SemaLookup.cpp revision f5de0a3cbaa216daf2ea7e42611bbd1ebad42fa7
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include <set>
29#include <vector>
30#include <iterator>
31#include <utility>
32#include <algorithm>
33
34using namespace clang;
35
36typedef llvm::SmallVector<UsingDirectiveDecl*, 4> UsingDirectivesTy;
37typedef llvm::DenseSet<NamespaceDecl*> NamespaceSet;
38typedef llvm::SmallVector<Sema::LookupResult, 3> LookupResultsTy;
39
40/// UsingDirAncestorCompare - Implements strict weak ordering of
41/// UsingDirectives. It orders them by address of its common ancestor.
42struct UsingDirAncestorCompare {
43
44  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
45  bool operator () (UsingDirectiveDecl *U, const DeclContext *Ctx) const {
46    return U->getCommonAncestor() < Ctx;
47  }
48
49  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
50  bool operator () (const DeclContext *Ctx, UsingDirectiveDecl *U) const {
51    return Ctx < U->getCommonAncestor();
52  }
53
54  /// @brief Compares UsingDirectiveDecl common ancestors.
55  bool operator () (UsingDirectiveDecl *U1, UsingDirectiveDecl *U2) const {
56    return U1->getCommonAncestor() < U2->getCommonAncestor();
57  }
58};
59
60/// AddNamespaceUsingDirectives - Adds all UsingDirectiveDecl's to heap UDirs
61/// (ordered by common ancestors), found in namespace NS,
62/// including all found (recursively) in their nominated namespaces.
63void AddNamespaceUsingDirectives(ASTContext &Context,
64                                 DeclContext *NS,
65                                 UsingDirectivesTy &UDirs,
66                                 NamespaceSet &Visited) {
67  DeclContext::udir_iterator I, End;
68
69  for (llvm::tie(I, End) = NS->getUsingDirectives(); I !=End; ++I) {
70    UDirs.push_back(*I);
71    std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
72    NamespaceDecl *Nominated = (*I)->getNominatedNamespace();
73    if (Visited.insert(Nominated).second)
74      AddNamespaceUsingDirectives(Context, Nominated, UDirs, /*ref*/ Visited);
75  }
76}
77
78/// AddScopeUsingDirectives - Adds all UsingDirectiveDecl's found in Scope S,
79/// including all found in the namespaces they nominate.
80static void AddScopeUsingDirectives(ASTContext &Context, Scope *S,
81                                    UsingDirectivesTy &UDirs) {
82  NamespaceSet VisitedNS;
83
84  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
85
86    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Ctx))
87      VisitedNS.insert(NS);
88
89    AddNamespaceUsingDirectives(Context, Ctx, UDirs, /*ref*/ VisitedNS);
90
91  } else {
92    Scope::udir_iterator I = S->using_directives_begin(),
93                         End = S->using_directives_end();
94
95    for (; I != End; ++I) {
96      UsingDirectiveDecl *UD = I->getAs<UsingDirectiveDecl>();
97      UDirs.push_back(UD);
98      std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
99
100      NamespaceDecl *Nominated = UD->getNominatedNamespace();
101      if (!VisitedNS.count(Nominated)) {
102        VisitedNS.insert(Nominated);
103        AddNamespaceUsingDirectives(Context, Nominated, UDirs,
104                                    /*ref*/ VisitedNS);
105      }
106    }
107  }
108}
109
110/// MaybeConstructOverloadSet - Name lookup has determined that the
111/// elements in [I, IEnd) have the name that we are looking for, and
112/// *I is a match for the namespace. This routine returns an
113/// appropriate Decl for name lookup, which may either be *I or an
114/// OverloadedFunctionDecl that represents the overloaded functions in
115/// [I, IEnd).
116///
117/// The existance of this routine is temporary; users of LookupResult
118/// should be able to handle multiple results, to deal with cases of
119/// ambiguity and overloaded functions without needing to create a
120/// Decl node.
121template<typename DeclIterator>
122static NamedDecl *
123MaybeConstructOverloadSet(ASTContext &Context,
124                          DeclIterator I, DeclIterator IEnd) {
125  assert(I != IEnd && "Iterator range cannot be empty");
126  assert(!isa<OverloadedFunctionDecl>(*I) &&
127         "Cannot have an overloaded function");
128
129  if ((*I)->isFunctionOrFunctionTemplate()) {
130    // If we found a function, there might be more functions. If
131    // so, collect them into an overload set.
132    DeclIterator Last = I;
133    OverloadedFunctionDecl *Ovl = 0;
134    for (++Last;
135         Last != IEnd && (*Last)->isFunctionOrFunctionTemplate();
136         ++Last) {
137      if (!Ovl) {
138        // FIXME: We leak this overload set. Eventually, we want to stop
139        // building the declarations for these overload sets, so there will be
140        // nothing to leak.
141        Ovl = OverloadedFunctionDecl::Create(Context, (*I)->getDeclContext(),
142                                             (*I)->getDeclName());
143        NamedDecl *ND = (*I)->getUnderlyingDecl();
144        if (isa<FunctionDecl>(ND))
145          Ovl->addOverload(cast<FunctionDecl>(ND));
146        else
147          Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
148      }
149
150      NamedDecl *ND = (*Last)->getUnderlyingDecl();
151      if (isa<FunctionDecl>(ND))
152        Ovl->addOverload(cast<FunctionDecl>(ND));
153      else
154        Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
155    }
156
157    // If we had more than one function, we built an overload
158    // set. Return it.
159    if (Ovl)
160      return Ovl;
161  }
162
163  return *I;
164}
165
166/// Merges together multiple LookupResults dealing with duplicated Decl's.
167static Sema::LookupResult
168MergeLookupResults(ASTContext &Context, LookupResultsTy &Results) {
169  typedef Sema::LookupResult LResult;
170  typedef llvm::SmallPtrSet<NamedDecl*, 4> DeclsSetTy;
171
172  // Remove duplicated Decl pointing at same Decl, by storing them in
173  // associative collection. This might be case for code like:
174  //
175  //    namespace A { int i; }
176  //    namespace B { using namespace A; }
177  //    namespace C { using namespace A; }
178  //
179  //    void foo() {
180  //      using namespace B;
181  //      using namespace C;
182  //      ++i; // finds A::i, from both namespace B and C at global scope
183  //    }
184  //
185  //  C++ [namespace.qual].p3:
186  //    The same declaration found more than once is not an ambiguity
187  //    (because it is still a unique declaration).
188  DeclsSetTy FoundDecls;
189
190  // Counter of tag names, and functions for resolving ambiguity
191  // and name hiding.
192  std::size_t TagNames = 0, Functions = 0, OrdinaryNonFunc = 0;
193
194  LookupResultsTy::iterator I = Results.begin(), End = Results.end();
195
196  // No name lookup results, return early.
197  if (I == End) return LResult::CreateLookupResult(Context, 0);
198
199  // Keep track of the tag declaration we found. We only use this if
200  // we find a single tag declaration.
201  TagDecl *TagFound = 0;
202
203  for (; I != End; ++I) {
204    switch (I->getKind()) {
205    case LResult::NotFound:
206      assert(false &&
207             "Should be always successful name lookup result here.");
208      break;
209
210    case LResult::AmbiguousReference:
211    case LResult::AmbiguousBaseSubobjectTypes:
212    case LResult::AmbiguousBaseSubobjects:
213      assert(false && "Shouldn't get ambiguous lookup here.");
214      break;
215
216    case LResult::Found: {
217      NamedDecl *ND = I->getAsDecl()->getUnderlyingDecl();
218
219      if (TagDecl *TD = dyn_cast<TagDecl>(ND)) {
220        TagFound = Context.getCanonicalDecl(TD);
221        TagNames += FoundDecls.insert(TagFound)?  1 : 0;
222      } else if (ND->isFunctionOrFunctionTemplate())
223        Functions += FoundDecls.insert(ND)? 1 : 0;
224      else
225        FoundDecls.insert(ND);
226      break;
227    }
228
229    case LResult::FoundOverloaded:
230      for (LResult::iterator FI = I->begin(), FEnd = I->end(); FI != FEnd; ++FI)
231        Functions += FoundDecls.insert(*FI)? 1 : 0;
232      break;
233    }
234  }
235  OrdinaryNonFunc = FoundDecls.size() - TagNames - Functions;
236  bool Ambiguous = false, NameHidesTags = false;
237
238  if (FoundDecls.size() == 1) {
239    // 1) Exactly one result.
240  } else if (TagNames > 1) {
241    // 2) Multiple tag names (even though they may be hidden by an
242    // object name).
243    Ambiguous = true;
244  } else if (FoundDecls.size() - TagNames == 1) {
245    // 3) Ordinary name hides (optional) tag.
246    NameHidesTags = TagFound;
247  } else if (Functions) {
248    // C++ [basic.lookup].p1:
249    // ... Name lookup may associate more than one declaration with
250    // a name if it finds the name to be a function name; the declarations
251    // are said to form a set of overloaded functions (13.1).
252    // Overload resolution (13.3) takes place after name lookup has succeeded.
253    //
254    if (!OrdinaryNonFunc) {
255      // 4) Functions hide tag names.
256      NameHidesTags = TagFound;
257    } else {
258      // 5) Functions + ordinary names.
259      Ambiguous = true;
260    }
261  } else {
262    // 6) Multiple non-tag names
263    Ambiguous = true;
264  }
265
266  if (Ambiguous)
267    return LResult::CreateLookupResult(Context,
268                                       FoundDecls.begin(), FoundDecls.size());
269  if (NameHidesTags) {
270    // There's only one tag, TagFound. Remove it.
271    assert(TagFound && FoundDecls.count(TagFound) && "No tag name found?");
272    FoundDecls.erase(TagFound);
273  }
274
275  // Return successful name lookup result.
276  return LResult::CreateLookupResult(Context,
277                                MaybeConstructOverloadSet(Context,
278                                                          FoundDecls.begin(),
279                                                          FoundDecls.end()));
280}
281
282// Retrieve the set of identifier namespaces that correspond to a
283// specific kind of name lookup.
284inline unsigned
285getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
286                                          bool CPlusPlus) {
287  unsigned IDNS = 0;
288  switch (NameKind) {
289  case Sema::LookupOrdinaryName:
290  case Sema::LookupOperatorName:
291  case Sema::LookupRedeclarationWithLinkage:
292    IDNS = Decl::IDNS_Ordinary;
293    if (CPlusPlus)
294      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
295    break;
296
297  case Sema::LookupTagName:
298    IDNS = Decl::IDNS_Tag;
299    break;
300
301  case Sema::LookupMemberName:
302    IDNS = Decl::IDNS_Member;
303    if (CPlusPlus)
304      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
305    break;
306
307  case Sema::LookupNestedNameSpecifierName:
308  case Sema::LookupNamespaceName:
309    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
310    break;
311
312  case Sema::LookupObjCProtocolName:
313    IDNS = Decl::IDNS_ObjCProtocol;
314    break;
315
316  case Sema::LookupObjCImplementationName:
317    IDNS = Decl::IDNS_ObjCImplementation;
318    break;
319
320  case Sema::LookupObjCCategoryImplName:
321    IDNS = Decl::IDNS_ObjCCategoryImpl;
322    break;
323  }
324  return IDNS;
325}
326
327Sema::LookupResult
328Sema::LookupResult::CreateLookupResult(ASTContext &Context, NamedDecl *D) {
329  if (D)
330    D = D->getUnderlyingDecl();
331
332  LookupResult Result;
333  Result.StoredKind = (D && isa<OverloadedFunctionDecl>(D))?
334    OverloadedDeclSingleDecl : SingleDecl;
335  Result.First = reinterpret_cast<uintptr_t>(D);
336  Result.Last = 0;
337  Result.Context = &Context;
338  return Result;
339}
340
341/// @brief Moves the name-lookup results from Other to this LookupResult.
342Sema::LookupResult
343Sema::LookupResult::CreateLookupResult(ASTContext &Context,
344                                       IdentifierResolver::iterator F,
345                                       IdentifierResolver::iterator L) {
346  LookupResult Result;
347  Result.Context = &Context;
348
349  if (F != L && (*F)->isFunctionOrFunctionTemplate()) {
350    IdentifierResolver::iterator Next = F;
351    ++Next;
352    if (Next != L && (*Next)->isFunctionOrFunctionTemplate()) {
353      Result.StoredKind = OverloadedDeclFromIdResolver;
354      Result.First = F.getAsOpaqueValue();
355      Result.Last = L.getAsOpaqueValue();
356      return Result;
357    }
358  }
359
360  NamedDecl *D = *F;
361  if (D)
362    D = D->getUnderlyingDecl();
363
364  Result.StoredKind = SingleDecl;
365  Result.First = reinterpret_cast<uintptr_t>(D);
366  Result.Last = 0;
367  return Result;
368}
369
370Sema::LookupResult
371Sema::LookupResult::CreateLookupResult(ASTContext &Context,
372                                       DeclContext::lookup_iterator F,
373                                       DeclContext::lookup_iterator L) {
374  LookupResult Result;
375  Result.Context = &Context;
376
377  if (F != L && (*F)->isFunctionOrFunctionTemplate()) {
378    DeclContext::lookup_iterator Next = F;
379    ++Next;
380    if (Next != L && (*Next)->isFunctionOrFunctionTemplate()) {
381      Result.StoredKind = OverloadedDeclFromDeclContext;
382      Result.First = reinterpret_cast<uintptr_t>(F);
383      Result.Last = reinterpret_cast<uintptr_t>(L);
384      return Result;
385    }
386  }
387
388  NamedDecl *D = *F;
389  if (D)
390    D = D->getUnderlyingDecl();
391
392  Result.StoredKind = SingleDecl;
393  Result.First = reinterpret_cast<uintptr_t>(D);
394  Result.Last = 0;
395  return Result;
396}
397
398/// @brief Determine the result of name lookup.
399Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const {
400  switch (StoredKind) {
401  case SingleDecl:
402    return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound;
403
404  case OverloadedDeclSingleDecl:
405  case OverloadedDeclFromIdResolver:
406  case OverloadedDeclFromDeclContext:
407    return FoundOverloaded;
408
409  case AmbiguousLookupStoresBasePaths:
410    return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects;
411
412  case AmbiguousLookupStoresDecls:
413    return AmbiguousReference;
414  }
415
416  // We can't ever get here.
417  return NotFound;
418}
419
420/// @brief Converts the result of name lookup into a single (possible
421/// NULL) pointer to a declaration.
422///
423/// The resulting declaration will either be the declaration we found
424/// (if only a single declaration was found), an
425/// OverloadedFunctionDecl (if an overloaded function was found), or
426/// NULL (if no declaration was found). This conversion must not be
427/// used anywhere where name lookup could result in an ambiguity.
428///
429/// The OverloadedFunctionDecl conversion is meant as a stop-gap
430/// solution, since it causes the OverloadedFunctionDecl to be
431/// leaked. FIXME: Eventually, there will be a better way to iterate
432/// over the set of overloaded functions returned by name lookup.
433NamedDecl *Sema::LookupResult::getAsDecl() const {
434  switch (StoredKind) {
435  case SingleDecl:
436    return reinterpret_cast<NamedDecl *>(First);
437
438  case OverloadedDeclFromIdResolver:
439    return MaybeConstructOverloadSet(*Context,
440                         IdentifierResolver::iterator::getFromOpaqueValue(First),
441                         IdentifierResolver::iterator::getFromOpaqueValue(Last));
442
443  case OverloadedDeclFromDeclContext:
444    return MaybeConstructOverloadSet(*Context,
445                           reinterpret_cast<DeclContext::lookup_iterator>(First),
446                           reinterpret_cast<DeclContext::lookup_iterator>(Last));
447
448  case OverloadedDeclSingleDecl:
449    return reinterpret_cast<OverloadedFunctionDecl*>(First);
450
451  case AmbiguousLookupStoresDecls:
452  case AmbiguousLookupStoresBasePaths:
453    assert(false &&
454           "Name lookup returned an ambiguity that could not be handled");
455    break;
456  }
457
458  return 0;
459}
460
461/// @brief Retrieves the BasePaths structure describing an ambiguous
462/// name lookup, or null.
463BasePaths *Sema::LookupResult::getBasePaths() const {
464  if (StoredKind == AmbiguousLookupStoresBasePaths)
465      return reinterpret_cast<BasePaths *>(First);
466  return 0;
467}
468
469Sema::LookupResult::iterator::reference
470Sema::LookupResult::iterator::operator*() const {
471  switch (Result->StoredKind) {
472  case SingleDecl:
473    return reinterpret_cast<NamedDecl*>(Current);
474
475  case OverloadedDeclSingleDecl:
476    return *reinterpret_cast<NamedDecl**>(Current);
477
478  case OverloadedDeclFromIdResolver:
479    return *IdentifierResolver::iterator::getFromOpaqueValue(Current);
480
481  case AmbiguousLookupStoresBasePaths:
482    if (Result->Last)
483      return *reinterpret_cast<NamedDecl**>(Current);
484
485    // Fall through to handle the DeclContext::lookup_iterator we're
486    // storing.
487
488  case OverloadedDeclFromDeclContext:
489  case AmbiguousLookupStoresDecls:
490    return *reinterpret_cast<DeclContext::lookup_iterator>(Current);
491  }
492
493  return 0;
494}
495
496Sema::LookupResult::iterator& Sema::LookupResult::iterator::operator++() {
497  switch (Result->StoredKind) {
498  case SingleDecl:
499    Current = reinterpret_cast<uintptr_t>((NamedDecl*)0);
500    break;
501
502  case OverloadedDeclSingleDecl: {
503    NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
504    ++I;
505    Current = reinterpret_cast<uintptr_t>(I);
506    break;
507  }
508
509  case OverloadedDeclFromIdResolver: {
510    IdentifierResolver::iterator I
511      = IdentifierResolver::iterator::getFromOpaqueValue(Current);
512    ++I;
513    Current = I.getAsOpaqueValue();
514    break;
515  }
516
517  case AmbiguousLookupStoresBasePaths:
518    if (Result->Last) {
519      NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
520      ++I;
521      Current = reinterpret_cast<uintptr_t>(I);
522      break;
523    }
524    // Fall through to handle the DeclContext::lookup_iterator we're
525    // storing.
526
527  case OverloadedDeclFromDeclContext:
528  case AmbiguousLookupStoresDecls: {
529    DeclContext::lookup_iterator I
530      = reinterpret_cast<DeclContext::lookup_iterator>(Current);
531    ++I;
532    Current = reinterpret_cast<uintptr_t>(I);
533    break;
534  }
535  }
536
537  return *this;
538}
539
540Sema::LookupResult::iterator Sema::LookupResult::begin() {
541  switch (StoredKind) {
542  case SingleDecl:
543  case OverloadedDeclFromIdResolver:
544  case OverloadedDeclFromDeclContext:
545  case AmbiguousLookupStoresDecls:
546    return iterator(this, First);
547
548  case OverloadedDeclSingleDecl: {
549    OverloadedFunctionDecl * Ovl =
550      reinterpret_cast<OverloadedFunctionDecl*>(First);
551    return iterator(this,
552                    reinterpret_cast<uintptr_t>(&(*Ovl->function_begin())));
553  }
554
555  case AmbiguousLookupStoresBasePaths:
556    if (Last)
557      return iterator(this,
558              reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_begin()));
559    else
560      return iterator(this,
561              reinterpret_cast<uintptr_t>(getBasePaths()->front().Decls.first));
562  }
563
564  // Required to suppress GCC warning.
565  return iterator();
566}
567
568Sema::LookupResult::iterator Sema::LookupResult::end() {
569  switch (StoredKind) {
570  case SingleDecl:
571  case OverloadedDeclFromIdResolver:
572  case OverloadedDeclFromDeclContext:
573  case AmbiguousLookupStoresDecls:
574    return iterator(this, Last);
575
576  case OverloadedDeclSingleDecl: {
577    OverloadedFunctionDecl * Ovl =
578      reinterpret_cast<OverloadedFunctionDecl*>(First);
579    return iterator(this,
580                    reinterpret_cast<uintptr_t>(&(*Ovl->function_end())));
581  }
582
583  case AmbiguousLookupStoresBasePaths:
584    if (Last)
585      return iterator(this,
586               reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_end()));
587    else
588      return iterator(this, reinterpret_cast<uintptr_t>(
589                                     getBasePaths()->front().Decls.second));
590  }
591
592  // Required to suppress GCC warning.
593  return iterator();
594}
595
596void Sema::LookupResult::Destroy() {
597  if (BasePaths *Paths = getBasePaths())
598    delete Paths;
599  else if (getKind() == AmbiguousReference)
600    delete[] reinterpret_cast<NamedDecl **>(First);
601}
602
603static void
604CppNamespaceLookup(ASTContext &Context, DeclContext *NS,
605                   DeclarationName Name, Sema::LookupNameKind NameKind,
606                   unsigned IDNS, LookupResultsTy &Results,
607                   UsingDirectivesTy *UDirs = 0) {
608
609  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
610
611  // Perform qualified name lookup into the LookupCtx.
612  DeclContext::lookup_iterator I, E;
613  for (llvm::tie(I, E) = NS->lookup(Name); I != E; ++I)
614    if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS)) {
615      Results.push_back(Sema::LookupResult::CreateLookupResult(Context, I, E));
616      break;
617    }
618
619  if (UDirs) {
620    // For each UsingDirectiveDecl, which common ancestor is equal
621    // to NS, we preform qualified name lookup into namespace nominated by it.
622    UsingDirectivesTy::const_iterator UI, UEnd;
623    llvm::tie(UI, UEnd) =
624      std::equal_range(UDirs->begin(), UDirs->end(), NS,
625                       UsingDirAncestorCompare());
626
627    for (; UI != UEnd; ++UI)
628      CppNamespaceLookup(Context, (*UI)->getNominatedNamespace(),
629                         Name, NameKind, IDNS, Results);
630  }
631}
632
633static bool isNamespaceOrTranslationUnitScope(Scope *S) {
634  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
635    return Ctx->isFileContext();
636  return false;
637}
638
639std::pair<bool, Sema::LookupResult>
640Sema::CppLookupName(Scope *S, DeclarationName Name,
641                    LookupNameKind NameKind, bool RedeclarationOnly) {
642  assert(getLangOptions().CPlusPlus &&
643         "Can perform only C++ lookup");
644  unsigned IDNS
645    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
646  Scope *Initial = S;
647  DeclContext *OutOfLineCtx = 0;
648  IdentifierResolver::iterator
649    I = IdResolver.begin(Name),
650    IEnd = IdResolver.end();
651
652  // First we lookup local scope.
653  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
654  // ...During unqualified name lookup (3.4.1), the names appear as if
655  // they were declared in the nearest enclosing namespace which contains
656  // both the using-directive and the nominated namespace.
657  // [Note: in this context, “contains” means “contains directly or
658  // indirectly”.
659  //
660  // For example:
661  // namespace A { int i; }
662  // void foo() {
663  //   int i;
664  //   {
665  //     using namespace A;
666  //     ++i; // finds local 'i', A::i appears at global scope
667  //   }
668  // }
669  //
670  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
671    // Check whether the IdResolver has anything in this scope.
672    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
673      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
674        // We found something.  Look for anything else in our scope
675        // with this same name and in an acceptable identifier
676        // namespace, so that we can construct an overload set if we
677        // need to.
678        IdentifierResolver::iterator LastI = I;
679        for (++LastI; LastI != IEnd; ++LastI) {
680          if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
681            break;
682        }
683        LookupResult Result =
684          LookupResult::CreateLookupResult(Context, I, LastI);
685        return std::make_pair(true, Result);
686      }
687    }
688    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
689      LookupResult R;
690      // Perform member lookup into struct.
691      // FIXME: In some cases, we know that every name that could be found by
692      // this qualified name lookup will also be on the identifier chain. For
693      // example, inside a class without any base classes, we never need to
694      // perform qualified lookup because all of the members are on top of the
695      // identifier chain.
696      if (isa<RecordDecl>(Ctx)) {
697        R = LookupQualifiedName(Ctx, Name, NameKind, RedeclarationOnly);
698        if (R)
699          return std::make_pair(true, R);
700      }
701      if (Ctx->getParent() != Ctx->getLexicalParent()
702          || isa<CXXMethodDecl>(Ctx)) {
703        // It is out of line defined C++ method or struct, we continue
704        // doing name lookup in parent context. Once we will find namespace
705        // or translation-unit we save it for possible checking
706        // using-directives later.
707        for (OutOfLineCtx = Ctx; OutOfLineCtx && !OutOfLineCtx->isFileContext();
708             OutOfLineCtx = OutOfLineCtx->getParent()) {
709          R = LookupQualifiedName(OutOfLineCtx, Name, NameKind, RedeclarationOnly);
710          if (R)
711            return std::make_pair(true, R);
712        }
713      }
714    }
715  }
716
717  // Collect UsingDirectiveDecls in all scopes, and recursively all
718  // nominated namespaces by those using-directives.
719  // UsingDirectives are pushed to heap, in common ancestor pointer value order.
720  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
721  // don't build it for each lookup!
722  UsingDirectivesTy UDirs;
723  for (Scope *SC = Initial; SC; SC = SC->getParent())
724    if (SC->getFlags() & Scope::DeclScope)
725      AddScopeUsingDirectives(Context, SC, UDirs);
726
727  // Sort heapified UsingDirectiveDecls.
728  std::sort_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
729
730  // Lookup namespace scope, and global scope.
731  // Unqualified name lookup in C++ requires looking into scopes
732  // that aren't strictly lexical, and therefore we walk through the
733  // context as well as walking through the scopes.
734
735  LookupResultsTy LookupResults;
736  assert((!OutOfLineCtx || OutOfLineCtx->isFileContext()) &&
737         "We should have been looking only at file context here already.");
738  bool LookedInCtx = false;
739  LookupResult Result;
740  while (OutOfLineCtx &&
741         OutOfLineCtx != S->getEntity() &&
742         OutOfLineCtx->isNamespace()) {
743    LookedInCtx = true;
744
745    // Look into context considering using-directives.
746    CppNamespaceLookup(Context, OutOfLineCtx, Name, NameKind, IDNS,
747                       LookupResults, &UDirs);
748
749    if ((Result = MergeLookupResults(Context, LookupResults)) ||
750        (RedeclarationOnly && !OutOfLineCtx->isTransparentContext()))
751      return std::make_pair(true, Result);
752
753    OutOfLineCtx = OutOfLineCtx->getParent();
754  }
755
756  for (; S; S = S->getParent()) {
757    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
758    assert(Ctx && Ctx->isFileContext() &&
759           "We should have been looking only at file context here already.");
760
761    // Check whether the IdResolver has anything in this scope.
762    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
763      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
764        // We found something.  Look for anything else in our scope
765        // with this same name and in an acceptable identifier
766        // namespace, so that we can construct an overload set if we
767        // need to.
768        IdentifierResolver::iterator LastI = I;
769        for (++LastI; LastI != IEnd; ++LastI) {
770          if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
771            break;
772        }
773
774        // We store name lookup result, and continue trying to look into
775        // associated context, and maybe namespaces nominated by
776        // using-directives.
777        LookupResults.push_back(
778          LookupResult::CreateLookupResult(Context, I, LastI));
779        break;
780      }
781    }
782
783    LookedInCtx = true;
784    // Look into context considering using-directives.
785    CppNamespaceLookup(Context, Ctx, Name, NameKind, IDNS,
786                       LookupResults, &UDirs);
787
788    if ((Result = MergeLookupResults(Context, LookupResults)) ||
789        (RedeclarationOnly && !Ctx->isTransparentContext()))
790      return std::make_pair(true, Result);
791  }
792
793  if (!(LookedInCtx || LookupResults.empty())) {
794    // We didn't Performed lookup in Scope entity, so we return
795    // result form IdentifierResolver.
796    assert((LookupResults.size() == 1) && "Wrong size!");
797    return std::make_pair(true, LookupResults.front());
798  }
799  return std::make_pair(false, LookupResult());
800}
801
802/// @brief Perform unqualified name lookup starting from a given
803/// scope.
804///
805/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
806/// used to find names within the current scope. For example, 'x' in
807/// @code
808/// int x;
809/// int f() {
810///   return x; // unqualified name look finds 'x' in the global scope
811/// }
812/// @endcode
813///
814/// Different lookup criteria can find different names. For example, a
815/// particular scope can have both a struct and a function of the same
816/// name, and each can be found by certain lookup criteria. For more
817/// information about lookup criteria, see the documentation for the
818/// class LookupCriteria.
819///
820/// @param S        The scope from which unqualified name lookup will
821/// begin. If the lookup criteria permits, name lookup may also search
822/// in the parent scopes.
823///
824/// @param Name     The name of the entity that we are searching for.
825///
826/// @param Loc      If provided, the source location where we're performing
827/// name lookup. At present, this is only used to produce diagnostics when
828/// C library functions (like "malloc") are implicitly declared.
829///
830/// @returns The result of name lookup, which includes zero or more
831/// declarations and possibly additional information used to diagnose
832/// ambiguities.
833Sema::LookupResult
834Sema::LookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind,
835                 bool RedeclarationOnly, bool AllowBuiltinCreation,
836                 SourceLocation Loc) {
837  if (!Name) return LookupResult::CreateLookupResult(Context, 0);
838
839  if (!getLangOptions().CPlusPlus) {
840    // Unqualified name lookup in C/Objective-C is purely lexical, so
841    // search in the declarations attached to the name.
842    unsigned IDNS = 0;
843    switch (NameKind) {
844    case Sema::LookupOrdinaryName:
845      IDNS = Decl::IDNS_Ordinary;
846      break;
847
848    case Sema::LookupTagName:
849      IDNS = Decl::IDNS_Tag;
850      break;
851
852    case Sema::LookupMemberName:
853      IDNS = Decl::IDNS_Member;
854      break;
855
856    case Sema::LookupOperatorName:
857    case Sema::LookupNestedNameSpecifierName:
858    case Sema::LookupNamespaceName:
859      assert(false && "C does not perform these kinds of name lookup");
860      break;
861
862    case Sema::LookupRedeclarationWithLinkage:
863      // Find the nearest non-transparent declaration scope.
864      while (!(S->getFlags() & Scope::DeclScope) ||
865             (S->getEntity() &&
866              static_cast<DeclContext *>(S->getEntity())
867                ->isTransparentContext()))
868        S = S->getParent();
869      IDNS = Decl::IDNS_Ordinary;
870      break;
871
872    case Sema::LookupObjCProtocolName:
873      IDNS = Decl::IDNS_ObjCProtocol;
874      break;
875
876    case Sema::LookupObjCImplementationName:
877      IDNS = Decl::IDNS_ObjCImplementation;
878      break;
879
880    case Sema::LookupObjCCategoryImplName:
881      IDNS = Decl::IDNS_ObjCCategoryImpl;
882      break;
883    }
884
885    // Scan up the scope chain looking for a decl that matches this
886    // identifier that is in the appropriate namespace.  This search
887    // should not take long, as shadowing of names is uncommon, and
888    // deep shadowing is extremely uncommon.
889    bool LeftStartingScope = false;
890
891    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
892                                   IEnd = IdResolver.end();
893         I != IEnd; ++I)
894      if ((*I)->isInIdentifierNamespace(IDNS)) {
895        if (NameKind == LookupRedeclarationWithLinkage) {
896          // Determine whether this (or a previous) declaration is
897          // out-of-scope.
898          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
899            LeftStartingScope = true;
900
901          // If we found something outside of our starting scope that
902          // does not have linkage, skip it.
903          if (LeftStartingScope && !((*I)->hasLinkage()))
904            continue;
905        }
906
907        if ((*I)->getAttr<OverloadableAttr>()) {
908          // If this declaration has the "overloadable" attribute, we
909          // might have a set of overloaded functions.
910
911          // Figure out what scope the identifier is in.
912          while (!(S->getFlags() & Scope::DeclScope) ||
913                 !S->isDeclScope(DeclPtrTy::make(*I)))
914            S = S->getParent();
915
916          // Find the last declaration in this scope (with the same
917          // name, naturally).
918          IdentifierResolver::iterator LastI = I;
919          for (++LastI; LastI != IEnd; ++LastI) {
920            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
921              break;
922          }
923
924          return LookupResult::CreateLookupResult(Context, I, LastI);
925        }
926
927        // We have a single lookup result.
928        return LookupResult::CreateLookupResult(Context, *I);
929      }
930  } else {
931    // Perform C++ unqualified name lookup.
932    std::pair<bool, LookupResult> MaybeResult =
933      CppLookupName(S, Name, NameKind, RedeclarationOnly);
934    if (MaybeResult.first)
935      return MaybeResult.second;
936  }
937
938  // If we didn't find a use of this identifier, and if the identifier
939  // corresponds to a compiler builtin, create the decl object for the builtin
940  // now, injecting it into translation unit scope, and return it.
941  if (NameKind == LookupOrdinaryName ||
942      NameKind == LookupRedeclarationWithLinkage) {
943    IdentifierInfo *II = Name.getAsIdentifierInfo();
944    if (II && AllowBuiltinCreation) {
945      // If this is a builtin on this (or all) targets, create the decl.
946      if (unsigned BuiltinID = II->getBuiltinID()) {
947        // In C++, we don't have any predefined library functions like
948        // 'malloc'. Instead, we'll just error.
949        if (getLangOptions().CPlusPlus &&
950            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
951          return LookupResult::CreateLookupResult(Context, 0);
952
953        return LookupResult::CreateLookupResult(Context,
954                            LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
955                                                S, RedeclarationOnly, Loc));
956      }
957    }
958  }
959  return LookupResult::CreateLookupResult(Context, 0);
960}
961
962/// @brief Perform qualified name lookup into a given context.
963///
964/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
965/// names when the context of those names is explicit specified, e.g.,
966/// "std::vector" or "x->member".
967///
968/// Different lookup criteria can find different names. For example, a
969/// particular scope can have both a struct and a function of the same
970/// name, and each can be found by certain lookup criteria. For more
971/// information about lookup criteria, see the documentation for the
972/// class LookupCriteria.
973///
974/// @param LookupCtx The context in which qualified name lookup will
975/// search. If the lookup criteria permits, name lookup may also search
976/// in the parent contexts or (for C++ classes) base classes.
977///
978/// @param Name     The name of the entity that we are searching for.
979///
980/// @param Criteria The criteria that this routine will use to
981/// determine which names are visible and which names will be
982/// found. Note that name lookup will find a name that is visible by
983/// the given criteria, but the entity itself may not be semantically
984/// correct or even the kind of entity expected based on the
985/// lookup. For example, searching for a nested-name-specifier name
986/// might result in an EnumDecl, which is visible but is not permitted
987/// as a nested-name-specifier in C++03.
988///
989/// @returns The result of name lookup, which includes zero or more
990/// declarations and possibly additional information used to diagnose
991/// ambiguities.
992Sema::LookupResult
993Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
994                          LookupNameKind NameKind, bool RedeclarationOnly) {
995  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
996
997  if (!Name) return LookupResult::CreateLookupResult(Context, 0);
998
999  // If we're performing qualified name lookup (e.g., lookup into a
1000  // struct), find fields as part of ordinary name lookup.
1001  unsigned IDNS
1002    = getIdentifierNamespacesFromLookupNameKind(NameKind,
1003                                                getLangOptions().CPlusPlus);
1004  if (NameKind == LookupOrdinaryName)
1005    IDNS |= Decl::IDNS_Member;
1006
1007  // Perform qualified name lookup into the LookupCtx.
1008  DeclContext::lookup_iterator I, E;
1009  for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I)
1010    if (isAcceptableLookupResult(*I, NameKind, IDNS))
1011      return LookupResult::CreateLookupResult(Context, I, E);
1012
1013  // If this isn't a C++ class or we aren't allowed to look into base
1014  // classes, we're done.
1015  if (RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx))
1016    return LookupResult::CreateLookupResult(Context, 0);
1017
1018  // Perform lookup into our base classes.
1019  BasePaths Paths;
1020  Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx)));
1021
1022  // Look for this member in our base classes
1023  if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx),
1024                     MemberLookupCriteria(Name, NameKind, IDNS), Paths))
1025    return LookupResult::CreateLookupResult(Context, 0);
1026
1027  // C++ [class.member.lookup]p2:
1028  //   [...] If the resulting set of declarations are not all from
1029  //   sub-objects of the same type, or the set has a nonstatic member
1030  //   and includes members from distinct sub-objects, there is an
1031  //   ambiguity and the program is ill-formed. Otherwise that set is
1032  //   the result of the lookup.
1033  // FIXME: support using declarations!
1034  QualType SubobjectType;
1035  int SubobjectNumber = 0;
1036  for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1037       Path != PathEnd; ++Path) {
1038    const BasePathElement &PathElement = Path->back();
1039
1040    // Determine whether we're looking at a distinct sub-object or not.
1041    if (SubobjectType.isNull()) {
1042      // This is the first subobject we've looked at. Record it's type.
1043      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1044      SubobjectNumber = PathElement.SubobjectNumber;
1045    } else if (SubobjectType
1046                 != Context.getCanonicalType(PathElement.Base->getType())) {
1047      // We found members of the given name in two subobjects of
1048      // different types. This lookup is ambiguous.
1049      BasePaths *PathsOnHeap = new BasePaths;
1050      PathsOnHeap->swap(Paths);
1051      return LookupResult::CreateLookupResult(Context, PathsOnHeap, true);
1052    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1053      // We have a different subobject of the same type.
1054
1055      // C++ [class.member.lookup]p5:
1056      //   A static member, a nested type or an enumerator defined in
1057      //   a base class T can unambiguously be found even if an object
1058      //   has more than one base class subobject of type T.
1059      Decl *FirstDecl = *Path->Decls.first;
1060      if (isa<VarDecl>(FirstDecl) ||
1061          isa<TypeDecl>(FirstDecl) ||
1062          isa<EnumConstantDecl>(FirstDecl))
1063        continue;
1064
1065      if (isa<CXXMethodDecl>(FirstDecl)) {
1066        // Determine whether all of the methods are static.
1067        bool AllMethodsAreStatic = true;
1068        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1069             Func != Path->Decls.second; ++Func) {
1070          if (!isa<CXXMethodDecl>(*Func)) {
1071            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1072            break;
1073          }
1074
1075          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1076            AllMethodsAreStatic = false;
1077            break;
1078          }
1079        }
1080
1081        if (AllMethodsAreStatic)
1082          continue;
1083      }
1084
1085      // We have found a nonstatic member name in multiple, distinct
1086      // subobjects. Name lookup is ambiguous.
1087      BasePaths *PathsOnHeap = new BasePaths;
1088      PathsOnHeap->swap(Paths);
1089      return LookupResult::CreateLookupResult(Context, PathsOnHeap, false);
1090    }
1091  }
1092
1093  // Lookup in a base class succeeded; return these results.
1094
1095  // If we found a function declaration, return an overload set.
1096  if ((*Paths.front().Decls.first)->isFunctionOrFunctionTemplate())
1097    return LookupResult::CreateLookupResult(Context,
1098                        Paths.front().Decls.first, Paths.front().Decls.second);
1099
1100  // We found a non-function declaration; return a single declaration.
1101  return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first);
1102}
1103
1104/// @brief Performs name lookup for a name that was parsed in the
1105/// source code, and may contain a C++ scope specifier.
1106///
1107/// This routine is a convenience routine meant to be called from
1108/// contexts that receive a name and an optional C++ scope specifier
1109/// (e.g., "N::M::x"). It will then perform either qualified or
1110/// unqualified name lookup (with LookupQualifiedName or LookupName,
1111/// respectively) on the given name and return those results.
1112///
1113/// @param S        The scope from which unqualified name lookup will
1114/// begin.
1115///
1116/// @param SS       An optional C++ scope-specified, e.g., "::N::M".
1117///
1118/// @param Name     The name of the entity that name lookup will
1119/// search for.
1120///
1121/// @param Loc      If provided, the source location where we're performing
1122/// name lookup. At present, this is only used to produce diagnostics when
1123/// C library functions (like "malloc") are implicitly declared.
1124///
1125/// @returns The result of qualified or unqualified name lookup.
1126Sema::LookupResult
1127Sema::LookupParsedName(Scope *S, const CXXScopeSpec *SS,
1128                       DeclarationName Name, LookupNameKind NameKind,
1129                       bool RedeclarationOnly, bool AllowBuiltinCreation,
1130                       SourceLocation Loc) {
1131  if (SS && (SS->isSet() || SS->isInvalid())) {
1132    // If the scope specifier is invalid, don't even look for
1133    // anything.
1134    if (SS->isInvalid())
1135      return LookupResult::CreateLookupResult(Context, 0);
1136
1137    assert(!isUnknownSpecialization(*SS) && "Can't lookup dependent types");
1138
1139    if (isDependentScopeSpecifier(*SS)) {
1140      // Determine whether we are looking into the current
1141      // instantiation.
1142      NestedNameSpecifier *NNS
1143        = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
1144      CXXRecordDecl *Current = getCurrentInstantiationOf(NNS);
1145      assert(Current && "Bad dependent scope specifier");
1146
1147      // We nested name specifier refers to the current instantiation,
1148      // so now we will look for a member of the current instantiation
1149      // (C++0x [temp.dep.type]).
1150      unsigned IDNS = getIdentifierNamespacesFromLookupNameKind(NameKind, true);
1151      DeclContext::lookup_iterator I, E;
1152      for (llvm::tie(I, E) = Current->lookup(Name); I != E; ++I)
1153        if (isAcceptableLookupResult(*I, NameKind, IDNS))
1154          return LookupResult::CreateLookupResult(Context, I, E);
1155    }
1156
1157    if (RequireCompleteDeclContext(*SS))
1158      return LookupResult::CreateLookupResult(Context, 0);
1159
1160    return LookupQualifiedName(computeDeclContext(*SS),
1161                               Name, NameKind, RedeclarationOnly);
1162  }
1163
1164  LookupResult result(LookupName(S, Name, NameKind, RedeclarationOnly,
1165                    AllowBuiltinCreation, Loc));
1166
1167  return(result);
1168}
1169
1170
1171/// @brief Produce a diagnostic describing the ambiguity that resulted
1172/// from name lookup.
1173///
1174/// @param Result       The ambiguous name lookup result.
1175///
1176/// @param Name         The name of the entity that name lookup was
1177/// searching for.
1178///
1179/// @param NameLoc      The location of the name within the source code.
1180///
1181/// @param LookupRange  A source range that provides more
1182/// source-location information concerning the lookup itself. For
1183/// example, this range might highlight a nested-name-specifier that
1184/// precedes the name.
1185///
1186/// @returns true
1187bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
1188                                   SourceLocation NameLoc,
1189                                   SourceRange LookupRange) {
1190  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1191
1192  if (BasePaths *Paths = Result.getBasePaths()) {
1193    if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) {
1194      QualType SubobjectType = Paths->front().back().Base->getType();
1195      Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1196        << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1197        << LookupRange;
1198
1199      DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1200      while (isa<CXXMethodDecl>(*Found) &&
1201             cast<CXXMethodDecl>(*Found)->isStatic())
1202        ++Found;
1203
1204      Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1205
1206      Result.Destroy();
1207      return true;
1208    }
1209
1210    assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes &&
1211           "Unhandled form of name lookup ambiguity");
1212
1213    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1214      << Name << LookupRange;
1215
1216    std::set<Decl *> DeclsPrinted;
1217    for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end();
1218         Path != PathEnd; ++Path) {
1219      Decl *D = *Path->Decls.first;
1220      if (DeclsPrinted.insert(D).second)
1221        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1222    }
1223
1224    Result.Destroy();
1225    return true;
1226  } else if (Result.getKind() == LookupResult::AmbiguousReference) {
1227    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1228
1229    NamedDecl **DI = reinterpret_cast<NamedDecl **>(Result.First),
1230            **DEnd = reinterpret_cast<NamedDecl **>(Result.Last);
1231
1232    for (; DI != DEnd; ++DI)
1233      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1234
1235    Result.Destroy();
1236    return true;
1237  }
1238
1239  assert(false && "Unhandled form of name lookup ambiguity");
1240
1241  // We can't reach here.
1242  return true;
1243}
1244
1245static void
1246addAssociatedClassesAndNamespaces(QualType T,
1247                                  ASTContext &Context,
1248                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1249                                  Sema::AssociatedClassSet &AssociatedClasses,
1250                                  bool &GlobalScope);
1251
1252// \brief Add the associated classes and namespaces for argument-dependent
1253// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1254static void
1255addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1256                                  ASTContext &Context,
1257                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1258                                  Sema::AssociatedClassSet &AssociatedClasses,
1259                                  bool &GlobalScope) {
1260  // C++ [basic.lookup.koenig]p2, last bullet:
1261  //   -- [...] ;
1262  switch (Arg.getKind()) {
1263    case TemplateArgument::Null:
1264      break;
1265
1266    case TemplateArgument::Type:
1267      // [...] the namespaces and classes associated with the types of the
1268      // template arguments provided for template type parameters (excluding
1269      // template template parameters)
1270      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1271                                        AssociatedNamespaces,
1272                                        AssociatedClasses,
1273                                        GlobalScope);
1274      break;
1275
1276    case TemplateArgument::Declaration:
1277      // [...] the namespaces in which any template template arguments are
1278      // defined; and the classes in which any member templates used as
1279      // template template arguments are defined.
1280      if (ClassTemplateDecl *ClassTemplate
1281            = dyn_cast<ClassTemplateDecl>(Arg.getAsDecl())) {
1282        DeclContext *Ctx = ClassTemplate->getDeclContext();
1283        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1284          AssociatedClasses.insert(EnclosingClass);
1285        // Add the associated namespace for this class.
1286        while (Ctx->isRecord())
1287          Ctx = Ctx->getParent();
1288        if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1289          AssociatedNamespaces.insert(EnclosingNamespace);
1290        else if (Ctx->isTranslationUnit())
1291          GlobalScope = true;
1292      }
1293      break;
1294
1295    case TemplateArgument::Integral:
1296    case TemplateArgument::Expression:
1297      // [Note: non-type template arguments do not contribute to the set of
1298      //  associated namespaces. ]
1299      break;
1300
1301    case TemplateArgument::Pack:
1302      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1303                                        PEnd = Arg.pack_end();
1304           P != PEnd; ++P)
1305        addAssociatedClassesAndNamespaces(*P, Context,
1306                                          AssociatedNamespaces,
1307                                          AssociatedClasses,
1308                                          GlobalScope);
1309      break;
1310  }
1311}
1312
1313// \brief Add the associated classes and namespaces for
1314// argument-dependent lookup with an argument of class type
1315// (C++ [basic.lookup.koenig]p2).
1316static void
1317addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1318                                  ASTContext &Context,
1319                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1320                            Sema::AssociatedClassSet &AssociatedClasses,
1321                                  bool &GlobalScope) {
1322  // C++ [basic.lookup.koenig]p2:
1323  //   [...]
1324  //     -- If T is a class type (including unions), its associated
1325  //        classes are: the class itself; the class of which it is a
1326  //        member, if any; and its direct and indirect base
1327  //        classes. Its associated namespaces are the namespaces in
1328  //        which its associated classes are defined.
1329
1330  // Add the class of which it is a member, if any.
1331  DeclContext *Ctx = Class->getDeclContext();
1332  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1333    AssociatedClasses.insert(EnclosingClass);
1334  // Add the associated namespace for this class.
1335  while (Ctx->isRecord())
1336    Ctx = Ctx->getParent();
1337  if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1338    AssociatedNamespaces.insert(EnclosingNamespace);
1339  else if (Ctx->isTranslationUnit())
1340    GlobalScope = true;
1341
1342  // Add the class itself. If we've already seen this class, we don't
1343  // need to visit base classes.
1344  if (!AssociatedClasses.insert(Class))
1345    return;
1346
1347  // -- If T is a template-id, its associated namespaces and classes are
1348  //    the namespace in which the template is defined; for member
1349  //    templates, the member template’s class; the namespaces and classes
1350  //    associated with the types of the template arguments provided for
1351  //    template type parameters (excluding template template parameters); the
1352  //    namespaces in which any template template arguments are defined; and
1353  //    the classes in which any member templates used as template template
1354  //    arguments are defined. [Note: non-type template arguments do not
1355  //    contribute to the set of associated namespaces. ]
1356  if (ClassTemplateSpecializationDecl *Spec
1357        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1358    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1359    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1360      AssociatedClasses.insert(EnclosingClass);
1361    // Add the associated namespace for this class.
1362    while (Ctx->isRecord())
1363      Ctx = Ctx->getParent();
1364    if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1365      AssociatedNamespaces.insert(EnclosingNamespace);
1366    else if (Ctx->isTranslationUnit())
1367      GlobalScope = true;
1368
1369    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1370    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1371      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1372                                        AssociatedNamespaces,
1373                                        AssociatedClasses,
1374                                        GlobalScope);
1375  }
1376
1377  // Add direct and indirect base classes along with their associated
1378  // namespaces.
1379  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1380  Bases.push_back(Class);
1381  while (!Bases.empty()) {
1382    // Pop this class off the stack.
1383    Class = Bases.back();
1384    Bases.pop_back();
1385
1386    // Visit the base classes.
1387    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1388                                         BaseEnd = Class->bases_end();
1389         Base != BaseEnd; ++Base) {
1390      const RecordType *BaseType = Base->getType()->getAsRecordType();
1391      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1392      if (AssociatedClasses.insert(BaseDecl)) {
1393        // Find the associated namespace for this base class.
1394        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1395        while (BaseCtx->isRecord())
1396          BaseCtx = BaseCtx->getParent();
1397        if (NamespaceDecl *EnclosingNamespace
1398              = dyn_cast<NamespaceDecl>(BaseCtx))
1399          AssociatedNamespaces.insert(EnclosingNamespace);
1400        else if (BaseCtx->isTranslationUnit())
1401          GlobalScope = true;
1402
1403        // Make sure we visit the bases of this base class.
1404        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1405          Bases.push_back(BaseDecl);
1406      }
1407    }
1408  }
1409}
1410
1411// \brief Add the associated classes and namespaces for
1412// argument-dependent lookup with an argument of type T
1413// (C++ [basic.lookup.koenig]p2).
1414static void
1415addAssociatedClassesAndNamespaces(QualType T,
1416                                  ASTContext &Context,
1417                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1418                                  Sema::AssociatedClassSet &AssociatedClasses,
1419                                  bool &GlobalScope) {
1420  // C++ [basic.lookup.koenig]p2:
1421  //
1422  //   For each argument type T in the function call, there is a set
1423  //   of zero or more associated namespaces and a set of zero or more
1424  //   associated classes to be considered. The sets of namespaces and
1425  //   classes is determined entirely by the types of the function
1426  //   arguments (and the namespace of any template template
1427  //   argument). Typedef names and using-declarations used to specify
1428  //   the types do not contribute to this set. The sets of namespaces
1429  //   and classes are determined in the following way:
1430  T = Context.getCanonicalType(T).getUnqualifiedType();
1431
1432  //    -- If T is a pointer to U or an array of U, its associated
1433  //       namespaces and classes are those associated with U.
1434  //
1435  // We handle this by unwrapping pointer and array types immediately,
1436  // to avoid unnecessary recursion.
1437  while (true) {
1438    if (const PointerType *Ptr = T->getAs<PointerType>())
1439      T = Ptr->getPointeeType();
1440    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1441      T = Ptr->getElementType();
1442    else
1443      break;
1444  }
1445
1446  //     -- If T is a fundamental type, its associated sets of
1447  //        namespaces and classes are both empty.
1448  if (T->getAsBuiltinType())
1449    return;
1450
1451  //     -- If T is a class type (including unions), its associated
1452  //        classes are: the class itself; the class of which it is a
1453  //        member, if any; and its direct and indirect base
1454  //        classes. Its associated namespaces are the namespaces in
1455  //        which its associated classes are defined.
1456  if (const RecordType *ClassType = T->getAsRecordType())
1457    if (CXXRecordDecl *ClassDecl
1458        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1459      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1460                                        AssociatedNamespaces,
1461                                        AssociatedClasses,
1462                                        GlobalScope);
1463      return;
1464    }
1465
1466  //     -- If T is an enumeration type, its associated namespace is
1467  //        the namespace in which it is defined. If it is class
1468  //        member, its associated class is the member’s class; else
1469  //        it has no associated class.
1470  if (const EnumType *EnumT = T->getAsEnumType()) {
1471    EnumDecl *Enum = EnumT->getDecl();
1472
1473    DeclContext *Ctx = Enum->getDeclContext();
1474    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1475      AssociatedClasses.insert(EnclosingClass);
1476
1477    // Add the associated namespace for this class.
1478    while (Ctx->isRecord())
1479      Ctx = Ctx->getParent();
1480    if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1481      AssociatedNamespaces.insert(EnclosingNamespace);
1482    else if (Ctx->isTranslationUnit())
1483      GlobalScope = true;
1484
1485    return;
1486  }
1487
1488  //     -- If T is a function type, its associated namespaces and
1489  //        classes are those associated with the function parameter
1490  //        types and those associated with the return type.
1491  if (const FunctionType *FunctionType = T->getAsFunctionType()) {
1492    // Return type
1493    addAssociatedClassesAndNamespaces(FunctionType->getResultType(),
1494                                      Context,
1495                                      AssociatedNamespaces, AssociatedClasses,
1496                                      GlobalScope);
1497
1498    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FunctionType);
1499    if (!Proto)
1500      return;
1501
1502    // Argument types
1503    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1504                                           ArgEnd = Proto->arg_type_end();
1505         Arg != ArgEnd; ++Arg)
1506      addAssociatedClassesAndNamespaces(*Arg, Context,
1507                                        AssociatedNamespaces, AssociatedClasses,
1508                                        GlobalScope);
1509
1510    return;
1511  }
1512
1513  //     -- If T is a pointer to a member function of a class X, its
1514  //        associated namespaces and classes are those associated
1515  //        with the function parameter types and return type,
1516  //        together with those associated with X.
1517  //
1518  //     -- If T is a pointer to a data member of class X, its
1519  //        associated namespaces and classes are those associated
1520  //        with the member type together with those associated with
1521  //        X.
1522  if (const MemberPointerType *MemberPtr = T->getAsMemberPointerType()) {
1523    // Handle the type that the pointer to member points to.
1524    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1525                                      Context,
1526                                      AssociatedNamespaces, AssociatedClasses,
1527                                      GlobalScope);
1528
1529    // Handle the class type into which this points.
1530    if (const RecordType *Class = MemberPtr->getClass()->getAsRecordType())
1531      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1532                                        Context,
1533                                        AssociatedNamespaces, AssociatedClasses,
1534                                        GlobalScope);
1535
1536    return;
1537  }
1538
1539  // FIXME: What about block pointers?
1540  // FIXME: What about Objective-C message sends?
1541}
1542
1543/// \brief Find the associated classes and namespaces for
1544/// argument-dependent lookup for a call with the given set of
1545/// arguments.
1546///
1547/// This routine computes the sets of associated classes and associated
1548/// namespaces searched by argument-dependent lookup
1549/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1550void
1551Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1552                                 AssociatedNamespaceSet &AssociatedNamespaces,
1553                                 AssociatedClassSet &AssociatedClasses,
1554                                         bool &GlobalScope) {
1555  AssociatedNamespaces.clear();
1556  AssociatedClasses.clear();
1557
1558  // C++ [basic.lookup.koenig]p2:
1559  //   For each argument type T in the function call, there is a set
1560  //   of zero or more associated namespaces and a set of zero or more
1561  //   associated classes to be considered. The sets of namespaces and
1562  //   classes is determined entirely by the types of the function
1563  //   arguments (and the namespace of any template template
1564  //   argument).
1565  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1566    Expr *Arg = Args[ArgIdx];
1567
1568    if (Arg->getType() != Context.OverloadTy) {
1569      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1570                                        AssociatedNamespaces, AssociatedClasses,
1571                                        GlobalScope);
1572      continue;
1573    }
1574
1575    // [...] In addition, if the argument is the name or address of a
1576    // set of overloaded functions and/or function templates, its
1577    // associated classes and namespaces are the union of those
1578    // associated with each of the members of the set: the namespace
1579    // in which the function or function template is defined and the
1580    // classes and namespaces associated with its (non-dependent)
1581    // parameter types and return type.
1582    DeclRefExpr *DRE = 0;
1583    TemplateIdRefExpr *TIRE = 0;
1584    Arg = Arg->IgnoreParens();
1585    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1586      if (unaryOp->getOpcode() == UnaryOperator::AddrOf) {
1587        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1588        TIRE = dyn_cast<TemplateIdRefExpr>(unaryOp->getSubExpr());
1589      }
1590    } else {
1591      DRE = dyn_cast<DeclRefExpr>(Arg);
1592      TIRE = dyn_cast<TemplateIdRefExpr>(Arg);
1593    }
1594
1595    OverloadedFunctionDecl *Ovl = 0;
1596    if (DRE)
1597      Ovl = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1598    else if (TIRE)
1599      Ovl = dyn_cast_or_null<OverloadedFunctionDecl>(
1600                                  TIRE->getTemplateName().getAsTemplateDecl());
1601    if (!Ovl)
1602      continue;
1603
1604    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1605                                                FuncEnd = Ovl->function_end();
1606         Func != FuncEnd; ++Func) {
1607      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*Func);
1608      if (!FDecl)
1609        FDecl = cast<FunctionTemplateDecl>(*Func)->getTemplatedDecl();
1610
1611      // Add the namespace in which this function was defined. Note
1612      // that, if this is a member function, we do *not* consider the
1613      // enclosing namespace of its class.
1614      DeclContext *Ctx = FDecl->getDeclContext();
1615      if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
1616        AssociatedNamespaces.insert(EnclosingNamespace);
1617      else if (Ctx->isTranslationUnit())
1618        GlobalScope = true;
1619
1620      // Add the classes and namespaces associated with the parameter
1621      // types and return type of this function.
1622      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1623                                        AssociatedNamespaces, AssociatedClasses,
1624                                        GlobalScope);
1625    }
1626  }
1627}
1628
1629/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1630/// an acceptable non-member overloaded operator for a call whose
1631/// arguments have types T1 (and, if non-empty, T2). This routine
1632/// implements the check in C++ [over.match.oper]p3b2 concerning
1633/// enumeration types.
1634static bool
1635IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1636                                       QualType T1, QualType T2,
1637                                       ASTContext &Context) {
1638  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1639    return true;
1640
1641  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1642    return true;
1643
1644  const FunctionProtoType *Proto = Fn->getType()->getAsFunctionProtoType();
1645  if (Proto->getNumArgs() < 1)
1646    return false;
1647
1648  if (T1->isEnumeralType()) {
1649    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1650    if (Context.getCanonicalType(T1).getUnqualifiedType()
1651          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1652      return true;
1653  }
1654
1655  if (Proto->getNumArgs() < 2)
1656    return false;
1657
1658  if (!T2.isNull() && T2->isEnumeralType()) {
1659    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1660    if (Context.getCanonicalType(T2).getUnqualifiedType()
1661          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1662      return true;
1663  }
1664
1665  return false;
1666}
1667
1668/// \brief Find the protocol with the given name, if any.
1669ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1670  Decl *D = LookupName(TUScope, II, LookupObjCProtocolName).getAsDecl();
1671  return cast_or_null<ObjCProtocolDecl>(D);
1672}
1673
1674/// \brief Find the Objective-C implementation with the given name, if
1675/// any.
1676ObjCImplementationDecl *Sema::LookupObjCImplementation(IdentifierInfo *II) {
1677  Decl *D = LookupName(TUScope, II, LookupObjCImplementationName).getAsDecl();
1678  return cast_or_null<ObjCImplementationDecl>(D);
1679}
1680
1681/// \brief Find the Objective-C category implementation with the given
1682/// name, if any.
1683ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
1684  Decl *D = LookupName(TUScope, II, LookupObjCCategoryImplName).getAsDecl();
1685  return cast_or_null<ObjCCategoryImplDecl>(D);
1686}
1687
1688void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1689                                        QualType T1, QualType T2,
1690                                        FunctionSet &Functions) {
1691  // C++ [over.match.oper]p3:
1692  //     -- The set of non-member candidates is the result of the
1693  //        unqualified lookup of operator@ in the context of the
1694  //        expression according to the usual rules for name lookup in
1695  //        unqualified function calls (3.4.2) except that all member
1696  //        functions are ignored. However, if no operand has a class
1697  //        type, only those non-member functions in the lookup set
1698  //        that have a first parameter of type T1 or “reference to
1699  //        (possibly cv-qualified) T1”, when T1 is an enumeration
1700  //        type, or (if there is a right operand) a second parameter
1701  //        of type T2 or “reference to (possibly cv-qualified) T2”,
1702  //        when T2 is an enumeration type, are candidate functions.
1703  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1704  LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
1705
1706  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1707
1708  if (!Operators)
1709    return;
1710
1711  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1712       Op != OpEnd; ++Op) {
1713    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1714      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1715        Functions.insert(FD); // FIXME: canonical FD
1716    } else if (FunctionTemplateDecl *FunTmpl
1717                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1718      // FIXME: friend operators?
1719      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1720      // later?
1721      if (!FunTmpl->getDeclContext()->isRecord())
1722        Functions.insert(FunTmpl);
1723    }
1724  }
1725}
1726
1727void Sema::ArgumentDependentLookup(DeclarationName Name,
1728                                   Expr **Args, unsigned NumArgs,
1729                                   FunctionSet &Functions) {
1730  // Find all of the associated namespaces and classes based on the
1731  // arguments we have.
1732  AssociatedNamespaceSet AssociatedNamespaces;
1733  AssociatedClassSet AssociatedClasses;
1734  bool GlobalScope = false;
1735  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1736                                     AssociatedNamespaces, AssociatedClasses,
1737                                     GlobalScope);
1738
1739  // C++ [basic.lookup.argdep]p3:
1740  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1741  //   and let Y be the lookup set produced by argument dependent
1742  //   lookup (defined as follows). If X contains [...] then Y is
1743  //   empty. Otherwise Y is the set of declarations found in the
1744  //   namespaces associated with the argument types as described
1745  //   below. The set of declarations found by the lookup of the name
1746  //   is the union of X and Y.
1747  //
1748  // Here, we compute Y and add its members to the overloaded
1749  // candidate set.
1750  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1751                                     NSEnd = AssociatedNamespaces.end();
1752       NS != NSEnd; ++NS) {
1753    //   When considering an associated namespace, the lookup is the
1754    //   same as the lookup performed when the associated namespace is
1755    //   used as a qualifier (3.4.3.2) except that:
1756    //
1757    //     -- Any using-directives in the associated namespace are
1758    //        ignored.
1759    //
1760    //     -- FIXME: Any namespace-scope friend functions declared in
1761    //        associated classes are visible within their respective
1762    //        namespaces even if they are not visible during an ordinary
1763    //        lookup (11.4).
1764    DeclContext::lookup_iterator I, E;
1765    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1766      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*I))
1767        Functions.insert(Func);
1768      else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*I))
1769        Functions.insert(FunTmpl);
1770    }
1771  }
1772
1773  if (GlobalScope) {
1774    DeclContext::lookup_iterator I, E;
1775    for (llvm::tie(I, E)
1776           = Context.getTranslationUnitDecl()->lookup(Name);
1777         I != E; ++I) {
1778      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*I))
1779        Functions.insert(Func);
1780      else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*I))
1781        Functions.insert(FunTmpl);
1782    }
1783  }
1784}
1785