ExplodedGraph.cpp revision 1e548f12f7cd6631a3e688a9580ede92898d9e69
1//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the template classes ExplodedNode and ExplodedGraph,
11//  which represent a path-sensitive, intra-procedural "exploded graph."
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "CoreEngine"
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
19#include "clang/AST/Stmt.h"
20#include "clang/AST/ParentMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include <vector>
26
27using namespace clang;
28using namespace ento;
29
30STATISTIC(NumNodesWithMoreThanTwoSucc,
31            "The # of nodes with more than 2 successors.");
32
33//===----------------------------------------------------------------------===//
34// Node auditing.
35//===----------------------------------------------------------------------===//
36
37// An out of line virtual method to provide a home for the class vtable.
38ExplodedNode::Auditor::~Auditor() {}
39
40#ifndef NDEBUG
41static ExplodedNode::Auditor* NodeAuditor = 0;
42#endif
43
44void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
45#ifndef NDEBUG
46  NodeAuditor = A;
47#endif
48}
49
50//===----------------------------------------------------------------------===//
51// Cleanup.
52//===----------------------------------------------------------------------===//
53
54static const unsigned CounterTop = 1000;
55
56ExplodedGraph::ExplodedGraph()
57  : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
58
59ExplodedGraph::~ExplodedGraph() {}
60
61//===----------------------------------------------------------------------===//
62// Node reclamation.
63//===----------------------------------------------------------------------===//
64
65bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
66  // Reclaim all nodes that match *all* the following criteria:
67  //
68  // (1) 1 predecessor (that has one successor)
69  // (2) 1 successor (that has one predecessor)
70  // (3) The ProgramPoint is for a PostStmt.
71  // (4) There is no 'tag' for the ProgramPoint.
72  // (5) The 'store' is the same as the predecessor.
73  // (6) The 'GDM' is the same as the predecessor.
74  // (7) The LocationContext is the same as the predecessor.
75  // (8) The PostStmt is for a non-consumed Stmt or Expr.
76  // (9) The successor is a CallExpr StmtPoint (so that we would be able to
77  //     find it when retrying a call with no inlining).
78
79  // Conditions 1 and 2.
80  if (node->pred_size() != 1 || node->succ_size() != 1)
81    return false;
82
83  const ExplodedNode *pred = *(node->pred_begin());
84  if (pred->succ_size() != 1)
85    return false;
86
87  const ExplodedNode *succ = *(node->succ_begin());
88  if (succ->pred_size() != 1)
89    return false;
90
91  // Condition 3.
92  ProgramPoint progPoint = node->getLocation();
93  if (!isa<PostStmt>(progPoint) ||
94      (isa<CallEnter>(progPoint) ||
95       isa<CallExitBegin>(progPoint) || isa<CallExitEnd>(progPoint)))
96    return false;
97
98  // Condition 4.
99  PostStmt ps = cast<PostStmt>(progPoint);
100  if (ps.getTag())
101    return false;
102
103  if (isa<BinaryOperator>(ps.getStmt()))
104    return false;
105
106  // Conditions 5, 6, and 7.
107  ProgramStateRef state = node->getState();
108  ProgramStateRef pred_state = pred->getState();
109  if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
110      progPoint.getLocationContext() != pred->getLocationContext())
111    return false;
112
113  // Condition 8.
114  if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
115    ParentMap &PM = progPoint.getLocationContext()->getParentMap();
116    if (!PM.isConsumedExpr(Ex))
117      return false;
118  }
119
120  // Condition 9.
121  const ProgramPoint SuccLoc = succ->getLocation();
122  if (const StmtPoint *SP = dyn_cast<StmtPoint>(&SuccLoc))
123    if (CallOrObjCMessage::canBeInlined(SP->getStmt()))
124      return false;
125
126  return true;
127}
128
129void ExplodedGraph::collectNode(ExplodedNode *node) {
130  // Removing a node means:
131  // (a) changing the predecessors successor to the successor of this node
132  // (b) changing the successors predecessor to the predecessor of this node
133  // (c) Putting 'node' onto freeNodes.
134  assert(node->pred_size() == 1 || node->succ_size() == 1);
135  ExplodedNode *pred = *(node->pred_begin());
136  ExplodedNode *succ = *(node->succ_begin());
137  pred->replaceSuccessor(succ);
138  succ->replacePredecessor(pred);
139  FreeNodes.push_back(node);
140  Nodes.RemoveNode(node);
141  --NumNodes;
142  node->~ExplodedNode();
143}
144
145void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
146  if (ChangedNodes.empty())
147    return;
148
149  // Only periodically relcaim nodes so that we can build up a set of
150  // nodes that meet the reclamation criteria.  Freshly created nodes
151  // by definition have no successor, and thus cannot be reclaimed (see below).
152  assert(reclaimCounter > 0);
153  if (--reclaimCounter != 0)
154    return;
155  reclaimCounter = CounterTop;
156
157  for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
158       it != et; ++it) {
159    ExplodedNode *node = *it;
160    if (shouldCollect(node))
161      collectNode(node);
162  }
163  ChangedNodes.clear();
164}
165
166//===----------------------------------------------------------------------===//
167// ExplodedNode.
168//===----------------------------------------------------------------------===//
169
170static inline BumpVector<ExplodedNode*>& getVector(void *P) {
171  return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
172}
173
174void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
175  assert (!V->isSink());
176  Preds.addNode(V, G);
177  V->Succs.addNode(this, G);
178  if (V->Succs.size() == 3)
179    NumNodesWithMoreThanTwoSucc++;
180#ifndef NDEBUG
181  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
182#endif
183}
184
185void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
186  assert(getKind() == Size1);
187  P = reinterpret_cast<uintptr_t>(node);
188  assert(getKind() == Size1);
189}
190
191void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
192  assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
193  assert(!getFlag());
194
195  if (getKind() == Size1) {
196    if (ExplodedNode *NOld = getNode()) {
197      BumpVectorContext &Ctx = G.getNodeAllocator();
198      BumpVector<ExplodedNode*> *V =
199        G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
200      new (V) BumpVector<ExplodedNode*>(Ctx, 4);
201
202      assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
203      V->push_back(NOld, Ctx);
204      V->push_back(N, Ctx);
205      P = reinterpret_cast<uintptr_t>(V) | SizeOther;
206      assert(getPtr() == (void*) V);
207      assert(getKind() == SizeOther);
208    }
209    else {
210      P = reinterpret_cast<uintptr_t>(N);
211      assert(getKind() == Size1);
212    }
213  }
214  else {
215    assert(getKind() == SizeOther);
216    getVector(getPtr()).push_back(N, G.getNodeAllocator());
217  }
218}
219
220unsigned ExplodedNode::NodeGroup::size() const {
221  if (getFlag())
222    return 0;
223
224  if (getKind() == Size1)
225    return getNode() ? 1 : 0;
226  else
227    return getVector(getPtr()).size();
228}
229
230ExplodedNode **ExplodedNode::NodeGroup::begin() const {
231  if (getFlag())
232    return NULL;
233
234  if (getKind() == Size1)
235    return (ExplodedNode**) (getPtr() ? &P : NULL);
236  else
237    return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
238}
239
240ExplodedNode** ExplodedNode::NodeGroup::end() const {
241  if (getFlag())
242    return NULL;
243
244  if (getKind() == Size1)
245    return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
246  else {
247    // Dereferencing end() is undefined behaviour. The vector is not empty, so
248    // we can dereference the last elem and then add 1 to the result.
249    return const_cast<ExplodedNode**>(getVector(getPtr()).end());
250  }
251}
252
253ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
254                                     ProgramStateRef State,
255                                     bool IsSink,
256                                     bool* IsNew) {
257  // Profile 'State' to determine if we already have an existing node.
258  llvm::FoldingSetNodeID profile;
259  void *InsertPos = 0;
260
261  NodeTy::Profile(profile, L, State, IsSink);
262  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
263
264  if (!V) {
265    if (!FreeNodes.empty()) {
266      V = FreeNodes.back();
267      FreeNodes.pop_back();
268    }
269    else {
270      // Allocate a new node.
271      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
272    }
273
274    new (V) NodeTy(L, State, IsSink);
275
276    if (reclaimNodes)
277      ChangedNodes.push_back(V);
278
279    // Insert the node into the node set and return it.
280    Nodes.InsertNode(V, InsertPos);
281    ++NumNodes;
282
283    if (IsNew) *IsNew = true;
284  }
285  else
286    if (IsNew) *IsNew = false;
287
288  return V;
289}
290
291std::pair<ExplodedGraph*, InterExplodedGraphMap*>
292ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
293               llvm::DenseMap<const void*, const void*> *InverseMap) const {
294
295  if (NBeg == NEnd)
296    return std::make_pair((ExplodedGraph*) 0,
297                          (InterExplodedGraphMap*) 0);
298
299  assert (NBeg < NEnd);
300
301  OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
302
303  ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
304
305  return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
306}
307
308ExplodedGraph*
309ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
310                            const ExplodedNode* const* EndSources,
311                            InterExplodedGraphMap* M,
312                   llvm::DenseMap<const void*, const void*> *InverseMap) const {
313
314  typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
315  Pass1Ty Pass1;
316
317  typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
318  Pass2Ty& Pass2 = M->M;
319
320  SmallVector<const ExplodedNode*, 10> WL1, WL2;
321
322  // ===- Pass 1 (reverse DFS) -===
323  for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
324    assert(*I);
325    WL1.push_back(*I);
326  }
327
328  // Process the first worklist until it is empty.  Because it is a std::list
329  // it acts like a FIFO queue.
330  while (!WL1.empty()) {
331    const ExplodedNode *N = WL1.back();
332    WL1.pop_back();
333
334    // Have we already visited this node?  If so, continue to the next one.
335    if (Pass1.count(N))
336      continue;
337
338    // Otherwise, mark this node as visited.
339    Pass1.insert(N);
340
341    // If this is a root enqueue it to the second worklist.
342    if (N->Preds.empty()) {
343      WL2.push_back(N);
344      continue;
345    }
346
347    // Visit our predecessors and enqueue them.
348    for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
349      WL1.push_back(*I);
350  }
351
352  // We didn't hit a root? Return with a null pointer for the new graph.
353  if (WL2.empty())
354    return 0;
355
356  // Create an empty graph.
357  ExplodedGraph* G = MakeEmptyGraph();
358
359  // ===- Pass 2 (forward DFS to construct the new graph) -===
360  while (!WL2.empty()) {
361    const ExplodedNode *N = WL2.back();
362    WL2.pop_back();
363
364    // Skip this node if we have already processed it.
365    if (Pass2.find(N) != Pass2.end())
366      continue;
367
368    // Create the corresponding node in the new graph and record the mapping
369    // from the old node to the new node.
370    ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
371    Pass2[N] = NewN;
372
373    // Also record the reverse mapping from the new node to the old node.
374    if (InverseMap) (*InverseMap)[NewN] = N;
375
376    // If this node is a root, designate it as such in the graph.
377    if (N->Preds.empty())
378      G->addRoot(NewN);
379
380    // In the case that some of the intended predecessors of NewN have already
381    // been created, we should hook them up as predecessors.
382
383    // Walk through the predecessors of 'N' and hook up their corresponding
384    // nodes in the new graph (if any) to the freshly created node.
385    for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
386      Pass2Ty::iterator PI = Pass2.find(*I);
387      if (PI == Pass2.end())
388        continue;
389
390      NewN->addPredecessor(PI->second, *G);
391    }
392
393    // In the case that some of the intended successors of NewN have already
394    // been created, we should hook them up as successors.  Otherwise, enqueue
395    // the new nodes from the original graph that should have nodes created
396    // in the new graph.
397    for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
398      Pass2Ty::iterator PI = Pass2.find(*I);
399      if (PI != Pass2.end()) {
400        PI->second->addPredecessor(NewN, *G);
401        continue;
402      }
403
404      // Enqueue nodes to the worklist that were marked during pass 1.
405      if (Pass1.count(*I))
406        WL2.push_back(*I);
407    }
408  }
409
410  return G;
411}
412
413void InterExplodedGraphMap::anchor() { }
414
415ExplodedNode*
416InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
417  llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
418    M.find(N);
419
420  return I == M.end() ? 0 : I->second;
421}
422
423