asan_allocator2.cc revision 2a3619ecbb56e828090b4c40ece28550f68c94de
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16// Status: under development, not enabled by default yet.
17//===----------------------------------------------------------------------===//
18#include "asan_allocator.h"
19#if ASAN_ALLOCATOR_VERSION == 2
20
21#include "asan_mapping.h"
22#include "asan_poisoning.h"
23#include "asan_report.h"
24#include "asan_thread.h"
25#include "sanitizer_common/sanitizer_allocator.h"
26#include "sanitizer_common/sanitizer_internal_defs.h"
27#include "sanitizer_common/sanitizer_list.h"
28#include "sanitizer_common/sanitizer_stackdepot.h"
29#include "sanitizer_common/sanitizer_quarantine.h"
30
31namespace __asan {
32
33struct AsanMapUnmapCallback {
34  void OnMap(uptr p, uptr size) const {
35    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
36    // Statistics.
37    AsanStats &thread_stats = GetCurrentThreadStats();
38    thread_stats.mmaps++;
39    thread_stats.mmaped += size;
40  }
41  void OnUnmap(uptr p, uptr size) const {
42    PoisonShadow(p, size, 0);
43    // We are about to unmap a chunk of user memory.
44    // Mark the corresponding shadow memory as not needed.
45    // Since asan's mapping is compacting, the shadow chunk may be
46    // not page-aligned, so we only flush the page-aligned portion.
47    uptr page_size = GetPageSizeCached();
48    uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
49    uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
50    FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
51    // Statistics.
52    AsanStats &thread_stats = GetCurrentThreadStats();
53    thread_stats.munmaps++;
54    thread_stats.munmaped += size;
55  }
56};
57
58#if SANITIZER_WORDSIZE == 64
59#if defined(__powerpc64__)
60const uptr kAllocatorSpace =  0xa0000000000ULL;
61#else
62const uptr kAllocatorSpace = 0x600000000000ULL;
63#endif
64const uptr kAllocatorSize  =  0x40000000000ULL;  // 4T.
65typedef DefaultSizeClassMap SizeClassMap;
66typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
67    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
68#elif SANITIZER_WORDSIZE == 32
69static const u64 kAddressSpaceSize = 1ULL << 32;
70typedef CompactSizeClassMap SizeClassMap;
71typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
72  SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
73#endif
74
75typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
76typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
77typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
78    SecondaryAllocator> Allocator;
79
80// We can not use THREADLOCAL because it is not supported on some of the
81// platforms we care about (OSX 10.6, Android).
82// static THREADLOCAL AllocatorCache cache;
83AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
84  CHECK(ms);
85  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
86  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
87}
88
89static Allocator allocator;
90
91static const uptr kMaxAllowedMallocSize =
92  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
93
94static const uptr kMaxThreadLocalQuarantine =
95  FIRST_32_SECOND_64(1 << 18, 1 << 20);
96
97// Every chunk of memory allocated by this allocator can be in one of 3 states:
98// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
99// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
100// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
101enum {
102  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
103  CHUNK_ALLOCATED  = 2,
104  CHUNK_QUARANTINE = 3
105};
106
107// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
108// We use adaptive redzones: for larger allocation larger redzones are used.
109static u32 RZLog2Size(u32 rz_log) {
110  CHECK_LT(rz_log, 8);
111  return 16 << rz_log;
112}
113
114static u32 RZSize2Log(u32 rz_size) {
115  CHECK_GE(rz_size, 16);
116  CHECK_LE(rz_size, 2048);
117  CHECK(IsPowerOfTwo(rz_size));
118  u32 res = Log2(rz_size) - 4;
119  CHECK_EQ(rz_size, RZLog2Size(res));
120  return res;
121}
122
123static uptr ComputeRZLog(uptr user_requested_size) {
124  u32 rz_log =
125    user_requested_size <= 64        - 16   ? 0 :
126    user_requested_size <= 128       - 32   ? 1 :
127    user_requested_size <= 512       - 64   ? 2 :
128    user_requested_size <= 4096      - 128  ? 3 :
129    user_requested_size <= (1 << 14) - 256  ? 4 :
130    user_requested_size <= (1 << 15) - 512  ? 5 :
131    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
132  return Max(rz_log, RZSize2Log(flags()->redzone));
133}
134
135// The memory chunk allocated from the underlying allocator looks like this:
136// L L L L L L H H U U U U U U R R
137//   L -- left redzone words (0 or more bytes)
138//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
139//   U -- user memory.
140//   R -- right redzone (0 or more bytes)
141// ChunkBase consists of ChunkHeader and other bytes that overlap with user
142// memory.
143
144// If a memory chunk is allocated by memalign and we had to increase the
145// allocation size to achieve the proper alignment, then we store this magic
146// value in the first uptr word of the memory block and store the address of
147// ChunkBase in the next uptr.
148// M B ? ? ? L L L L L L  H H U U U U U U
149//   M -- magic value kMemalignMagic
150//   B -- address of ChunkHeader pointing to the first 'H'
151static const uptr kMemalignMagic = 0xCC6E96B9;
152
153struct ChunkHeader {
154  // 1-st 8 bytes.
155  u32 chunk_state       : 8;  // Must be first.
156  u32 alloc_tid         : 24;
157
158  u32 free_tid          : 24;
159  u32 from_memalign     : 1;
160  u32 alloc_type        : 2;
161  u32 rz_log            : 3;
162  // 2-nd 8 bytes
163  // This field is used for small sizes. For large sizes it is equal to
164  // SizeClassMap::kMaxSize and the actual size is stored in the
165  // SecondaryAllocator's metadata.
166  u32 user_requested_size;
167  u32 alloc_context_id;
168};
169
170struct ChunkBase : ChunkHeader {
171  // Header2, intersects with user memory.
172  AsanChunk *next;
173  u32 free_context_id;
174};
175
176static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
177static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
178COMPILER_CHECK(kChunkHeaderSize == 16);
179COMPILER_CHECK(kChunkHeader2Size <= 16);
180
181struct AsanChunk: ChunkBase {
182  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
183  uptr UsedSize() {
184    if (user_requested_size != SizeClassMap::kMaxSize)
185      return user_requested_size;
186    return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
187  }
188  void *AllocBeg() {
189    if (from_memalign)
190      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
191    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
192  }
193  // We store the alloc/free stack traces in the chunk itself.
194  u32 *AllocStackBeg() {
195    return (u32*)(Beg() - RZLog2Size(rz_log));
196  }
197  uptr AllocStackSize() {
198    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
199    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
200  }
201  u32 *FreeStackBeg() {
202    return (u32*)(Beg() + kChunkHeader2Size);
203  }
204  uptr FreeStackSize() {
205    if (user_requested_size < kChunkHeader2Size) return 0;
206    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
207    return (available - kChunkHeader2Size) / sizeof(u32);
208  }
209};
210
211uptr AsanChunkView::Beg() { return chunk_->Beg(); }
212uptr AsanChunkView::End() { return Beg() + UsedSize(); }
213uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
214uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
215uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
216
217static void GetStackTraceFromId(u32 id, StackTrace *stack) {
218  CHECK(id);
219  uptr size = 0;
220  const uptr *trace = StackDepotGet(id, &size);
221  CHECK_LT(size, kStackTraceMax);
222  internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
223  stack->size = size;
224}
225
226void AsanChunkView::GetAllocStack(StackTrace *stack) {
227  if (flags()->use_stack_depot)
228    GetStackTraceFromId(chunk_->alloc_context_id, stack);
229  else
230    StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
231                                chunk_->AllocStackSize());
232}
233
234void AsanChunkView::GetFreeStack(StackTrace *stack) {
235  if (flags()->use_stack_depot)
236    GetStackTraceFromId(chunk_->free_context_id, stack);
237  else
238    StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
239                                chunk_->FreeStackSize());
240}
241
242struct QuarantineCallback;
243typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
244typedef AsanQuarantine::Cache QuarantineCache;
245static AsanQuarantine quarantine(LINKER_INITIALIZED);
246static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
247static AllocatorCache fallback_allocator_cache;
248static SpinMutex fallback_mutex;
249
250QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
251  CHECK(ms);
252  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
253  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
254}
255
256struct QuarantineCallback {
257  explicit QuarantineCallback(AllocatorCache *cache)
258      : cache_(cache) {
259  }
260
261  void Recycle(AsanChunk *m) {
262    CHECK(m->chunk_state == CHUNK_QUARANTINE);
263    m->chunk_state = CHUNK_AVAILABLE;
264    CHECK_NE(m->alloc_tid, kInvalidTid);
265    CHECK_NE(m->free_tid, kInvalidTid);
266    PoisonShadow(m->Beg(),
267                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
268                 kAsanHeapLeftRedzoneMagic);
269    void *p = reinterpret_cast<void *>(m->AllocBeg());
270    if (m->from_memalign) {
271      uptr *memalign_magic = reinterpret_cast<uptr *>(p);
272      CHECK_EQ(memalign_magic[0], kMemalignMagic);
273      CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
274    }
275
276    // Statistics.
277    AsanStats &thread_stats = GetCurrentThreadStats();
278    thread_stats.real_frees++;
279    thread_stats.really_freed += m->UsedSize();
280
281    allocator.Deallocate(cache_, p);
282  }
283
284  void *Allocate(uptr size) {
285    return allocator.Allocate(cache_, size, 1, false);
286  }
287
288  void Deallocate(void *p) {
289    allocator.Deallocate(cache_, p);
290  }
291
292  AllocatorCache *cache_;
293};
294
295void InitializeAllocator() {
296  allocator.Init();
297  quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
298}
299
300static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
301                      AllocType alloc_type, bool can_fill) {
302  if (!asan_inited)
303    __asan_init();
304  Flags &fl = *flags();
305  CHECK(stack);
306  const uptr min_alignment = SHADOW_GRANULARITY;
307  if (alignment < min_alignment)
308    alignment = min_alignment;
309  if (size == 0) {
310    // We'd be happy to avoid allocating memory for zero-size requests, but
311    // some programs/tests depend on this behavior and assume that malloc would
312    // not return NULL even for zero-size allocations. Moreover, it looks like
313    // operator new should never return NULL, and results of consecutive "new"
314    // calls must be different even if the allocated size is zero.
315    size = 1;
316  }
317  CHECK(IsPowerOfTwo(alignment));
318  uptr rz_log = ComputeRZLog(size);
319  uptr rz_size = RZLog2Size(rz_log);
320  uptr rounded_size = RoundUpTo(size, alignment);
321  if (rounded_size < kChunkHeader2Size)
322    rounded_size = kChunkHeader2Size;
323  uptr needed_size = rounded_size + rz_size;
324  if (alignment > min_alignment)
325    needed_size += alignment;
326  bool using_primary_allocator = true;
327  // If we are allocating from the secondary allocator, there will be no
328  // automatic right redzone, so add the right redzone manually.
329  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
330    needed_size += rz_size;
331    using_primary_allocator = false;
332  }
333  CHECK(IsAligned(needed_size, min_alignment));
334  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
335    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
336           (void*)size);
337    return 0;
338  }
339
340  AsanThread *t = GetCurrentThread();
341  void *allocated;
342  if (t) {
343    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
344    allocated = allocator.Allocate(cache, needed_size, 8, false);
345  } else {
346    SpinMutexLock l(&fallback_mutex);
347    AllocatorCache *cache = &fallback_allocator_cache;
348    allocated = allocator.Allocate(cache, needed_size, 8, false);
349  }
350  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
351  // Clear the first allocated word (an old kMemalignMagic may still be there).
352  reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
353  uptr alloc_end = alloc_beg + needed_size;
354  uptr beg_plus_redzone = alloc_beg + rz_size;
355  uptr user_beg = beg_plus_redzone;
356  if (!IsAligned(user_beg, alignment))
357    user_beg = RoundUpTo(user_beg, alignment);
358  uptr user_end = user_beg + size;
359  CHECK_LE(user_end, alloc_end);
360  uptr chunk_beg = user_beg - kChunkHeaderSize;
361  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
362  m->chunk_state = CHUNK_ALLOCATED;
363  m->alloc_type = alloc_type;
364  m->rz_log = rz_log;
365  u32 alloc_tid = t ? t->tid() : 0;
366  m->alloc_tid = alloc_tid;
367  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
368  m->free_tid = kInvalidTid;
369  m->from_memalign = user_beg != beg_plus_redzone;
370  if (m->from_memalign) {
371    CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
372    uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
373    memalign_magic[0] = kMemalignMagic;
374    memalign_magic[1] = chunk_beg;
375  }
376  if (using_primary_allocator) {
377    CHECK(size);
378    m->user_requested_size = size;
379    CHECK(allocator.FromPrimary(allocated));
380  } else {
381    CHECK(!allocator.FromPrimary(allocated));
382    m->user_requested_size = SizeClassMap::kMaxSize;
383    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
384    meta[0] = size;
385    meta[1] = chunk_beg;
386  }
387
388  if (fl.use_stack_depot) {
389    m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
390  } else {
391    m->alloc_context_id = 0;
392    StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
393  }
394
395  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
396  // Unpoison the bulk of the memory region.
397  if (size_rounded_down_to_granularity)
398    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
399  // Deal with the end of the region if size is not aligned to granularity.
400  if (size != size_rounded_down_to_granularity && fl.poison_heap) {
401    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
402    *shadow = size & (SHADOW_GRANULARITY - 1);
403  }
404
405  AsanStats &thread_stats = GetCurrentThreadStats();
406  thread_stats.mallocs++;
407  thread_stats.malloced += size;
408  thread_stats.malloced_redzones += needed_size - size;
409  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
410  thread_stats.malloced_by_size[class_id]++;
411  if (needed_size > SizeClassMap::kMaxSize)
412    thread_stats.malloc_large++;
413
414  void *res = reinterpret_cast<void *>(user_beg);
415  if (can_fill && fl.max_malloc_fill_size) {
416    uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
417    REAL(memset)(res, fl.malloc_fill_byte, fill_size);
418  }
419  ASAN_MALLOC_HOOK(res, size);
420  return res;
421}
422
423static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
424  uptr p = reinterpret_cast<uptr>(ptr);
425  if (p == 0) return;
426  ASAN_FREE_HOOK(ptr);
427  uptr chunk_beg = p - kChunkHeaderSize;
428  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
429
430  u8 old_chunk_state = CHUNK_ALLOCATED;
431  // Flip the chunk_state atomically to avoid race on double-free.
432  if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
433                                      CHUNK_QUARANTINE, memory_order_relaxed)) {
434    if (old_chunk_state == CHUNK_QUARANTINE)
435      ReportDoubleFree((uptr)ptr, stack);
436    else
437      ReportFreeNotMalloced((uptr)ptr, stack);
438  }
439  CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
440
441  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
442    ReportAllocTypeMismatch((uptr)ptr, stack,
443                            (AllocType)m->alloc_type, (AllocType)alloc_type);
444
445  CHECK_GE(m->alloc_tid, 0);
446  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
447    CHECK_EQ(m->free_tid, kInvalidTid);
448  AsanThread *t = GetCurrentThread();
449  m->free_tid = t ? t->tid() : 0;
450  if (flags()->use_stack_depot) {
451    m->free_context_id = StackDepotPut(stack->trace, stack->size);
452  } else {
453    m->free_context_id = 0;
454    StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
455  }
456  CHECK(m->chunk_state == CHUNK_QUARANTINE);
457  // Poison the region.
458  PoisonShadow(m->Beg(),
459               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
460               kAsanHeapFreeMagic);
461
462  AsanStats &thread_stats = GetCurrentThreadStats();
463  thread_stats.frees++;
464  thread_stats.freed += m->UsedSize();
465
466  // Push into quarantine.
467  if (t) {
468    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
469    AllocatorCache *ac = GetAllocatorCache(ms);
470    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
471                   m, m->UsedSize());
472  } else {
473    SpinMutexLock l(&fallback_mutex);
474    AllocatorCache *ac = &fallback_allocator_cache;
475    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
476                   m, m->UsedSize());
477  }
478}
479
480static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
481  CHECK(old_ptr && new_size);
482  uptr p = reinterpret_cast<uptr>(old_ptr);
483  uptr chunk_beg = p - kChunkHeaderSize;
484  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
485
486  AsanStats &thread_stats = GetCurrentThreadStats();
487  thread_stats.reallocs++;
488  thread_stats.realloced += new_size;
489
490  CHECK(m->chunk_state == CHUNK_ALLOCATED);
491  uptr old_size = m->UsedSize();
492  uptr memcpy_size = Min(new_size, old_size);
493  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
494  if (new_ptr) {
495    CHECK_NE(REAL(memcpy), (void*)0);
496    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
497    Deallocate(old_ptr, stack, FROM_MALLOC);
498  }
499  return new_ptr;
500}
501
502static AsanChunk *GetAsanChunkByAddr(uptr p) {
503  void *ptr = reinterpret_cast<void *>(p);
504  uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
505  if (!alloc_beg) return 0;
506  uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
507  if (memalign_magic[0] == kMemalignMagic) {
508    AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
509    CHECK(m->from_memalign);
510    return m;
511  }
512  if (!allocator.FromPrimary(ptr)) {
513    uptr *meta = reinterpret_cast<uptr *>(
514        allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
515    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
516    return m;
517  }
518  uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
519  CHECK_LE(actual_size, SizeClassMap::kMaxSize);
520  // We know the actually allocted size, but we don't know the redzone size.
521  // Just try all possible redzone sizes.
522  for (u32 rz_log = 0; rz_log < 8; rz_log++) {
523    u32 rz_size = RZLog2Size(rz_log);
524    uptr max_possible_size = actual_size - rz_size;
525    if (ComputeRZLog(max_possible_size) != rz_log)
526      continue;
527    return reinterpret_cast<AsanChunk *>(
528        alloc_beg + rz_size - kChunkHeaderSize);
529  }
530  return 0;
531}
532
533static uptr AllocationSize(uptr p) {
534  AsanChunk *m = GetAsanChunkByAddr(p);
535  if (!m) return 0;
536  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
537  if (m->Beg() != p) return 0;
538  return m->UsedSize();
539}
540
541// We have an address between two chunks, and we want to report just one.
542AsanChunk *ChooseChunk(uptr addr,
543                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
544  // Prefer an allocated chunk over freed chunk and freed chunk
545  // over available chunk.
546  if (left_chunk->chunk_state != right_chunk->chunk_state) {
547    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
548      return left_chunk;
549    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
550      return right_chunk;
551    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
552      return left_chunk;
553    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
554      return right_chunk;
555  }
556  // Same chunk_state: choose based on offset.
557  sptr l_offset = 0, r_offset = 0;
558  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
559  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
560  if (l_offset < r_offset)
561    return left_chunk;
562  return right_chunk;
563}
564
565AsanChunkView FindHeapChunkByAddress(uptr addr) {
566  AsanChunk *m1 = GetAsanChunkByAddr(addr);
567  if (!m1) return AsanChunkView(m1);
568  sptr offset = 0;
569  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
570    // The address is in the chunk's left redzone, so maybe it is actually
571    // a right buffer overflow from the other chunk to the left.
572    // Search a bit to the left to see if there is another chunk.
573    AsanChunk *m2 = 0;
574    for (uptr l = 1; l < GetPageSizeCached(); l++) {
575      m2 = GetAsanChunkByAddr(addr - l);
576      if (m2 == m1) continue;  // Still the same chunk.
577      break;
578    }
579    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
580      m1 = ChooseChunk(addr, m2, m1);
581  }
582  return AsanChunkView(m1);
583}
584
585void AsanThreadLocalMallocStorage::CommitBack() {
586  AllocatorCache *ac = GetAllocatorCache(this);
587  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
588  allocator.SwallowCache(GetAllocatorCache(this));
589}
590
591void PrintInternalAllocatorStats() {
592  allocator.PrintStats();
593}
594
595SANITIZER_INTERFACE_ATTRIBUTE
596void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
597                    AllocType alloc_type) {
598  return Allocate(size, alignment, stack, alloc_type, true);
599}
600
601SANITIZER_INTERFACE_ATTRIBUTE
602void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
603  Deallocate(ptr, stack, alloc_type);
604}
605
606SANITIZER_INTERFACE_ATTRIBUTE
607void *asan_malloc(uptr size, StackTrace *stack) {
608  return Allocate(size, 8, stack, FROM_MALLOC, true);
609}
610
611void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
612  if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
613  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
614  // If the memory comes from the secondary allocator no need to clear it
615  // as it comes directly from mmap.
616  if (ptr && allocator.FromPrimary(ptr))
617    REAL(memset)(ptr, 0, nmemb * size);
618  return ptr;
619}
620
621void *asan_realloc(void *p, uptr size, StackTrace *stack) {
622  if (p == 0)
623    return Allocate(size, 8, stack, FROM_MALLOC, true);
624  if (size == 0) {
625    Deallocate(p, stack, FROM_MALLOC);
626    return 0;
627  }
628  return Reallocate(p, size, stack);
629}
630
631void *asan_valloc(uptr size, StackTrace *stack) {
632  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
633}
634
635void *asan_pvalloc(uptr size, StackTrace *stack) {
636  uptr PageSize = GetPageSizeCached();
637  size = RoundUpTo(size, PageSize);
638  if (size == 0) {
639    // pvalloc(0) should allocate one page.
640    size = PageSize;
641  }
642  return Allocate(size, PageSize, stack, FROM_MALLOC, true);
643}
644
645int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
646                        StackTrace *stack) {
647  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC, true);
648  CHECK(IsAligned((uptr)ptr, alignment));
649  *memptr = ptr;
650  return 0;
651}
652
653uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
654  CHECK(stack);
655  if (ptr == 0) return 0;
656  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
657  if (flags()->check_malloc_usable_size && (usable_size == 0))
658    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
659  return usable_size;
660}
661
662uptr asan_mz_size(const void *ptr) {
663  return AllocationSize(reinterpret_cast<uptr>(ptr));
664}
665
666void asan_mz_force_lock() {
667  allocator.ForceLock();
668  fallback_mutex.Lock();
669}
670
671void asan_mz_force_unlock() {
672  fallback_mutex.Unlock();
673  allocator.ForceUnlock();
674}
675
676}  // namespace __asan
677
678// ---------------------- Interface ---------------- {{{1
679using namespace __asan;  // NOLINT
680
681// ASan allocator doesn't reserve extra bytes, so normally we would
682// just return "size". We don't want to expose our redzone sizes, etc here.
683uptr __asan_get_estimated_allocated_size(uptr size) {
684  return size;
685}
686
687bool __asan_get_ownership(const void *p) {
688  uptr ptr = reinterpret_cast<uptr>(p);
689  return (AllocationSize(ptr) > 0);
690}
691
692uptr __asan_get_allocated_size(const void *p) {
693  if (p == 0) return 0;
694  uptr ptr = reinterpret_cast<uptr>(p);
695  uptr allocated_size = AllocationSize(ptr);
696  // Die if p is not malloced or if it is already freed.
697  if (allocated_size == 0) {
698    GET_STACK_TRACE_FATAL_HERE;
699    ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
700  }
701  return allocated_size;
702}
703
704#if !SANITIZER_SUPPORTS_WEAK_HOOKS
705// Provide default (no-op) implementation of malloc hooks.
706extern "C" {
707SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
708void __asan_malloc_hook(void *ptr, uptr size) {
709  (void)ptr;
710  (void)size;
711}
712SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
713void __asan_free_hook(void *ptr) {
714  (void)ptr;
715}
716}  // extern "C"
717#endif
718
719
720#endif  // ASAN_ALLOCATOR_VERSION
721