ExplodedGraph.cpp revision 85d7e01cf639b257d70f8a129709a2d7594d7b22
1//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the template classes ExplodedNode and ExplodedGraph,
11//  which represent a path-sensitive, intra-procedural "exploded graph."
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/Calls.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/ParentMap.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include <vector>
25
26using namespace clang;
27using namespace ento;
28
29//===----------------------------------------------------------------------===//
30// Node auditing.
31//===----------------------------------------------------------------------===//
32
33// An out of line virtual method to provide a home for the class vtable.
34ExplodedNode::Auditor::~Auditor() {}
35
36#ifndef NDEBUG
37static ExplodedNode::Auditor* NodeAuditor = 0;
38#endif
39
40void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
41#ifndef NDEBUG
42  NodeAuditor = A;
43#endif
44}
45
46//===----------------------------------------------------------------------===//
47// Cleanup.
48//===----------------------------------------------------------------------===//
49
50static const unsigned CounterTop = 1000;
51
52ExplodedGraph::ExplodedGraph()
53  : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
54
55ExplodedGraph::~ExplodedGraph() {}
56
57//===----------------------------------------------------------------------===//
58// Node reclamation.
59//===----------------------------------------------------------------------===//
60
61bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
62  // Reclaim all nodes that match *all* the following criteria:
63  //
64  // (1) 1 predecessor (that has one successor)
65  // (2) 1 successor (that has one predecessor)
66  // (3) The ProgramPoint is for a PostStmt.
67  // (4) There is no 'tag' for the ProgramPoint.
68  // (5) The 'store' is the same as the predecessor.
69  // (6) The 'GDM' is the same as the predecessor.
70  // (7) The LocationContext is the same as the predecessor.
71  // (8) The PostStmt is for a non-consumed Stmt or Expr.
72  // (9) The successor is not a CallExpr StmtPoint (so that we would be able to
73  //     find it when retrying a call with no inlining).
74
75  // Conditions 1 and 2.
76  if (node->pred_size() != 1 || node->succ_size() != 1)
77    return false;
78
79  const ExplodedNode *pred = *(node->pred_begin());
80  if (pred->succ_size() != 1)
81    return false;
82
83  const ExplodedNode *succ = *(node->succ_begin());
84  if (succ->pred_size() != 1)
85    return false;
86
87  // Condition 3.
88  ProgramPoint progPoint = node->getLocation();
89  if (!isa<PostStmt>(progPoint) ||
90      (isa<CallEnter>(progPoint) ||
91       isa<CallExitBegin>(progPoint) || isa<CallExitEnd>(progPoint)))
92    return false;
93
94  // Condition 4.
95  PostStmt ps = cast<PostStmt>(progPoint);
96  if (ps.getTag())
97    return false;
98
99  if (isa<BinaryOperator>(ps.getStmt()))
100    return false;
101
102  // Conditions 5, 6, and 7.
103  ProgramStateRef state = node->getState();
104  ProgramStateRef pred_state = pred->getState();
105  if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
106      progPoint.getLocationContext() != pred->getLocationContext())
107    return false;
108
109  // Condition 8.
110  if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
111    ParentMap &PM = progPoint.getLocationContext()->getParentMap();
112    if (!PM.isConsumedExpr(Ex))
113      return false;
114  }
115
116  // Condition 9.
117  const ProgramPoint SuccLoc = succ->getLocation();
118  if (const StmtPoint *SP = dyn_cast<StmtPoint>(&SuccLoc))
119    if (CallEvent::mayBeInlined(SP->getStmt()))
120      return false;
121
122  return true;
123}
124
125void ExplodedGraph::collectNode(ExplodedNode *node) {
126  // Removing a node means:
127  // (a) changing the predecessors successor to the successor of this node
128  // (b) changing the successors predecessor to the predecessor of this node
129  // (c) Putting 'node' onto freeNodes.
130  assert(node->pred_size() == 1 || node->succ_size() == 1);
131  ExplodedNode *pred = *(node->pred_begin());
132  ExplodedNode *succ = *(node->succ_begin());
133  pred->replaceSuccessor(succ);
134  succ->replacePredecessor(pred);
135  FreeNodes.push_back(node);
136  Nodes.RemoveNode(node);
137  --NumNodes;
138  node->~ExplodedNode();
139}
140
141void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
142  if (ChangedNodes.empty())
143    return;
144
145  // Only periodically relcaim nodes so that we can build up a set of
146  // nodes that meet the reclamation criteria.  Freshly created nodes
147  // by definition have no successor, and thus cannot be reclaimed (see below).
148  assert(reclaimCounter > 0);
149  if (--reclaimCounter != 0)
150    return;
151  reclaimCounter = CounterTop;
152
153  for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
154       it != et; ++it) {
155    ExplodedNode *node = *it;
156    if (shouldCollect(node))
157      collectNode(node);
158  }
159  ChangedNodes.clear();
160}
161
162//===----------------------------------------------------------------------===//
163// ExplodedNode.
164//===----------------------------------------------------------------------===//
165
166static inline BumpVector<ExplodedNode*>& getVector(void *P) {
167  return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
168}
169
170void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
171  assert (!V->isSink());
172  Preds.addNode(V, G);
173  V->Succs.addNode(this, G);
174#ifndef NDEBUG
175  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
176#endif
177}
178
179void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
180  assert(getKind() == Size1);
181  P = reinterpret_cast<uintptr_t>(node);
182  assert(getKind() == Size1);
183}
184
185void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
186  assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
187  assert(!getFlag());
188
189  if (getKind() == Size1) {
190    if (ExplodedNode *NOld = getNode()) {
191      BumpVectorContext &Ctx = G.getNodeAllocator();
192      BumpVector<ExplodedNode*> *V =
193        G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
194      new (V) BumpVector<ExplodedNode*>(Ctx, 4);
195
196      assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
197      V->push_back(NOld, Ctx);
198      V->push_back(N, Ctx);
199      P = reinterpret_cast<uintptr_t>(V) | SizeOther;
200      assert(getPtr() == (void*) V);
201      assert(getKind() == SizeOther);
202    }
203    else {
204      P = reinterpret_cast<uintptr_t>(N);
205      assert(getKind() == Size1);
206    }
207  }
208  else {
209    assert(getKind() == SizeOther);
210    getVector(getPtr()).push_back(N, G.getNodeAllocator());
211  }
212}
213
214unsigned ExplodedNode::NodeGroup::size() const {
215  if (getFlag())
216    return 0;
217
218  if (getKind() == Size1)
219    return getNode() ? 1 : 0;
220  else
221    return getVector(getPtr()).size();
222}
223
224ExplodedNode **ExplodedNode::NodeGroup::begin() const {
225  if (getFlag())
226    return NULL;
227
228  if (getKind() == Size1)
229    return (ExplodedNode**) (getPtr() ? &P : NULL);
230  else
231    return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
232}
233
234ExplodedNode** ExplodedNode::NodeGroup::end() const {
235  if (getFlag())
236    return NULL;
237
238  if (getKind() == Size1)
239    return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
240  else {
241    // Dereferencing end() is undefined behaviour. The vector is not empty, so
242    // we can dereference the last elem and then add 1 to the result.
243    return const_cast<ExplodedNode**>(getVector(getPtr()).end());
244  }
245}
246
247ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
248                                     ProgramStateRef State,
249                                     bool IsSink,
250                                     bool* IsNew) {
251  // Profile 'State' to determine if we already have an existing node.
252  llvm::FoldingSetNodeID profile;
253  void *InsertPos = 0;
254
255  NodeTy::Profile(profile, L, State, IsSink);
256  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
257
258  if (!V) {
259    if (!FreeNodes.empty()) {
260      V = FreeNodes.back();
261      FreeNodes.pop_back();
262    }
263    else {
264      // Allocate a new node.
265      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
266    }
267
268    new (V) NodeTy(L, State, IsSink);
269
270    if (reclaimNodes)
271      ChangedNodes.push_back(V);
272
273    // Insert the node into the node set and return it.
274    Nodes.InsertNode(V, InsertPos);
275    ++NumNodes;
276
277    if (IsNew) *IsNew = true;
278  }
279  else
280    if (IsNew) *IsNew = false;
281
282  return V;
283}
284
285std::pair<ExplodedGraph*, InterExplodedGraphMap*>
286ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
287               llvm::DenseMap<const void*, const void*> *InverseMap) const {
288
289  if (NBeg == NEnd)
290    return std::make_pair((ExplodedGraph*) 0,
291                          (InterExplodedGraphMap*) 0);
292
293  assert (NBeg < NEnd);
294
295  OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
296
297  ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
298
299  return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
300}
301
302ExplodedGraph*
303ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
304                            const ExplodedNode* const* EndSources,
305                            InterExplodedGraphMap* M,
306                   llvm::DenseMap<const void*, const void*> *InverseMap) const {
307
308  typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
309  Pass1Ty Pass1;
310
311  typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
312  Pass2Ty& Pass2 = M->M;
313
314  SmallVector<const ExplodedNode*, 10> WL1, WL2;
315
316  // ===- Pass 1 (reverse DFS) -===
317  for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
318    assert(*I);
319    WL1.push_back(*I);
320  }
321
322  // Process the first worklist until it is empty.  Because it is a std::list
323  // it acts like a FIFO queue.
324  while (!WL1.empty()) {
325    const ExplodedNode *N = WL1.back();
326    WL1.pop_back();
327
328    // Have we already visited this node?  If so, continue to the next one.
329    if (Pass1.count(N))
330      continue;
331
332    // Otherwise, mark this node as visited.
333    Pass1.insert(N);
334
335    // If this is a root enqueue it to the second worklist.
336    if (N->Preds.empty()) {
337      WL2.push_back(N);
338      continue;
339    }
340
341    // Visit our predecessors and enqueue them.
342    for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
343      WL1.push_back(*I);
344  }
345
346  // We didn't hit a root? Return with a null pointer for the new graph.
347  if (WL2.empty())
348    return 0;
349
350  // Create an empty graph.
351  ExplodedGraph* G = MakeEmptyGraph();
352
353  // ===- Pass 2 (forward DFS to construct the new graph) -===
354  while (!WL2.empty()) {
355    const ExplodedNode *N = WL2.back();
356    WL2.pop_back();
357
358    // Skip this node if we have already processed it.
359    if (Pass2.find(N) != Pass2.end())
360      continue;
361
362    // Create the corresponding node in the new graph and record the mapping
363    // from the old node to the new node.
364    ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
365    Pass2[N] = NewN;
366
367    // Also record the reverse mapping from the new node to the old node.
368    if (InverseMap) (*InverseMap)[NewN] = N;
369
370    // If this node is a root, designate it as such in the graph.
371    if (N->Preds.empty())
372      G->addRoot(NewN);
373
374    // In the case that some of the intended predecessors of NewN have already
375    // been created, we should hook them up as predecessors.
376
377    // Walk through the predecessors of 'N' and hook up their corresponding
378    // nodes in the new graph (if any) to the freshly created node.
379    for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
380      Pass2Ty::iterator PI = Pass2.find(*I);
381      if (PI == Pass2.end())
382        continue;
383
384      NewN->addPredecessor(PI->second, *G);
385    }
386
387    // In the case that some of the intended successors of NewN have already
388    // been created, we should hook them up as successors.  Otherwise, enqueue
389    // the new nodes from the original graph that should have nodes created
390    // in the new graph.
391    for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
392      Pass2Ty::iterator PI = Pass2.find(*I);
393      if (PI != Pass2.end()) {
394        PI->second->addPredecessor(NewN, *G);
395        continue;
396      }
397
398      // Enqueue nodes to the worklist that were marked during pass 1.
399      if (Pass1.count(*I))
400        WL2.push_back(*I);
401    }
402  }
403
404  return G;
405}
406
407void InterExplodedGraphMap::anchor() { }
408
409ExplodedNode*
410InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
411  llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
412    M.find(N);
413
414  return I == M.end() ? 0 : I->second;
415}
416
417