SemaLookup.cpp revision ff7bf10d1cb8274573589a41fd570396d7abb2ed
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/Support/ErrorHandling.h"
29#include <set>
30#include <vector>
31#include <iterator>
32#include <utility>
33#include <algorithm>
34
35using namespace clang;
36
37namespace {
38  class UnqualUsingEntry {
39    const DeclContext *Nominated;
40    const DeclContext *CommonAncestor;
41
42  public:
43    UnqualUsingEntry(const DeclContext *Nominated,
44                     const DeclContext *CommonAncestor)
45      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
46    }
47
48    const DeclContext *getCommonAncestor() const {
49      return CommonAncestor;
50    }
51
52    const DeclContext *getNominatedNamespace() const {
53      return Nominated;
54    }
55
56    // Sort by the pointer value of the common ancestor.
57    struct Comparator {
58      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
59        return L.getCommonAncestor() < R.getCommonAncestor();
60      }
61
62      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
63        return E.getCommonAncestor() < DC;
64      }
65
66      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
67        return DC < E.getCommonAncestor();
68      }
69    };
70  };
71
72  /// A collection of using directives, as used by C++ unqualified
73  /// lookup.
74  class UnqualUsingDirectiveSet {
75    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
76
77    ListTy list;
78    llvm::SmallPtrSet<DeclContext*, 8> visited;
79
80  public:
81    UnqualUsingDirectiveSet() {}
82
83    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
84      // C++ [namespace.udir]p1:
85      //   During unqualified name lookup, the names appear as if they
86      //   were declared in the nearest enclosing namespace which contains
87      //   both the using-directive and the nominated namespace.
88      DeclContext *InnermostFileDC
89        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
90      assert(InnermostFileDC && InnermostFileDC->isFileContext());
91
92      for (; S; S = S->getParent()) {
93        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
94          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
95          visit(Ctx, EffectiveDC);
96        } else {
97          Scope::udir_iterator I = S->using_directives_begin(),
98                             End = S->using_directives_end();
99
100          for (; I != End; ++I)
101            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
102        }
103      }
104    }
105
106    // Visits a context and collect all of its using directives
107    // recursively.  Treats all using directives as if they were
108    // declared in the context.
109    //
110    // A given context is only every visited once, so it is important
111    // that contexts be visited from the inside out in order to get
112    // the effective DCs right.
113    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
114      if (!visited.insert(DC))
115        return;
116
117      addUsingDirectives(DC, EffectiveDC);
118    }
119
120    // Visits a using directive and collects all of its using
121    // directives recursively.  Treats all using directives as if they
122    // were declared in the effective DC.
123    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
124      DeclContext *NS = UD->getNominatedNamespace();
125      if (!visited.insert(NS))
126        return;
127
128      addUsingDirective(UD, EffectiveDC);
129      addUsingDirectives(NS, EffectiveDC);
130    }
131
132    // Adds all the using directives in a context (and those nominated
133    // by its using directives, transitively) as if they appeared in
134    // the given effective context.
135    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
136      llvm::SmallVector<DeclContext*,4> queue;
137      while (true) {
138        DeclContext::udir_iterator I, End;
139        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
140          UsingDirectiveDecl *UD = *I;
141          DeclContext *NS = UD->getNominatedNamespace();
142          if (visited.insert(NS)) {
143            addUsingDirective(UD, EffectiveDC);
144            queue.push_back(NS);
145          }
146        }
147
148        if (queue.empty())
149          return;
150
151        DC = queue.back();
152        queue.pop_back();
153      }
154    }
155
156    // Add a using directive as if it had been declared in the given
157    // context.  This helps implement C++ [namespace.udir]p3:
158    //   The using-directive is transitive: if a scope contains a
159    //   using-directive that nominates a second namespace that itself
160    //   contains using-directives, the effect is as if the
161    //   using-directives from the second namespace also appeared in
162    //   the first.
163    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
164      // Find the common ancestor between the effective context and
165      // the nominated namespace.
166      DeclContext *Common = UD->getNominatedNamespace();
167      while (!Common->Encloses(EffectiveDC))
168        Common = Common->getParent();
169      Common = Common->getPrimaryContext();
170
171      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
172    }
173
174    void done() {
175      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
176    }
177
178    typedef ListTy::iterator iterator;
179    typedef ListTy::const_iterator const_iterator;
180
181    iterator begin() { return list.begin(); }
182    iterator end() { return list.end(); }
183    const_iterator begin() const { return list.begin(); }
184    const_iterator end() const { return list.end(); }
185
186    std::pair<const_iterator,const_iterator>
187    getNamespacesFor(DeclContext *DC) const {
188      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
189                              UnqualUsingEntry::Comparator());
190    }
191  };
192}
193
194// Retrieve the set of identifier namespaces that correspond to a
195// specific kind of name lookup.
196inline unsigned
197getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
198                                          bool CPlusPlus) {
199  unsigned IDNS = 0;
200  switch (NameKind) {
201  case Sema::LookupOrdinaryName:
202  case Sema::LookupOperatorName:
203  case Sema::LookupRedeclarationWithLinkage:
204    IDNS = Decl::IDNS_Ordinary;
205    if (CPlusPlus)
206      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
207    break;
208
209  case Sema::LookupTagName:
210    IDNS = Decl::IDNS_Tag;
211    break;
212
213  case Sema::LookupMemberName:
214    IDNS = Decl::IDNS_Member;
215    if (CPlusPlus)
216      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
217    break;
218
219  case Sema::LookupNestedNameSpecifierName:
220  case Sema::LookupNamespaceName:
221    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
222    break;
223
224  case Sema::LookupObjCProtocolName:
225    IDNS = Decl::IDNS_ObjCProtocol;
226    break;
227
228  case Sema::LookupObjCImplementationName:
229    IDNS = Decl::IDNS_ObjCImplementation;
230    break;
231
232  case Sema::LookupObjCCategoryImplName:
233    IDNS = Decl::IDNS_ObjCCategoryImpl;
234    break;
235  }
236  return IDNS;
237}
238
239// Necessary because CXXBasePaths is not complete in Sema.h
240void Sema::LookupResult::deletePaths(CXXBasePaths *Paths) {
241  delete Paths;
242}
243
244void Sema::LookupResult::resolveKind() {
245  unsigned N = Decls.size();
246
247  // Fast case: no possible ambiguity.
248  if (N <= 1) return;
249
250  // Don't do any extra resolution if we've already resolved as ambiguous.
251  if (ResultKind == Ambiguous) return;
252
253  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
254
255  bool Ambiguous = false;
256  bool HasTag = false, HasFunction = false, HasNonFunction = false;
257
258  unsigned UniqueTagIndex = 0;
259
260  unsigned I = 0;
261  while (I < N) {
262    NamedDecl *D = Decls[I];
263    assert(D == D->getUnderlyingDecl());
264
265    NamedDecl *CanonD = cast<NamedDecl>(D->getCanonicalDecl());
266    if (!Unique.insert(CanonD)) {
267      // If it's not unique, pull something off the back (and
268      // continue at this index).
269      Decls[I] = Decls[--N];
270    } else if (isa<UnresolvedUsingDecl>(D)) {
271      // FIXME: proper support for UnresolvedUsingDecls.
272      Decls[I] = Decls[--N];
273    } else {
274      // Otherwise, do some decl type analysis and then continue.
275      if (isa<TagDecl>(D)) {
276        if (HasTag)
277          Ambiguous = true;
278        UniqueTagIndex = I;
279        HasTag = true;
280      } else if (D->isFunctionOrFunctionTemplate()) {
281        HasFunction = true;
282      } else {
283        if (HasNonFunction)
284          Ambiguous = true;
285        HasNonFunction = true;
286      }
287      I++;
288    }
289  }
290
291  // C++ [basic.scope.hiding]p2:
292  //   A class name or enumeration name can be hidden by the name of
293  //   an object, function, or enumerator declared in the same
294  //   scope. If a class or enumeration name and an object, function,
295  //   or enumerator are declared in the same scope (in any order)
296  //   with the same name, the class or enumeration name is hidden
297  //   wherever the object, function, or enumerator name is visible.
298  // But it's still an error if there are distinct tag types found,
299  // even if they're not visible. (ref?)
300  if (HasTag && !Ambiguous && (HasFunction || HasNonFunction))
301    Decls[UniqueTagIndex] = Decls[--N];
302
303  Decls.set_size(N);
304
305  if (HasFunction && HasNonFunction)
306    Ambiguous = true;
307
308  if (Ambiguous)
309    setAmbiguous(LookupResult::AmbiguousReference);
310  else if (N > 1)
311    ResultKind = LookupResult::FoundOverloaded;
312  else
313    ResultKind = LookupResult::Found;
314}
315
316/// @brief Converts the result of name lookup into a single (possible
317/// NULL) pointer to a declaration.
318///
319/// The resulting declaration will either be the declaration we found
320/// (if only a single declaration was found), an
321/// OverloadedFunctionDecl (if an overloaded function was found), or
322/// NULL (if no declaration was found). This conversion must not be
323/// used anywhere where name lookup could result in an ambiguity.
324///
325/// The OverloadedFunctionDecl conversion is meant as a stop-gap
326/// solution, since it causes the OverloadedFunctionDecl to be
327/// leaked. FIXME: Eventually, there will be a better way to iterate
328/// over the set of overloaded functions returned by name lookup.
329NamedDecl *Sema::LookupResult::getAsSingleDecl(ASTContext &C) const {
330  size_t size = Decls.size();
331  if (size == 0) return 0;
332  if (size == 1) return *begin();
333
334  if (isAmbiguous()) return 0;
335
336  iterator I = begin(), E = end();
337
338  OverloadedFunctionDecl *Ovl
339    = OverloadedFunctionDecl::Create(C, (*I)->getDeclContext(),
340                                        (*I)->getDeclName());
341  for (; I != E; ++I) {
342    NamedDecl *ND = *I;
343    assert(ND->getUnderlyingDecl() == ND
344           && "decls in lookup result should have redirections stripped");
345    assert(ND->isFunctionOrFunctionTemplate());
346    if (isa<FunctionDecl>(ND))
347      Ovl->addOverload(cast<FunctionDecl>(ND));
348    else
349      Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
350    // FIXME: UnresolvedUsingDecls.
351  }
352
353  return Ovl;
354}
355
356void Sema::LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
357  CXXBasePaths::paths_iterator I, E;
358  DeclContext::lookup_iterator DI, DE;
359  for (I = P.begin(), E = P.end(); I != E; ++I)
360    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
361      addDecl(*DI);
362}
363
364void Sema::LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
365  Paths = new CXXBasePaths;
366  Paths->swap(P);
367  addDeclsFromBasePaths(*Paths);
368  resolveKind();
369  setAmbiguous(AmbiguousBaseSubobjects);
370}
371
372void Sema::LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
373  Paths = new CXXBasePaths;
374  Paths->swap(P);
375  addDeclsFromBasePaths(*Paths);
376  resolveKind();
377  setAmbiguous(AmbiguousBaseSubobjectTypes);
378}
379
380void Sema::LookupResult::print(llvm::raw_ostream &Out) {
381  Out << Decls.size() << " result(s)";
382  if (isAmbiguous()) Out << ", ambiguous";
383  if (Paths) Out << ", base paths present";
384
385  for (iterator I = begin(), E = end(); I != E; ++I) {
386    Out << "\n";
387    (*I)->print(Out, 2);
388  }
389}
390
391// Adds all qualifying matches for a name within a decl context to the
392// given lookup result.  Returns true if any matches were found.
393static bool LookupDirect(Sema::LookupResult &R,
394                         const DeclContext *DC) {
395  bool Found = false;
396
397  DeclContext::lookup_const_iterator I, E;
398  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I)
399    if (Sema::isAcceptableLookupResult(*I, R.getLookupKind(),
400                                       R.getIdentifierNamespace()))
401      R.addDecl(*I), Found = true;
402
403  return Found;
404}
405
406// Performs C++ unqualified lookup into the given file context.
407static bool
408CppNamespaceLookup(Sema::LookupResult &R, ASTContext &Context, DeclContext *NS,
409                   UnqualUsingDirectiveSet &UDirs) {
410
411  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
412
413  // Perform direct name lookup into the LookupCtx.
414  bool Found = LookupDirect(R, NS);
415
416  // Perform direct name lookup into the namespaces nominated by the
417  // using directives whose common ancestor is this namespace.
418  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
419  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
420
421  for (; UI != UEnd; ++UI)
422    if (LookupDirect(R, UI->getNominatedNamespace()))
423      Found = true;
424
425  R.resolveKind();
426
427  return Found;
428}
429
430static bool isNamespaceOrTranslationUnitScope(Scope *S) {
431  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
432    return Ctx->isFileContext();
433  return false;
434}
435
436// Find the next outer declaration context corresponding to this scope.
437static DeclContext *findOuterContext(Scope *S) {
438  for (S = S->getParent(); S; S = S->getParent())
439    if (S->getEntity())
440      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
441
442  return 0;
443}
444
445bool Sema::CppLookupName(LookupResult &R, Scope *S) {
446  assert(getLangOptions().CPlusPlus &&
447         "Can perform only C++ lookup");
448  LookupNameKind NameKind = R.getLookupKind();
449  unsigned IDNS
450    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
451
452  // If we're testing for redeclarations, also look in the friend namespaces.
453  if (R.isForRedeclaration()) {
454    if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend;
455    if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend;
456  }
457
458  R.setIdentifierNamespace(IDNS);
459
460  DeclarationName Name = R.getLookupName();
461
462  Scope *Initial = S;
463  IdentifierResolver::iterator
464    I = IdResolver.begin(Name),
465    IEnd = IdResolver.end();
466
467  // First we lookup local scope.
468  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
469  // ...During unqualified name lookup (3.4.1), the names appear as if
470  // they were declared in the nearest enclosing namespace which contains
471  // both the using-directive and the nominated namespace.
472  // [Note: in this context, "contains" means "contains directly or
473  // indirectly".
474  //
475  // For example:
476  // namespace A { int i; }
477  // void foo() {
478  //   int i;
479  //   {
480  //     using namespace A;
481  //     ++i; // finds local 'i', A::i appears at global scope
482  //   }
483  // }
484  //
485  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
486    // Check whether the IdResolver has anything in this scope.
487    bool Found = false;
488    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
489      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
490        Found = true;
491        R.addDecl(*I);
492      }
493    }
494    if (Found) {
495      R.resolveKind();
496      return true;
497    }
498
499    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
500      DeclContext *OuterCtx = findOuterContext(S);
501      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
502           Ctx = Ctx->getLookupParent()) {
503        if (Ctx->isFunctionOrMethod())
504          continue;
505
506        // Perform qualified name lookup into this context.
507        // FIXME: In some cases, we know that every name that could be found by
508        // this qualified name lookup will also be on the identifier chain. For
509        // example, inside a class without any base classes, we never need to
510        // perform qualified lookup because all of the members are on top of the
511        // identifier chain.
512        if (LookupQualifiedName(R, Ctx))
513          return true;
514      }
515    }
516  }
517
518  // Stop if we ran out of scopes.
519  // FIXME:  This really, really shouldn't be happening.
520  if (!S) return false;
521
522  // Collect UsingDirectiveDecls in all scopes, and recursively all
523  // nominated namespaces by those using-directives.
524  //
525  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
526  // don't build it for each lookup!
527
528  UnqualUsingDirectiveSet UDirs;
529  UDirs.visitScopeChain(Initial, S);
530  UDirs.done();
531
532  // Lookup namespace scope, and global scope.
533  // Unqualified name lookup in C++ requires looking into scopes
534  // that aren't strictly lexical, and therefore we walk through the
535  // context as well as walking through the scopes.
536
537  for (; S; S = S->getParent()) {
538    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
539    if (Ctx->isTransparentContext())
540      continue;
541
542    assert(Ctx && Ctx->isFileContext() &&
543           "We should have been looking only at file context here already.");
544
545    // Check whether the IdResolver has anything in this scope.
546    bool Found = false;
547    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
548      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
549        // We found something.  Look for anything else in our scope
550        // with this same name and in an acceptable identifier
551        // namespace, so that we can construct an overload set if we
552        // need to.
553        Found = true;
554        R.addDecl(*I);
555      }
556    }
557
558    // Look into context considering using-directives.
559    if (CppNamespaceLookup(R, Context, Ctx, UDirs))
560      Found = true;
561
562    if (Found) {
563      R.resolveKind();
564      return true;
565    }
566
567    if (R.isForRedeclaration() && !Ctx->isTransparentContext())
568      return false;
569  }
570
571  return !R.empty();
572}
573
574/// @brief Perform unqualified name lookup starting from a given
575/// scope.
576///
577/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
578/// used to find names within the current scope. For example, 'x' in
579/// @code
580/// int x;
581/// int f() {
582///   return x; // unqualified name look finds 'x' in the global scope
583/// }
584/// @endcode
585///
586/// Different lookup criteria can find different names. For example, a
587/// particular scope can have both a struct and a function of the same
588/// name, and each can be found by certain lookup criteria. For more
589/// information about lookup criteria, see the documentation for the
590/// class LookupCriteria.
591///
592/// @param S        The scope from which unqualified name lookup will
593/// begin. If the lookup criteria permits, name lookup may also search
594/// in the parent scopes.
595///
596/// @param Name     The name of the entity that we are searching for.
597///
598/// @param Loc      If provided, the source location where we're performing
599/// name lookup. At present, this is only used to produce diagnostics when
600/// C library functions (like "malloc") are implicitly declared.
601///
602/// @returns The result of name lookup, which includes zero or more
603/// declarations and possibly additional information used to diagnose
604/// ambiguities.
605bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
606  DeclarationName Name = R.getLookupName();
607  if (!Name) return false;
608
609  LookupNameKind NameKind = R.getLookupKind();
610
611  if (!getLangOptions().CPlusPlus) {
612    // Unqualified name lookup in C/Objective-C is purely lexical, so
613    // search in the declarations attached to the name.
614    unsigned IDNS = 0;
615    switch (NameKind) {
616    case Sema::LookupOrdinaryName:
617      IDNS = Decl::IDNS_Ordinary;
618      break;
619
620    case Sema::LookupTagName:
621      IDNS = Decl::IDNS_Tag;
622      break;
623
624    case Sema::LookupMemberName:
625      IDNS = Decl::IDNS_Member;
626      break;
627
628    case Sema::LookupOperatorName:
629    case Sema::LookupNestedNameSpecifierName:
630    case Sema::LookupNamespaceName:
631      assert(false && "C does not perform these kinds of name lookup");
632      break;
633
634    case Sema::LookupRedeclarationWithLinkage:
635      // Find the nearest non-transparent declaration scope.
636      while (!(S->getFlags() & Scope::DeclScope) ||
637             (S->getEntity() &&
638              static_cast<DeclContext *>(S->getEntity())
639                ->isTransparentContext()))
640        S = S->getParent();
641      IDNS = Decl::IDNS_Ordinary;
642      break;
643
644    case Sema::LookupObjCProtocolName:
645      IDNS = Decl::IDNS_ObjCProtocol;
646      break;
647
648    case Sema::LookupObjCImplementationName:
649      IDNS = Decl::IDNS_ObjCImplementation;
650      break;
651
652    case Sema::LookupObjCCategoryImplName:
653      IDNS = Decl::IDNS_ObjCCategoryImpl;
654      break;
655    }
656
657    // Scan up the scope chain looking for a decl that matches this
658    // identifier that is in the appropriate namespace.  This search
659    // should not take long, as shadowing of names is uncommon, and
660    // deep shadowing is extremely uncommon.
661    bool LeftStartingScope = false;
662
663    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
664                                   IEnd = IdResolver.end();
665         I != IEnd; ++I)
666      if ((*I)->isInIdentifierNamespace(IDNS)) {
667        if (NameKind == LookupRedeclarationWithLinkage) {
668          // Determine whether this (or a previous) declaration is
669          // out-of-scope.
670          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
671            LeftStartingScope = true;
672
673          // If we found something outside of our starting scope that
674          // does not have linkage, skip it.
675          if (LeftStartingScope && !((*I)->hasLinkage()))
676            continue;
677        }
678
679        R.addDecl(*I);
680
681        if ((*I)->getAttr<OverloadableAttr>()) {
682          // If this declaration has the "overloadable" attribute, we
683          // might have a set of overloaded functions.
684
685          // Figure out what scope the identifier is in.
686          while (!(S->getFlags() & Scope::DeclScope) ||
687                 !S->isDeclScope(DeclPtrTy::make(*I)))
688            S = S->getParent();
689
690          // Find the last declaration in this scope (with the same
691          // name, naturally).
692          IdentifierResolver::iterator LastI = I;
693          for (++LastI; LastI != IEnd; ++LastI) {
694            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
695              break;
696            R.addDecl(*LastI);
697          }
698        }
699
700        R.resolveKind();
701
702        return true;
703      }
704  } else {
705    // Perform C++ unqualified name lookup.
706    if (CppLookupName(R, S))
707      return true;
708  }
709
710  // If we didn't find a use of this identifier, and if the identifier
711  // corresponds to a compiler builtin, create the decl object for the builtin
712  // now, injecting it into translation unit scope, and return it.
713  if (NameKind == LookupOrdinaryName ||
714      NameKind == LookupRedeclarationWithLinkage) {
715    IdentifierInfo *II = Name.getAsIdentifierInfo();
716    if (II && AllowBuiltinCreation) {
717      // If this is a builtin on this (or all) targets, create the decl.
718      if (unsigned BuiltinID = II->getBuiltinID()) {
719        // In C++, we don't have any predefined library functions like
720        // 'malloc'. Instead, we'll just error.
721        if (getLangOptions().CPlusPlus &&
722            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
723          return false;
724
725        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
726                                           S, R.isForRedeclaration(),
727                                           R.getNameLoc());
728        if (D) R.addDecl(D);
729        return (D != NULL);
730      }
731    }
732  }
733  return false;
734}
735
736/// @brief Perform qualified name lookup in the namespaces nominated by
737/// using directives by the given context.
738///
739/// C++98 [namespace.qual]p2:
740///   Given X::m (where X is a user-declared namespace), or given ::m
741///   (where X is the global namespace), let S be the set of all
742///   declarations of m in X and in the transitive closure of all
743///   namespaces nominated by using-directives in X and its used
744///   namespaces, except that using-directives are ignored in any
745///   namespace, including X, directly containing one or more
746///   declarations of m. No namespace is searched more than once in
747///   the lookup of a name. If S is the empty set, the program is
748///   ill-formed. Otherwise, if S has exactly one member, or if the
749///   context of the reference is a using-declaration
750///   (namespace.udecl), S is the required set of declarations of
751///   m. Otherwise if the use of m is not one that allows a unique
752///   declaration to be chosen from S, the program is ill-formed.
753/// C++98 [namespace.qual]p5:
754///   During the lookup of a qualified namespace member name, if the
755///   lookup finds more than one declaration of the member, and if one
756///   declaration introduces a class name or enumeration name and the
757///   other declarations either introduce the same object, the same
758///   enumerator or a set of functions, the non-type name hides the
759///   class or enumeration name if and only if the declarations are
760///   from the same namespace; otherwise (the declarations are from
761///   different namespaces), the program is ill-formed.
762static bool LookupQualifiedNameInUsingDirectives(Sema::LookupResult &R,
763                                                 DeclContext *StartDC) {
764  assert(StartDC->isFileContext() && "start context is not a file context");
765
766  DeclContext::udir_iterator I = StartDC->using_directives_begin();
767  DeclContext::udir_iterator E = StartDC->using_directives_end();
768
769  if (I == E) return false;
770
771  // We have at least added all these contexts to the queue.
772  llvm::DenseSet<DeclContext*> Visited;
773  Visited.insert(StartDC);
774
775  // We have not yet looked into these namespaces, much less added
776  // their "using-children" to the queue.
777  llvm::SmallVector<NamespaceDecl*, 8> Queue;
778
779  // We have already looked into the initial namespace; seed the queue
780  // with its using-children.
781  for (; I != E; ++I) {
782    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
783    if (Visited.insert(ND).second)
784      Queue.push_back(ND);
785  }
786
787  // The easiest way to implement the restriction in [namespace.qual]p5
788  // is to check whether any of the individual results found a tag
789  // and, if so, to declare an ambiguity if the final result is not
790  // a tag.
791  bool FoundTag = false;
792  bool FoundNonTag = false;
793
794  Sema::LookupResult LocalR(Sema::LookupResult::Temporary, R);
795
796  bool Found = false;
797  while (!Queue.empty()) {
798    NamespaceDecl *ND = Queue.back();
799    Queue.pop_back();
800
801    // We go through some convolutions here to avoid copying results
802    // between LookupResults.
803    bool UseLocal = !R.empty();
804    Sema::LookupResult &DirectR = UseLocal ? LocalR : R;
805    bool FoundDirect = LookupDirect(DirectR, ND);
806
807    if (FoundDirect) {
808      // First do any local hiding.
809      DirectR.resolveKind();
810
811      // If the local result is a tag, remember that.
812      if (DirectR.isSingleTagDecl())
813        FoundTag = true;
814      else
815        FoundNonTag = true;
816
817      // Append the local results to the total results if necessary.
818      if (UseLocal) {
819        R.addAllDecls(LocalR);
820        LocalR.clear();
821      }
822    }
823
824    // If we find names in this namespace, ignore its using directives.
825    if (FoundDirect) {
826      Found = true;
827      continue;
828    }
829
830    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
831      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
832      if (Visited.insert(Nom).second)
833        Queue.push_back(Nom);
834    }
835  }
836
837  if (Found) {
838    if (FoundTag && FoundNonTag)
839      R.setAmbiguousQualifiedTagHiding();
840    else
841      R.resolveKind();
842  }
843
844  return Found;
845}
846
847/// @brief Perform qualified name lookup into a given context.
848///
849/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
850/// names when the context of those names is explicit specified, e.g.,
851/// "std::vector" or "x->member".
852///
853/// Different lookup criteria can find different names. For example, a
854/// particular scope can have both a struct and a function of the same
855/// name, and each can be found by certain lookup criteria. For more
856/// information about lookup criteria, see the documentation for the
857/// class LookupCriteria.
858///
859/// @param LookupCtx The context in which qualified name lookup will
860/// search. If the lookup criteria permits, name lookup may also search
861/// in the parent contexts or (for C++ classes) base classes.
862///
863/// @param Name     The name of the entity that we are searching for.
864///
865/// @param Criteria The criteria that this routine will use to
866/// determine which names are visible and which names will be
867/// found. Note that name lookup will find a name that is visible by
868/// the given criteria, but the entity itself may not be semantically
869/// correct or even the kind of entity expected based on the
870/// lookup. For example, searching for a nested-name-specifier name
871/// might result in an EnumDecl, which is visible but is not permitted
872/// as a nested-name-specifier in C++03.
873///
874/// @returns The result of name lookup, which includes zero or more
875/// declarations and possibly additional information used to diagnose
876/// ambiguities.
877bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx) {
878  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
879
880  if (!R.getLookupName())
881    return false;
882
883  // If we're performing qualified name lookup (e.g., lookup into a
884  // struct), find fields as part of ordinary name lookup.
885  LookupNameKind NameKind = R.getLookupKind();
886  unsigned IDNS
887    = getIdentifierNamespacesFromLookupNameKind(NameKind,
888                                                getLangOptions().CPlusPlus);
889  if (NameKind == LookupOrdinaryName)
890    IDNS |= Decl::IDNS_Member;
891
892  R.setIdentifierNamespace(IDNS);
893
894  // Make sure that the declaration context is complete.
895  assert((!isa<TagDecl>(LookupCtx) ||
896          LookupCtx->isDependentContext() ||
897          cast<TagDecl>(LookupCtx)->isDefinition() ||
898          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
899            ->isBeingDefined()) &&
900         "Declaration context must already be complete!");
901
902  // Perform qualified name lookup into the LookupCtx.
903  if (LookupDirect(R, LookupCtx)) {
904    R.resolveKind();
905    return true;
906  }
907
908  // Don't descend into implied contexts for redeclarations.
909  // C++98 [namespace.qual]p6:
910  //   In a declaration for a namespace member in which the
911  //   declarator-id is a qualified-id, given that the qualified-id
912  //   for the namespace member has the form
913  //     nested-name-specifier unqualified-id
914  //   the unqualified-id shall name a member of the namespace
915  //   designated by the nested-name-specifier.
916  // See also [class.mfct]p5 and [class.static.data]p2.
917  if (R.isForRedeclaration())
918    return false;
919
920  // If this is a namespace, look it up in the implied namespaces.
921  if (LookupCtx->isFileContext())
922    return LookupQualifiedNameInUsingDirectives(R, LookupCtx);
923
924  // If this isn't a C++ class, we aren't allowed to look into base
925  // classes, we're done.
926  if (!isa<CXXRecordDecl>(LookupCtx))
927    return false;
928
929  // Perform lookup into our base classes.
930  CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx);
931  CXXBasePaths Paths;
932  Paths.setOrigin(LookupRec);
933
934  // Look for this member in our base classes
935  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
936  switch (R.getLookupKind()) {
937    case LookupOrdinaryName:
938    case LookupMemberName:
939    case LookupRedeclarationWithLinkage:
940      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
941      break;
942
943    case LookupTagName:
944      BaseCallback = &CXXRecordDecl::FindTagMember;
945      break;
946
947    case LookupOperatorName:
948    case LookupNamespaceName:
949    case LookupObjCProtocolName:
950    case LookupObjCImplementationName:
951    case LookupObjCCategoryImplName:
952      // These lookups will never find a member in a C++ class (or base class).
953      return false;
954
955    case LookupNestedNameSpecifierName:
956      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
957      break;
958  }
959
960  if (!LookupRec->lookupInBases(BaseCallback,
961                                R.getLookupName().getAsOpaquePtr(), Paths))
962    return false;
963
964  // C++ [class.member.lookup]p2:
965  //   [...] If the resulting set of declarations are not all from
966  //   sub-objects of the same type, or the set has a nonstatic member
967  //   and includes members from distinct sub-objects, there is an
968  //   ambiguity and the program is ill-formed. Otherwise that set is
969  //   the result of the lookup.
970  // FIXME: support using declarations!
971  QualType SubobjectType;
972  int SubobjectNumber = 0;
973  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
974       Path != PathEnd; ++Path) {
975    const CXXBasePathElement &PathElement = Path->back();
976
977    // Determine whether we're looking at a distinct sub-object or not.
978    if (SubobjectType.isNull()) {
979      // This is the first subobject we've looked at. Record its type.
980      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
981      SubobjectNumber = PathElement.SubobjectNumber;
982    } else if (SubobjectType
983                 != Context.getCanonicalType(PathElement.Base->getType())) {
984      // We found members of the given name in two subobjects of
985      // different types. This lookup is ambiguous.
986      R.setAmbiguousBaseSubobjectTypes(Paths);
987      return true;
988    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
989      // We have a different subobject of the same type.
990
991      // C++ [class.member.lookup]p5:
992      //   A static member, a nested type or an enumerator defined in
993      //   a base class T can unambiguously be found even if an object
994      //   has more than one base class subobject of type T.
995      Decl *FirstDecl = *Path->Decls.first;
996      if (isa<VarDecl>(FirstDecl) ||
997          isa<TypeDecl>(FirstDecl) ||
998          isa<EnumConstantDecl>(FirstDecl))
999        continue;
1000
1001      if (isa<CXXMethodDecl>(FirstDecl)) {
1002        // Determine whether all of the methods are static.
1003        bool AllMethodsAreStatic = true;
1004        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1005             Func != Path->Decls.second; ++Func) {
1006          if (!isa<CXXMethodDecl>(*Func)) {
1007            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1008            break;
1009          }
1010
1011          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1012            AllMethodsAreStatic = false;
1013            break;
1014          }
1015        }
1016
1017        if (AllMethodsAreStatic)
1018          continue;
1019      }
1020
1021      // We have found a nonstatic member name in multiple, distinct
1022      // subobjects. Name lookup is ambiguous.
1023      R.setAmbiguousBaseSubobjects(Paths);
1024      return true;
1025    }
1026  }
1027
1028  // Lookup in a base class succeeded; return these results.
1029
1030  DeclContext::lookup_iterator I, E;
1031  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
1032    R.addDecl(*I);
1033  R.resolveKind();
1034  return true;
1035}
1036
1037/// @brief Performs name lookup for a name that was parsed in the
1038/// source code, and may contain a C++ scope specifier.
1039///
1040/// This routine is a convenience routine meant to be called from
1041/// contexts that receive a name and an optional C++ scope specifier
1042/// (e.g., "N::M::x"). It will then perform either qualified or
1043/// unqualified name lookup (with LookupQualifiedName or LookupName,
1044/// respectively) on the given name and return those results.
1045///
1046/// @param S        The scope from which unqualified name lookup will
1047/// begin.
1048///
1049/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1050///
1051/// @param Name     The name of the entity that name lookup will
1052/// search for.
1053///
1054/// @param Loc      If provided, the source location where we're performing
1055/// name lookup. At present, this is only used to produce diagnostics when
1056/// C library functions (like "malloc") are implicitly declared.
1057///
1058/// @param EnteringContext Indicates whether we are going to enter the
1059/// context of the scope-specifier SS (if present).
1060///
1061/// @returns True if any decls were found (but possibly ambiguous)
1062bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1063                            bool AllowBuiltinCreation, bool EnteringContext) {
1064  if (SS && SS->isInvalid()) {
1065    // When the scope specifier is invalid, don't even look for
1066    // anything.
1067    return false;
1068  }
1069
1070  if (SS && SS->isSet()) {
1071    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1072      // We have resolved the scope specifier to a particular declaration
1073      // contex, and will perform name lookup in that context.
1074      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1075        return false;
1076
1077      R.setContextRange(SS->getRange());
1078
1079      return LookupQualifiedName(R, DC);
1080    }
1081
1082    // We could not resolve the scope specified to a specific declaration
1083    // context, which means that SS refers to an unknown specialization.
1084    // Name lookup can't find anything in this case.
1085    return false;
1086  }
1087
1088  // Perform unqualified name lookup starting in the given scope.
1089  return LookupName(R, S, AllowBuiltinCreation);
1090}
1091
1092
1093/// @brief Produce a diagnostic describing the ambiguity that resulted
1094/// from name lookup.
1095///
1096/// @param Result       The ambiguous name lookup result.
1097///
1098/// @param Name         The name of the entity that name lookup was
1099/// searching for.
1100///
1101/// @param NameLoc      The location of the name within the source code.
1102///
1103/// @param LookupRange  A source range that provides more
1104/// source-location information concerning the lookup itself. For
1105/// example, this range might highlight a nested-name-specifier that
1106/// precedes the name.
1107///
1108/// @returns true
1109bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1110  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1111
1112  DeclarationName Name = Result.getLookupName();
1113  SourceLocation NameLoc = Result.getNameLoc();
1114  SourceRange LookupRange = Result.getContextRange();
1115
1116  switch (Result.getAmbiguityKind()) {
1117  case LookupResult::AmbiguousBaseSubobjects: {
1118    CXXBasePaths *Paths = Result.getBasePaths();
1119    QualType SubobjectType = Paths->front().back().Base->getType();
1120    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1121      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1122      << LookupRange;
1123
1124    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1125    while (isa<CXXMethodDecl>(*Found) &&
1126           cast<CXXMethodDecl>(*Found)->isStatic())
1127      ++Found;
1128
1129    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1130
1131    return true;
1132  }
1133
1134  case LookupResult::AmbiguousBaseSubobjectTypes: {
1135    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1136      << Name << LookupRange;
1137
1138    CXXBasePaths *Paths = Result.getBasePaths();
1139    std::set<Decl *> DeclsPrinted;
1140    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1141                                      PathEnd = Paths->end();
1142         Path != PathEnd; ++Path) {
1143      Decl *D = *Path->Decls.first;
1144      if (DeclsPrinted.insert(D).second)
1145        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1146    }
1147
1148    return true;
1149  }
1150
1151  case LookupResult::AmbiguousTagHiding: {
1152    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1153
1154    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1155
1156    LookupResult::iterator DI, DE = Result.end();
1157    for (DI = Result.begin(); DI != DE; ++DI)
1158      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1159        TagDecls.insert(TD);
1160        Diag(TD->getLocation(), diag::note_hidden_tag);
1161      }
1162
1163    for (DI = Result.begin(); DI != DE; ++DI)
1164      if (!isa<TagDecl>(*DI))
1165        Diag((*DI)->getLocation(), diag::note_hiding_object);
1166
1167    // For recovery purposes, go ahead and implement the hiding.
1168    Result.hideDecls(TagDecls);
1169
1170    return true;
1171  }
1172
1173  case LookupResult::AmbiguousReference: {
1174    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1175
1176    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1177    for (; DI != DE; ++DI)
1178      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1179
1180    return true;
1181  }
1182  }
1183
1184  llvm::llvm_unreachable("unknown ambiguity kind");
1185  return true;
1186}
1187
1188static void
1189addAssociatedClassesAndNamespaces(QualType T,
1190                                  ASTContext &Context,
1191                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1192                                  Sema::AssociatedClassSet &AssociatedClasses);
1193
1194static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1195                             DeclContext *Ctx) {
1196  if (Ctx->isFileContext())
1197    Namespaces.insert(Ctx);
1198}
1199
1200// \brief Add the associated classes and namespaces for argument-dependent
1201// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1202static void
1203addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1204                                  ASTContext &Context,
1205                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1206                                  Sema::AssociatedClassSet &AssociatedClasses) {
1207  // C++ [basic.lookup.koenig]p2, last bullet:
1208  //   -- [...] ;
1209  switch (Arg.getKind()) {
1210    case TemplateArgument::Null:
1211      break;
1212
1213    case TemplateArgument::Type:
1214      // [...] the namespaces and classes associated with the types of the
1215      // template arguments provided for template type parameters (excluding
1216      // template template parameters)
1217      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1218                                        AssociatedNamespaces,
1219                                        AssociatedClasses);
1220      break;
1221
1222    case TemplateArgument::Template: {
1223      // [...] the namespaces in which any template template arguments are
1224      // defined; and the classes in which any member templates used as
1225      // template template arguments are defined.
1226      TemplateName Template = Arg.getAsTemplate();
1227      if (ClassTemplateDecl *ClassTemplate
1228                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1229        DeclContext *Ctx = ClassTemplate->getDeclContext();
1230        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1231          AssociatedClasses.insert(EnclosingClass);
1232        // Add the associated namespace for this class.
1233        while (Ctx->isRecord())
1234          Ctx = Ctx->getParent();
1235        CollectNamespace(AssociatedNamespaces, Ctx);
1236      }
1237      break;
1238    }
1239
1240    case TemplateArgument::Declaration:
1241    case TemplateArgument::Integral:
1242    case TemplateArgument::Expression:
1243      // [Note: non-type template arguments do not contribute to the set of
1244      //  associated namespaces. ]
1245      break;
1246
1247    case TemplateArgument::Pack:
1248      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1249                                        PEnd = Arg.pack_end();
1250           P != PEnd; ++P)
1251        addAssociatedClassesAndNamespaces(*P, Context,
1252                                          AssociatedNamespaces,
1253                                          AssociatedClasses);
1254      break;
1255  }
1256}
1257
1258// \brief Add the associated classes and namespaces for
1259// argument-dependent lookup with an argument of class type
1260// (C++ [basic.lookup.koenig]p2).
1261static void
1262addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1263                                  ASTContext &Context,
1264                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1265                            Sema::AssociatedClassSet &AssociatedClasses) {
1266  // C++ [basic.lookup.koenig]p2:
1267  //   [...]
1268  //     -- If T is a class type (including unions), its associated
1269  //        classes are: the class itself; the class of which it is a
1270  //        member, if any; and its direct and indirect base
1271  //        classes. Its associated namespaces are the namespaces in
1272  //        which its associated classes are defined.
1273
1274  // Add the class of which it is a member, if any.
1275  DeclContext *Ctx = Class->getDeclContext();
1276  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1277    AssociatedClasses.insert(EnclosingClass);
1278  // Add the associated namespace for this class.
1279  while (Ctx->isRecord())
1280    Ctx = Ctx->getParent();
1281  CollectNamespace(AssociatedNamespaces, Ctx);
1282
1283  // Add the class itself. If we've already seen this class, we don't
1284  // need to visit base classes.
1285  if (!AssociatedClasses.insert(Class))
1286    return;
1287
1288  // -- If T is a template-id, its associated namespaces and classes are
1289  //    the namespace in which the template is defined; for member
1290  //    templates, the member template’s class; the namespaces and classes
1291  //    associated with the types of the template arguments provided for
1292  //    template type parameters (excluding template template parameters); the
1293  //    namespaces in which any template template arguments are defined; and
1294  //    the classes in which any member templates used as template template
1295  //    arguments are defined. [Note: non-type template arguments do not
1296  //    contribute to the set of associated namespaces. ]
1297  if (ClassTemplateSpecializationDecl *Spec
1298        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1299    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1300    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1301      AssociatedClasses.insert(EnclosingClass);
1302    // Add the associated namespace for this class.
1303    while (Ctx->isRecord())
1304      Ctx = Ctx->getParent();
1305    CollectNamespace(AssociatedNamespaces, Ctx);
1306
1307    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1308    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1309      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1310                                        AssociatedNamespaces,
1311                                        AssociatedClasses);
1312  }
1313
1314  // Add direct and indirect base classes along with their associated
1315  // namespaces.
1316  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1317  Bases.push_back(Class);
1318  while (!Bases.empty()) {
1319    // Pop this class off the stack.
1320    Class = Bases.back();
1321    Bases.pop_back();
1322
1323    // Visit the base classes.
1324    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1325                                         BaseEnd = Class->bases_end();
1326         Base != BaseEnd; ++Base) {
1327      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1328      // In dependent contexts, we do ADL twice, and the first time around,
1329      // the base type might be a dependent TemplateSpecializationType, or a
1330      // TemplateTypeParmType. If that happens, simply ignore it.
1331      // FIXME: If we want to support export, we probably need to add the
1332      // namespace of the template in a TemplateSpecializationType, or even
1333      // the classes and namespaces of known non-dependent arguments.
1334      if (!BaseType)
1335        continue;
1336      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1337      if (AssociatedClasses.insert(BaseDecl)) {
1338        // Find the associated namespace for this base class.
1339        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1340        while (BaseCtx->isRecord())
1341          BaseCtx = BaseCtx->getParent();
1342        CollectNamespace(AssociatedNamespaces, BaseCtx);
1343
1344        // Make sure we visit the bases of this base class.
1345        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1346          Bases.push_back(BaseDecl);
1347      }
1348    }
1349  }
1350}
1351
1352// \brief Add the associated classes and namespaces for
1353// argument-dependent lookup with an argument of type T
1354// (C++ [basic.lookup.koenig]p2).
1355static void
1356addAssociatedClassesAndNamespaces(QualType T,
1357                                  ASTContext &Context,
1358                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1359                                  Sema::AssociatedClassSet &AssociatedClasses) {
1360  // C++ [basic.lookup.koenig]p2:
1361  //
1362  //   For each argument type T in the function call, there is a set
1363  //   of zero or more associated namespaces and a set of zero or more
1364  //   associated classes to be considered. The sets of namespaces and
1365  //   classes is determined entirely by the types of the function
1366  //   arguments (and the namespace of any template template
1367  //   argument). Typedef names and using-declarations used to specify
1368  //   the types do not contribute to this set. The sets of namespaces
1369  //   and classes are determined in the following way:
1370  T = Context.getCanonicalType(T).getUnqualifiedType();
1371
1372  //    -- If T is a pointer to U or an array of U, its associated
1373  //       namespaces and classes are those associated with U.
1374  //
1375  // We handle this by unwrapping pointer and array types immediately,
1376  // to avoid unnecessary recursion.
1377  while (true) {
1378    if (const PointerType *Ptr = T->getAs<PointerType>())
1379      T = Ptr->getPointeeType();
1380    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1381      T = Ptr->getElementType();
1382    else
1383      break;
1384  }
1385
1386  //     -- If T is a fundamental type, its associated sets of
1387  //        namespaces and classes are both empty.
1388  if (T->getAs<BuiltinType>())
1389    return;
1390
1391  //     -- If T is a class type (including unions), its associated
1392  //        classes are: the class itself; the class of which it is a
1393  //        member, if any; and its direct and indirect base
1394  //        classes. Its associated namespaces are the namespaces in
1395  //        which its associated classes are defined.
1396  if (const RecordType *ClassType = T->getAs<RecordType>())
1397    if (CXXRecordDecl *ClassDecl
1398        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1399      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1400                                        AssociatedNamespaces,
1401                                        AssociatedClasses);
1402      return;
1403    }
1404
1405  //     -- If T is an enumeration type, its associated namespace is
1406  //        the namespace in which it is defined. If it is class
1407  //        member, its associated class is the member’s class; else
1408  //        it has no associated class.
1409  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1410    EnumDecl *Enum = EnumT->getDecl();
1411
1412    DeclContext *Ctx = Enum->getDeclContext();
1413    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1414      AssociatedClasses.insert(EnclosingClass);
1415
1416    // Add the associated namespace for this class.
1417    while (Ctx->isRecord())
1418      Ctx = Ctx->getParent();
1419    CollectNamespace(AssociatedNamespaces, Ctx);
1420
1421    return;
1422  }
1423
1424  //     -- If T is a function type, its associated namespaces and
1425  //        classes are those associated with the function parameter
1426  //        types and those associated with the return type.
1427  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1428    // Return type
1429    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1430                                      Context,
1431                                      AssociatedNamespaces, AssociatedClasses);
1432
1433    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1434    if (!Proto)
1435      return;
1436
1437    // Argument types
1438    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1439                                           ArgEnd = Proto->arg_type_end();
1440         Arg != ArgEnd; ++Arg)
1441      addAssociatedClassesAndNamespaces(*Arg, Context,
1442                                        AssociatedNamespaces, AssociatedClasses);
1443
1444    return;
1445  }
1446
1447  //     -- If T is a pointer to a member function of a class X, its
1448  //        associated namespaces and classes are those associated
1449  //        with the function parameter types and return type,
1450  //        together with those associated with X.
1451  //
1452  //     -- If T is a pointer to a data member of class X, its
1453  //        associated namespaces and classes are those associated
1454  //        with the member type together with those associated with
1455  //        X.
1456  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1457    // Handle the type that the pointer to member points to.
1458    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1459                                      Context,
1460                                      AssociatedNamespaces,
1461                                      AssociatedClasses);
1462
1463    // Handle the class type into which this points.
1464    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1465      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1466                                        Context,
1467                                        AssociatedNamespaces,
1468                                        AssociatedClasses);
1469
1470    return;
1471  }
1472
1473  // FIXME: What about block pointers?
1474  // FIXME: What about Objective-C message sends?
1475}
1476
1477/// \brief Find the associated classes and namespaces for
1478/// argument-dependent lookup for a call with the given set of
1479/// arguments.
1480///
1481/// This routine computes the sets of associated classes and associated
1482/// namespaces searched by argument-dependent lookup
1483/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1484void
1485Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1486                                 AssociatedNamespaceSet &AssociatedNamespaces,
1487                                 AssociatedClassSet &AssociatedClasses) {
1488  AssociatedNamespaces.clear();
1489  AssociatedClasses.clear();
1490
1491  // C++ [basic.lookup.koenig]p2:
1492  //   For each argument type T in the function call, there is a set
1493  //   of zero or more associated namespaces and a set of zero or more
1494  //   associated classes to be considered. The sets of namespaces and
1495  //   classes is determined entirely by the types of the function
1496  //   arguments (and the namespace of any template template
1497  //   argument).
1498  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1499    Expr *Arg = Args[ArgIdx];
1500
1501    if (Arg->getType() != Context.OverloadTy) {
1502      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1503                                        AssociatedNamespaces,
1504                                        AssociatedClasses);
1505      continue;
1506    }
1507
1508    // [...] In addition, if the argument is the name or address of a
1509    // set of overloaded functions and/or function templates, its
1510    // associated classes and namespaces are the union of those
1511    // associated with each of the members of the set: the namespace
1512    // in which the function or function template is defined and the
1513    // classes and namespaces associated with its (non-dependent)
1514    // parameter types and return type.
1515    DeclRefExpr *DRE = 0;
1516    TemplateIdRefExpr *TIRE = 0;
1517    Arg = Arg->IgnoreParens();
1518    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1519      if (unaryOp->getOpcode() == UnaryOperator::AddrOf) {
1520        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1521        TIRE = dyn_cast<TemplateIdRefExpr>(unaryOp->getSubExpr());
1522      }
1523    } else {
1524      DRE = dyn_cast<DeclRefExpr>(Arg);
1525      TIRE = dyn_cast<TemplateIdRefExpr>(Arg);
1526    }
1527
1528    OverloadedFunctionDecl *Ovl = 0;
1529    if (DRE)
1530      Ovl = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1531    else if (TIRE)
1532      Ovl = TIRE->getTemplateName().getAsOverloadedFunctionDecl();
1533    if (!Ovl)
1534      continue;
1535
1536    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1537                                                FuncEnd = Ovl->function_end();
1538         Func != FuncEnd; ++Func) {
1539      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*Func);
1540      if (!FDecl)
1541        FDecl = cast<FunctionTemplateDecl>(*Func)->getTemplatedDecl();
1542
1543      // Add the namespace in which this function was defined. Note
1544      // that, if this is a member function, we do *not* consider the
1545      // enclosing namespace of its class.
1546      DeclContext *Ctx = FDecl->getDeclContext();
1547      CollectNamespace(AssociatedNamespaces, Ctx);
1548
1549      // Add the classes and namespaces associated with the parameter
1550      // types and return type of this function.
1551      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1552                                        AssociatedNamespaces,
1553                                        AssociatedClasses);
1554    }
1555  }
1556}
1557
1558/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1559/// an acceptable non-member overloaded operator for a call whose
1560/// arguments have types T1 (and, if non-empty, T2). This routine
1561/// implements the check in C++ [over.match.oper]p3b2 concerning
1562/// enumeration types.
1563static bool
1564IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1565                                       QualType T1, QualType T2,
1566                                       ASTContext &Context) {
1567  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1568    return true;
1569
1570  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1571    return true;
1572
1573  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1574  if (Proto->getNumArgs() < 1)
1575    return false;
1576
1577  if (T1->isEnumeralType()) {
1578    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1579    if (Context.hasSameUnqualifiedType(T1, ArgType))
1580      return true;
1581  }
1582
1583  if (Proto->getNumArgs() < 2)
1584    return false;
1585
1586  if (!T2.isNull() && T2->isEnumeralType()) {
1587    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1588    if (Context.hasSameUnqualifiedType(T2, ArgType))
1589      return true;
1590  }
1591
1592  return false;
1593}
1594
1595/// \brief Find the protocol with the given name, if any.
1596ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1597  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1598  return cast_or_null<ObjCProtocolDecl>(D);
1599}
1600
1601/// \brief Find the Objective-C category implementation with the given
1602/// name, if any.
1603ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
1604  Decl *D = LookupSingleName(TUScope, II, LookupObjCCategoryImplName);
1605  return cast_or_null<ObjCCategoryImplDecl>(D);
1606}
1607
1608void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1609                                        QualType T1, QualType T2,
1610                                        FunctionSet &Functions) {
1611  // C++ [over.match.oper]p3:
1612  //     -- The set of non-member candidates is the result of the
1613  //        unqualified lookup of operator@ in the context of the
1614  //        expression according to the usual rules for name lookup in
1615  //        unqualified function calls (3.4.2) except that all member
1616  //        functions are ignored. However, if no operand has a class
1617  //        type, only those non-member functions in the lookup set
1618  //        that have a first parameter of type T1 or "reference to
1619  //        (possibly cv-qualified) T1", when T1 is an enumeration
1620  //        type, or (if there is a right operand) a second parameter
1621  //        of type T2 or "reference to (possibly cv-qualified) T2",
1622  //        when T2 is an enumeration type, are candidate functions.
1623  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1624  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1625  LookupName(Operators, S);
1626
1627  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1628
1629  if (Operators.empty())
1630    return;
1631
1632  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1633       Op != OpEnd; ++Op) {
1634    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1635      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1636        Functions.insert(FD); // FIXME: canonical FD
1637    } else if (FunctionTemplateDecl *FunTmpl
1638                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1639      // FIXME: friend operators?
1640      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1641      // later?
1642      if (!FunTmpl->getDeclContext()->isRecord())
1643        Functions.insert(FunTmpl);
1644    }
1645  }
1646}
1647
1648static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1649                                Decl *D) {
1650  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1651    Functions.insert(Func);
1652  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1653    Functions.insert(FunTmpl);
1654}
1655
1656void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1657                                   Expr **Args, unsigned NumArgs,
1658                                   FunctionSet &Functions) {
1659  // Find all of the associated namespaces and classes based on the
1660  // arguments we have.
1661  AssociatedNamespaceSet AssociatedNamespaces;
1662  AssociatedClassSet AssociatedClasses;
1663  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1664                                     AssociatedNamespaces,
1665                                     AssociatedClasses);
1666
1667  QualType T1, T2;
1668  if (Operator) {
1669    T1 = Args[0]->getType();
1670    if (NumArgs >= 2)
1671      T2 = Args[1]->getType();
1672  }
1673
1674  // C++ [basic.lookup.argdep]p3:
1675  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1676  //   and let Y be the lookup set produced by argument dependent
1677  //   lookup (defined as follows). If X contains [...] then Y is
1678  //   empty. Otherwise Y is the set of declarations found in the
1679  //   namespaces associated with the argument types as described
1680  //   below. The set of declarations found by the lookup of the name
1681  //   is the union of X and Y.
1682  //
1683  // Here, we compute Y and add its members to the overloaded
1684  // candidate set.
1685  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1686                                     NSEnd = AssociatedNamespaces.end();
1687       NS != NSEnd; ++NS) {
1688    //   When considering an associated namespace, the lookup is the
1689    //   same as the lookup performed when the associated namespace is
1690    //   used as a qualifier (3.4.3.2) except that:
1691    //
1692    //     -- Any using-directives in the associated namespace are
1693    //        ignored.
1694    //
1695    //     -- Any namespace-scope friend functions declared in
1696    //        associated classes are visible within their respective
1697    //        namespaces even if they are not visible during an ordinary
1698    //        lookup (11.4).
1699    DeclContext::lookup_iterator I, E;
1700    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1701      Decl *D = *I;
1702      // If the only declaration here is an ordinary friend, consider
1703      // it only if it was declared in an associated classes.
1704      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1705        DeclContext *LexDC = D->getLexicalDeclContext();
1706        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1707          continue;
1708      }
1709
1710      FunctionDecl *Fn;
1711      if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
1712          IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
1713        CollectFunctionDecl(Functions, D);
1714    }
1715  }
1716}
1717