = ((NamedDecl *)0);
2309  }
2310}
2311
2312VisibleDeclsRecord::ShadowMapEntry::iterator
2313VisibleDeclsRecord::ShadowMapEntry::begin() {
2314  if (DeclOrVector.isNull())
2315    return 0;
2316
2317  if (DeclOrVector.dyn_cast<NamedDecl *>())
2318    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2319
2320  return DeclOrVector.get<DeclVector *>()->begin();
2321}
2322
2323VisibleDeclsRecord::ShadowMapEntry::iterator
2324VisibleDeclsRecord::ShadowMapEntry::end() {
2325  if (DeclOrVector.isNull())
2326    return 0;
2327
2328  if (DeclOrVector.dyn_cast<NamedDecl *>())
2329    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2330
2331  return DeclOrVector.get<DeclVector *>()->end();
2332}
2333
2334NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2335  // Look through using declarations.
2336  ND = ND->getUnderlyingDecl();
2337
2338  unsigned IDNS = ND->getIdentifierNamespace();
2339  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2340  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2341       SM != SMEnd; ++SM) {
2342    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2343    if (Pos == SM->end())
2344      continue;
2345
2346    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2347                               IEnd = Pos->second.end();
2348         I != IEnd; ++I) {
2349      // A tag declaration does not hide a non-tag declaration.
2350      if ((*I)->hasTagIdentifierNamespace() &&
2351          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2352                   Decl::IDNS_ObjCProtocol)))
2353        continue;
2354
2355      // Protocols are in distinct namespaces from everything else.
2356      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2357           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2358          (*I)->getIdentifierNamespace() != IDNS)
2359        continue;
2360
2361      // Functions and function templates in the same scope overload
2362      // rather than hide.  FIXME: Look for hiding based on function
2363      // signatures!
2364      if ((*I)->isFunctionOrFunctionTemplate() &&
2365          ND->isFunctionOrFunctionTemplate() &&
2366          SM == ShadowMaps.rbegin())
2367        continue;
2368
2369      // We've found a declaration that hides this one.
2370      return *I;
2371    }
2372  }
2373
2374  return 0;
2375}
2376
2377static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2378                               bool QualifiedNameLookup,
2379                               bool InBaseClass,
2380                               VisibleDeclConsumer &Consumer,
2381                               VisibleDeclsRecord &Visited) {
2382  if (!Ctx)
2383    return;
2384
2385  // Make sure we don't visit the same context twice.
2386  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2387    return;
2388
2389  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2390    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2391
2392  // Enumerate all of the results in this context.
2393  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2394       CurCtx = CurCtx->getNextContext()) {
2395    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2396                                 DEnd = CurCtx->decls_end();
2397         D != DEnd; ++D) {
2398      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2399        if (Result.isAcceptableDecl(ND)) {
2400          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2401          Visited.add(ND);
2402        }
2403
2404      // Visit transparent contexts inside this context.
2405      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2406        if (InnerCtx->isTransparentContext())
2407          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2408                             Consumer, Visited);
2409      }
2410    }
2411  }
2412
2413  // Traverse using directives for qualified name lookup.
2414  if (QualifiedNameLookup) {
2415    ShadowContextRAII Shadow(Visited);
2416    DeclContext::udir_iterator I, E;
2417    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2418      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2419                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2420    }
2421  }
2422
2423  // Traverse the contexts of inherited C++ classes.
2424  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2425    if (!Record->hasDefinition())
2426      return;
2427
2428    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2429                                         BEnd = Record->bases_end();
2430         B != BEnd; ++B) {
2431      QualType BaseType = B->getType();
2432
2433      // Don't look into dependent bases, because name lookup can't look
2434      // there anyway.
2435      if (BaseType->isDependentType())
2436        continue;
2437
2438      const RecordType *Record = BaseType->getAs<RecordType>();
2439      if (!Record)
2440        continue;
2441
2442      // FIXME: It would be nice to be able to determine whether referencing
2443      // a particular member would be ambiguous. For example, given
2444      //
2445      //   struct A { int member; };
2446      //   struct B { int member; };
2447      //   struct C : A, B { };
2448      //
2449      //   void f(C *c) { c->### }
2450      //
2451      // accessing 'member' would result in an ambiguity. However, we
2452      // could be smart enough to qualify the member with the base
2453      // class, e.g.,
2454      //
2455      //   c->B::member
2456      //
2457      // or
2458      //
2459      //   c->A::member
2460
2461      // Find results in this base class (and its bases).
2462      ShadowContextRAII Shadow(Visited);
2463      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2464                         true, Consumer, Visited);
2465    }
2466  }
2467
2468  // Traverse the contexts of Objective-C classes.
2469  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2470    // Traverse categories.
2471    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2472         Category; Category = Category->getNextClassCategory()) {
2473      ShadowContextRAII Shadow(Visited);
2474      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2475                         Consumer, Visited);
2476    }
2477
2478    // Traverse protocols.
2479    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2480         E = IFace->protocol_end(); I != E; ++I) {
2481      ShadowContextRAII Shadow(Visited);
2482      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2483                         Visited);
2484    }
2485
2486    // Traverse the superclass.
2487    if (IFace->getSuperClass()) {
2488      ShadowContextRAII Shadow(Visited);
2489      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2490                         true, Consumer, Visited);
2491    }
2492
2493    // If there is an implementation, traverse it. We do this to find
2494    // synthesized ivars.
2495    if (IFace->getImplementation()) {
2496      ShadowContextRAII Shadow(Visited);
2497      LookupVisibleDecls(IFace->getImplementation(), Result,
2498                         QualifiedNameLookup, true, Consumer, Visited);
2499    }
2500  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2501    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2502           E = Protocol->protocol_end(); I != E; ++I) {
2503      ShadowContextRAII Shadow(Visited);
2504      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2505                         Visited);
2506    }
2507  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2508    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2509           E = Category->protocol_end(); I != E; ++I) {
2510      ShadowContextRAII Shadow(Visited);
2511      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2512                         Visited);
2513    }
2514
2515    // If there is an implementation, traverse it.
2516    if (Category->getImplementation()) {
2517      ShadowContextRAII Shadow(Visited);
2518      LookupVisibleDecls(Category->getImplementation(), Result,
2519                         QualifiedNameLookup, true, Consumer, Visited);
2520    }
2521  }
2522}
2523
2524static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2525                               UnqualUsingDirectiveSet &UDirs,
2526                               VisibleDeclConsumer &Consumer,
2527                               VisibleDeclsRecord &Visited) {
2528  if (!S)
2529    return;
2530
2531  if (!S->getEntity() ||
2532      (!S->getParent() &&
2533       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2534      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2535    // Walk through the declarations in this Scope.
2536    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2537         D != DEnd; ++D) {
2538      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2539        if (Result.isAcceptableDecl(ND)) {
2540          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2541          Visited.add(ND);
2542        }
2543    }
2544  }
2545
2546  // FIXME: C++ [temp.local]p8
2547  DeclContext *Entity = 0;
2548  if (S->getEntity()) {
2549    // Look into this scope's declaration context, along with any of its
2550    // parent lookup contexts (e.g., enclosing classes), up to the point
2551    // where we hit the context stored in the next outer scope.
2552    Entity = (DeclContext *)S->getEntity();
2553    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2554
2555    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2556         Ctx = Ctx->getLookupParent()) {
2557      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2558        if (Method->isInstanceMethod()) {
2559          // For instance methods, look for ivars in the method's interface.
2560          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2561                                  Result.getNameLoc(), Sema::LookupMemberName);
2562          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2563            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2564                               /*InBaseClass=*/false, Consumer, Visited);
2565        }
2566
2567        // We've already performed all of the name lookup that we need
2568        // to for Objective-C methods; the next context will be the
2569        // outer scope.
2570        break;
2571      }
2572
2573      if (Ctx->isFunctionOrMethod())
2574        continue;
2575
2576      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2577                         /*InBaseClass=*/false, Consumer, Visited);
2578    }
2579  } else if (!S->getParent()) {
2580    // Look into the translation unit scope. We walk through the translation
2581    // unit's declaration context, because the Scope itself won't have all of
2582    // the declarations if we loaded a precompiled header.
2583    // FIXME: We would like the translation unit's Scope object to point to the
2584    // translation unit, so we don't need this special "if" branch. However,
2585    // doing so would force the normal C++ name-lookup code to look into the
2586    // translation unit decl when the IdentifierInfo chains would suffice.
2587    // Once we fix that problem (which is part of a more general "don't look
2588    // in DeclContexts unless we have to" optimization), we can eliminate this.
2589    Entity = Result.getSema().Context.getTranslationUnitDecl();
2590    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2591                       /*InBaseClass=*/false, Consumer, Visited);
2592  }
2593
2594  if (Entity) {
2595    // Lookup visible declarations in any namespaces found by using
2596    // directives.
2597    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2598    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2599    for (; UI != UEnd; ++UI)
2600      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2601                         Result, /*QualifiedNameLookup=*/false,
2602                         /*InBaseClass=*/false, Consumer, Visited);
2603  }
2604
2605  // Lookup names in the parent scope.
2606  ShadowContextRAII Shadow(Visited);
2607  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2608}
2609
2610void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2611                              VisibleDeclConsumer &Consumer,
2612                              bool IncludeGlobalScope) {
2613  // Determine the set of using directives available during
2614  // unqualified name lookup.
2615  Scope *Initial = S;
2616  UnqualUsingDirectiveSet UDirs;
2617  if (getLangOptions().CPlusPlus) {
2618    // Find the first namespace or translation-unit scope.
2619    while (S && !isNamespaceOrTranslationUnitScope(S))
2620      S = S->getParent();
2621
2622    UDirs.visitScopeChain(Initial, S);
2623  }
2624  UDirs.done();
2625
2626  // Look for visible declarations.
2627  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2628  VisibleDeclsRecord Visited;
2629  if (!IncludeGlobalScope)
2630    Visited.visitedContext(Context.getTranslationUnitDecl());
2631  ShadowContextRAII Shadow(Visited);
2632  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2633}
2634
2635void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2636                              VisibleDeclConsumer &Consumer,
2637                              bool IncludeGlobalScope) {
2638  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2639  VisibleDeclsRecord Visited;
2640  if (!IncludeGlobalScope)
2641    Visited.visitedContext(Context.getTranslationUnitDecl());
2642  ShadowContextRAII Shadow(Visited);
2643  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2644                       /*InBaseClass=*/false, Consumer, Visited);
2645}
2646
2647//----------------------------------------------------------------------------
2648// Typo correction
2649//----------------------------------------------------------------------------
2650
2651namespace {
2652class TypoCorrectionConsumer : public VisibleDeclConsumer {
2653  /// \brief The name written that is a typo in the source.
2654  llvm::StringRef Typo;
2655
2656  /// \brief The results found that have the smallest edit distance
2657  /// found (so far) with the typo name.
2658  llvm::SmallVector<NamedDecl *, 4> BestResults;
2659
2660  /// \brief The keywords that have the smallest edit distance.
2661  llvm::SmallVector<IdentifierInfo *, 4> BestKeywords;
2662
2663  /// \brief The best edit distance found so far.
2664  unsigned BestEditDistance;
2665
2666public:
2667  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2668    : Typo(Typo->getName()) { }
2669
2670  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2671  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2672
2673  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2674  iterator begin() const { return BestResults.begin(); }
2675  iterator end() const { return BestResults.end(); }
2676  void clear_decls() { BestResults.clear(); }
2677
2678  bool empty() const { return BestResults.empty() && BestKeywords.empty(); }
2679
2680  typedef llvm::SmallVector<IdentifierInfo *, 4>::const_iterator
2681    keyword_iterator;
2682  keyword_iterator keyword_begin() const { return BestKeywords.begin(); }
2683  keyword_iterator keyword_end() const { return BestKeywords.end(); }
2684  bool keyword_empty() const { return BestKeywords.empty(); }
2685  unsigned keyword_size() const { return BestKeywords.size(); }
2686
2687  unsigned getBestEditDistance() const { return BestEditDistance; }
2688};
2689
2690}
2691
2692void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2693                                       bool InBaseClass) {
2694  // Don't consider hidden names for typo correction.
2695  if (Hiding)
2696    return;
2697
2698  // Only consider entities with identifiers for names, ignoring
2699  // special names (constructors, overloaded operators, selectors,
2700  // etc.).
2701  IdentifierInfo *Name = ND->getIdentifier();
2702  if (!Name)
2703    return;
2704
2705  // Compute the edit distance between the typo and the name of this
2706  // entity. If this edit distance is not worse than the best edit
2707  // distance we've seen so far, add it to the list of results.
2708  unsigned ED = Typo.edit_distance(Name->getName());
2709  if (!BestResults.empty() || !BestKeywords.empty()) {
2710    if (ED < BestEditDistance) {
2711      // This result is better than any we've seen before; clear out
2712      // the previous results.
2713      BestResults.clear();
2714      BestKeywords.clear();
2715      BestEditDistance = ED;
2716    } else if (ED > BestEditDistance) {
2717      // This result is worse than the best results we've seen so far;
2718      // ignore it.
2719      return;
2720    }
2721  } else
2722    BestEditDistance = ED;
2723
2724  BestResults.push_back(ND);
2725}
2726
2727void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2728                                              llvm::StringRef Keyword) {
2729  // Compute the edit distance between the typo and this keyword.
2730  // If this edit distance is not worse than the best edit
2731  // distance we've seen so far, add it to the list of results.
2732  unsigned ED = Typo.edit_distance(Keyword);
2733  if (!BestResults.empty() || !BestKeywords.empty()) {
2734    if (ED < BestEditDistance) {
2735      BestResults.clear();
2736      BestKeywords.clear();
2737      BestEditDistance = ED;
2738    } else if (ED > BestEditDistance) {
2739      // This result is worse than the best results we've seen so far;
2740      // ignore it.
2741      return;
2742    }
2743  } else
2744    BestEditDistance = ED;
2745
2746  BestKeywords.push_back(&Context.Idents.get(Keyword));
2747}
2748
2749/// \brief Try to "correct" a typo in the source code by finding
2750/// visible declarations whose names are similar to the name that was
2751/// present in the source code.
2752///
2753/// \param Res the \c LookupResult structure that contains the name
2754/// that was present in the source code along with the name-lookup
2755/// criteria used to search for the name. On success, this structure
2756/// will contain the results of name lookup.
2757///
2758/// \param S the scope in which name lookup occurs.
2759///
2760/// \param SS the nested-name-specifier that precedes the name we're
2761/// looking for, if present.
2762///
2763/// \param MemberContext if non-NULL, the context in which to look for
2764/// a member access expression.
2765///
2766/// \param EnteringContext whether we're entering the context described by
2767/// the nested-name-specifier SS.
2768///
2769/// \param CTC The context in which typo correction occurs, which impacts the
2770/// set of keywords permitted.
2771///
2772/// \param OPT when non-NULL, the search for visible declarations will
2773/// also walk the protocols in the qualified interfaces of \p OPT.
2774///
2775/// \returns the corrected name if the typo was corrected, otherwise returns an
2776/// empty \c DeclarationName. When a typo was corrected, the result structure
2777/// may contain the results of name lookup for the correct name or it may be
2778/// empty.
2779DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2780                                  DeclContext *MemberContext,
2781                                  bool EnteringContext,
2782                                  CorrectTypoContext CTC,
2783                                  const ObjCObjectPointerType *OPT) {
2784  if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
2785    return DeclarationName();
2786
2787  // Provide a stop gap for files that are just seriously broken.  Trying
2788  // to correct all typos can turn into a HUGE performance penalty, causing
2789  // some files to take minutes to get rejected by the parser.
2790  // FIXME: Is this the right solution?
2791  if (TyposCorrected == 20)
2792    return DeclarationName();
2793  ++TyposCorrected;
2794
2795  // We only attempt to correct typos for identifiers.
2796  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2797  if (!Typo)
2798    return DeclarationName();
2799
2800  // If the scope specifier itself was invalid, don't try to correct
2801  // typos.
2802  if (SS && SS->isInvalid())
2803    return DeclarationName();
2804
2805  // Never try to correct typos during template deduction or
2806  // instantiation.
2807  if (!ActiveTemplateInstantiations.empty())
2808    return DeclarationName();
2809
2810  TypoCorrectionConsumer Consumer(Typo);
2811
2812  // Perform name lookup to find visible, similarly-named entities.
2813  if (MemberContext) {
2814    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2815
2816    // Look in qualified interfaces.
2817    if (OPT) {
2818      for (ObjCObjectPointerType::qual_iterator
2819             I = OPT->qual_begin(), E = OPT->qual_end();
2820           I != E; ++I)
2821        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2822    }
2823  } else if (SS && SS->isSet()) {
2824    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2825    if (!DC)
2826      return DeclarationName();
2827
2828    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2829  } else {
2830    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2831  }
2832
2833  // Add context-dependent keywords.
2834  bool WantTypeSpecifiers = false;
2835  bool WantExpressionKeywords = false;
2836  bool WantCXXNamedCasts = false;
2837  bool WantRemainingKeywords = false;
2838  switch (CTC) {
2839    case CTC_Unknown:
2840      WantTypeSpecifiers = true;
2841      WantExpressionKeywords = true;
2842      WantCXXNamedCasts = true;
2843      WantRemainingKeywords = true;
2844
2845      if (ObjCMethodDecl *Method = getCurMethodDecl())
2846        if (Method->getClassInterface() &&
2847            Method->getClassInterface()->getSuperClass())
2848          Consumer.addKeywordResult(Context, "super");
2849
2850      break;
2851
2852    case CTC_NoKeywords:
2853      break;
2854
2855    case CTC_Type:
2856      WantTypeSpecifiers = true;
2857      break;
2858
2859    case CTC_ObjCMessageReceiver:
2860      Consumer.addKeywordResult(Context, "super");
2861      // Fall through to handle message receivers like expressions.
2862
2863    case CTC_Expression:
2864      if (getLangOptions().CPlusPlus)
2865        WantTypeSpecifiers = true;
2866      WantExpressionKeywords = true;
2867      // Fall through to get C++ named casts.
2868
2869    case CTC_CXXCasts:
2870      WantCXXNamedCasts = true;
2871      break;
2872
2873    case CTC_MemberLookup:
2874      if (getLangOptions().CPlusPlus)
2875        Consumer.addKeywordResult(Context, "template");
2876      break;
2877  }
2878
2879  if (WantTypeSpecifiers) {
2880    // Add type-specifier keywords to the set of results.
2881    const char *CTypeSpecs[] = {
2882      "char", "const", "double", "enum", "float", "int", "long", "short",
2883      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
2884      "_Complex", "_Imaginary",
2885      // storage-specifiers as well
2886      "extern", "inline", "static", "typedef"
2887    };
2888
2889    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
2890    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
2891      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
2892
2893    if (getLangOptions().C99)
2894      Consumer.addKeywordResult(Context, "restrict");
2895    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
2896      Consumer.addKeywordResult(Context, "bool");
2897
2898    if (getLangOptions().CPlusPlus) {
2899      Consumer.addKeywordResult(Context, "class");
2900      Consumer.addKeywordResult(Context, "typename");
2901      Consumer.addKeywordResult(Context, "wchar_t");
2902
2903      if (getLangOptions().CPlusPlus0x) {
2904        Consumer.addKeywordResult(Context, "char16_t");
2905        Consumer.addKeywordResult(Context, "char32_t");
2906        Consumer.addKeywordResult(Context, "constexpr");
2907        Consumer.addKeywordResult(Context, "decltype");
2908        Consumer.addKeywordResult(Context, "thread_local");
2909      }
2910    }
2911
2912    if (getLangOptions().GNUMode)
2913      Consumer.addKeywordResult(Context, "typeof");
2914  }
2915
2916  if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
2917    Consumer.addKeywordResult(Context, "const_cast");
2918    Consumer.addKeywordResult(Context, "dynamic_cast");
2919    Consumer.addKeywordResult(Context, "reinterpret_cast");
2920    Consumer.addKeywordResult(Context, "static_cast");
2921  }
2922
2923  if (WantExpressionKeywords) {
2924    Consumer.addKeywordResult(Context, "sizeof");
2925    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
2926      Consumer.addKeywordResult(Context, "false");
2927      Consumer.addKeywordResult(Context, "true");
2928    }
2929
2930    if (getLangOptions().CPlusPlus) {
2931      const char *CXXExprs[] = {
2932        "delete", "new", "operator", "throw", "typeid"
2933      };
2934      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
2935      for (unsigned I = 0; I != NumCXXExprs; ++I)
2936        Consumer.addKeywordResult(Context, CXXExprs[I]);
2937
2938      if (isa<CXXMethodDecl>(CurContext) &&
2939          cast<CXXMethodDecl>(CurContext)->isInstance())
2940        Consumer.addKeywordResult(Context, "this");
2941
2942      if (getLangOptions().CPlusPlus0x) {
2943        Consumer.addKeywordResult(Context, "alignof");
2944        Consumer.addKeywordResult(Context, "nullptr");
2945      }
2946    }
2947  }
2948
2949  if (WantRemainingKeywords) {
2950    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
2951      // Statements.
2952      const char *CStmts[] = {
2953        "do", "else", "for", "goto", "if", "return", "switch", "while" };
2954      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
2955      for (unsigned I = 0; I != NumCStmts; ++I)
2956        Consumer.addKeywordResult(Context, CStmts[I]);
2957
2958      if (getLangOptions().CPlusPlus) {
2959        Consumer.addKeywordResult(Context, "catch");
2960        Consumer.addKeywordResult(Context, "try");
2961      }
2962
2963      if (S && S->getBreakParent())
2964        Consumer.addKeywordResult(Context, "break");
2965
2966      if (S && S->getContinueParent())
2967        Consumer.addKeywordResult(Context, "continue");
2968
2969      if (!getSwitchStack().empty()) {
2970        Consumer.addKeywordResult(Context, "case");
2971        Consumer.addKeywordResult(Context, "default");
2972      }
2973    } else {
2974      if (getLangOptions().CPlusPlus) {
2975        Consumer.addKeywordResult(Context, "namespace");
2976        Consumer.addKeywordResult(Context, "template");
2977      }
2978
2979      if (S && S->isClassScope()) {
2980        Consumer.addKeywordResult(Context, "explicit");
2981        Consumer.addKeywordResult(Context, "friend");
2982        Consumer.addKeywordResult(Context, "mutable");
2983        Consumer.addKeywordResult(Context, "private");
2984        Consumer.addKeywordResult(Context, "protected");
2985        Consumer.addKeywordResult(Context, "public");
2986        Consumer.addKeywordResult(Context, "virtual");
2987      }
2988    }
2989
2990    if (getLangOptions().CPlusPlus) {
2991      Consumer.addKeywordResult(Context, "using");
2992
2993      if (getLangOptions().CPlusPlus0x)
2994        Consumer.addKeywordResult(Context, "static_assert");
2995    }
2996  }
2997
2998  // If we haven't found anything, we're done.
2999  if (Consumer.empty())
3000    return DeclarationName();
3001
3002  // Only allow a single, closest name in the result set (it's okay to
3003  // have overloads of that name, though).
3004  DeclarationName BestName;
3005  NamedDecl *BestIvarOrPropertyDecl = 0;
3006  bool FoundIvarOrPropertyDecl = false;
3007
3008  // Check all of the declaration results to find the best name so far.
3009  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3010                                     IEnd = Consumer.end();
3011       I != IEnd; ++I) {
3012    if (!BestName)
3013      BestName = (*I)->getDeclName();
3014    else if (BestName != (*I)->getDeclName())
3015      return DeclarationName();
3016
3017    // \brief Keep track of either an Objective-C ivar or a property, but not
3018    // both.
3019    if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) {
3020      if (FoundIvarOrPropertyDecl)
3021        BestIvarOrPropertyDecl = 0;
3022      else {
3023        BestIvarOrPropertyDecl = *I;
3024        FoundIvarOrPropertyDecl = true;
3025      }
3026    }
3027  }
3028
3029  // Now check all of the keyword results to find the best name.
3030  switch (Consumer.keyword_size()) {
3031    case 0:
3032      // No keywords matched.
3033      break;
3034
3035    case 1:
3036      // If we already have a name
3037      if (!BestName) {
3038        // We did not have anything previously,
3039        BestName = *Consumer.keyword_begin();
3040      } else if (BestName.getAsIdentifierInfo() == *Consumer.keyword_begin()) {
3041        // We have a declaration with the same name as a context-sensitive
3042        // keyword. The keyword takes precedence.
3043        BestIvarOrPropertyDecl = 0;
3044        FoundIvarOrPropertyDecl = false;
3045        Consumer.clear_decls();
3046      } else if (CTC == CTC_ObjCMessageReceiver &&
3047                 (*Consumer.keyword_begin())->isStr("super")) {
3048        // In an Objective-C message send, give the "super" keyword a slight
3049        // edge over entities not in function or method scope.
3050        for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3051                                           IEnd = Consumer.end();
3052             I != IEnd; ++I) {
3053          if ((*I)->getDeclName() == BestName) {
3054            if ((*I)->getDeclContext()->isFunctionOrMethod())
3055              return DeclarationName();
3056          }
3057        }
3058
3059        // Everything found was outside a function or method; the 'super'
3060        // keyword takes precedence.
3061        BestIvarOrPropertyDecl = 0;
3062        FoundIvarOrPropertyDecl = false;
3063        Consumer.clear_decls();
3064        BestName = *Consumer.keyword_begin();
3065      } else {
3066        // Name collision; we will not correct typos.
3067        return DeclarationName();
3068      }
3069      break;
3070
3071    default:
3072      // Name collision; we will not correct typos.
3073      return DeclarationName();
3074  }
3075
3076  // BestName is the closest viable name to what the user
3077  // typed. However, to make sure that we don't pick something that's
3078  // way off, make sure that the user typed at least 3 characters for
3079  // each correction.
3080  unsigned ED = Consumer.getBestEditDistance();
3081  if (ED == 0 || !BestName.getAsIdentifierInfo() ||
3082      (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
3083    return DeclarationName();
3084
3085  // Perform name lookup again with the name we chose, and declare
3086  // success if we found something that was not ambiguous.
3087  Res.clear();
3088  Res.setLookupName(BestName);
3089
3090  // If we found an ivar or property, add that result; no further
3091  // lookup is required.
3092  if (BestIvarOrPropertyDecl)
3093    Res.addDecl(BestIvarOrPropertyDecl);
3094  // If we're looking into the context of a member, perform qualified
3095  // name lookup on the best name.
3096  else if (!Consumer.keyword_empty()) {
3097    // The best match was a keyword. Return it.
3098    return BestName;
3099  } else if (MemberContext)
3100    LookupQualifiedName(Res, MemberContext);
3101  // Perform lookup as if we had just parsed the best name.
3102  else
3103    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3104                     EnteringContext);
3105
3106  if (Res.isAmbiguous()) {
3107    Res.suppressDiagnostics();
3108    return DeclarationName();
3109  }
3110
3111  if (Res.getResultKind() != LookupResult::NotFound)
3112    return BestName;
3113
3114  return DeclarationName();
3115}
3116