asan_allocator2.cc revision a05af3d0f2417cd6516460a46d0381a7345a5837
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16// Status: under development, not enabled by default yet.
17//===----------------------------------------------------------------------===//
18#include "asan_allocator.h"
19#if ASAN_ALLOCATOR_VERSION == 2
20
21#include "asan_mapping.h"
22#include "asan_report.h"
23#include "asan_thread.h"
24#include "sanitizer_common/sanitizer_allocator.h"
25#include "sanitizer_common/sanitizer_internal_defs.h"
26#include "sanitizer_common/sanitizer_list.h"
27#include "sanitizer_common/sanitizer_stackdepot.h"
28#include "sanitizer_common/sanitizer_quarantine.h"
29
30namespace __asan {
31
32struct AsanMapUnmapCallback {
33  void OnMap(uptr p, uptr size) const {
34    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
35    // Statistics.
36    AsanStats &thread_stats = GetCurrentThreadStats();
37    thread_stats.mmaps++;
38    thread_stats.mmaped += size;
39  }
40  void OnUnmap(uptr p, uptr size) const {
41    PoisonShadow(p, size, 0);
42    // We are about to unmap a chunk of user memory.
43    // Mark the corresponding shadow memory as not needed.
44    // Since asan's mapping is compacting, the shadow chunk may be
45    // not page-aligned, so we only flush the page-aligned portion.
46    uptr page_size = GetPageSizeCached();
47    uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
48    uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
49    FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
50    // Statistics.
51    AsanStats &thread_stats = GetCurrentThreadStats();
52    thread_stats.munmaps++;
53    thread_stats.munmaped += size;
54  }
55};
56
57#if SANITIZER_WORDSIZE == 64
58#if defined(__powerpc64__)
59const uptr kAllocatorSpace =  0xa0000000000ULL;
60#else
61const uptr kAllocatorSpace = 0x600000000000ULL;
62#endif
63const uptr kAllocatorSize  =  0x40000000000ULL;  // 4T.
64typedef DefaultSizeClassMap SizeClassMap;
65typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
66    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
67#elif SANITIZER_WORDSIZE == 32
68static const u64 kAddressSpaceSize = 1ULL << 32;
69typedef CompactSizeClassMap SizeClassMap;
70typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
71  SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
72#endif
73
74typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
75typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
76typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
77    SecondaryAllocator> Allocator;
78
79// We can not use THREADLOCAL because it is not supported on some of the
80// platforms we care about (OSX 10.6, Android).
81// static THREADLOCAL AllocatorCache cache;
82AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
83  CHECK(ms);
84  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
85  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
86}
87
88static Allocator allocator;
89
90static const uptr kMaxAllowedMallocSize =
91  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
92
93static const uptr kMaxThreadLocalQuarantine =
94  FIRST_32_SECOND_64(1 << 18, 1 << 20);
95
96// Every chunk of memory allocated by this allocator can be in one of 3 states:
97// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
98// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
99// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
100enum {
101  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
102  CHUNK_ALLOCATED  = 2,
103  CHUNK_QUARANTINE = 3
104};
105
106// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
107// We use adaptive redzones: for larger allocation larger redzones are used.
108static u32 RZLog2Size(u32 rz_log) {
109  CHECK_LT(rz_log, 8);
110  return 16 << rz_log;
111}
112
113static u32 RZSize2Log(u32 rz_size) {
114  CHECK_GE(rz_size, 16);
115  CHECK_LE(rz_size, 2048);
116  CHECK(IsPowerOfTwo(rz_size));
117  u32 res = Log2(rz_size) - 4;
118  CHECK_EQ(rz_size, RZLog2Size(res));
119  return res;
120}
121
122static uptr ComputeRZLog(uptr user_requested_size) {
123  u32 rz_log =
124    user_requested_size <= 64        - 16   ? 0 :
125    user_requested_size <= 128       - 32   ? 1 :
126    user_requested_size <= 512       - 64   ? 2 :
127    user_requested_size <= 4096      - 128  ? 3 :
128    user_requested_size <= (1 << 14) - 256  ? 4 :
129    user_requested_size <= (1 << 15) - 512  ? 5 :
130    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
131  return Max(rz_log, RZSize2Log(flags()->redzone));
132}
133
134// The memory chunk allocated from the underlying allocator looks like this:
135// L L L L L L H H U U U U U U R R
136//   L -- left redzone words (0 or more bytes)
137//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
138//   U -- user memory.
139//   R -- right redzone (0 or more bytes)
140// ChunkBase consists of ChunkHeader and other bytes that overlap with user
141// memory.
142
143// If a memory chunk is allocated by memalign and we had to increase the
144// allocation size to achieve the proper alignment, then we store this magic
145// value in the first uptr word of the memory block and store the address of
146// ChunkBase in the next uptr.
147// M B ? ? ? L L L L L L  H H U U U U U U
148//   M -- magic value kMemalignMagic
149//   B -- address of ChunkHeader pointing to the first 'H'
150static const uptr kMemalignMagic = 0xCC6E96B9;
151
152struct ChunkHeader {
153  // 1-st 8 bytes.
154  u32 chunk_state       : 8;  // Must be first.
155  u32 alloc_tid         : 24;
156
157  u32 free_tid          : 24;
158  u32 from_memalign     : 1;
159  u32 alloc_type        : 2;
160  u32 rz_log            : 3;
161  // 2-nd 8 bytes
162  // This field is used for small sizes. For large sizes it is equal to
163  // SizeClassMap::kMaxSize and the actual size is stored in the
164  // SecondaryAllocator's metadata.
165  u32 user_requested_size;
166  u32 alloc_context_id;
167};
168
169struct ChunkBase : ChunkHeader {
170  // Header2, intersects with user memory.
171  AsanChunk *next;
172  u32 free_context_id;
173};
174
175static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
176static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
177COMPILER_CHECK(kChunkHeaderSize == 16);
178COMPILER_CHECK(kChunkHeader2Size <= 16);
179
180struct AsanChunk: ChunkBase {
181  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
182  uptr UsedSize() {
183    if (user_requested_size != SizeClassMap::kMaxSize)
184      return user_requested_size;
185    return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
186  }
187  void *AllocBeg() {
188    if (from_memalign)
189      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
190    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
191  }
192  // We store the alloc/free stack traces in the chunk itself.
193  u32 *AllocStackBeg() {
194    return (u32*)(Beg() - RZLog2Size(rz_log));
195  }
196  uptr AllocStackSize() {
197    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
198    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
199  }
200  u32 *FreeStackBeg() {
201    return (u32*)(Beg() + kChunkHeader2Size);
202  }
203  uptr FreeStackSize() {
204    if (user_requested_size < kChunkHeader2Size) return 0;
205    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
206    return (available - kChunkHeader2Size) / sizeof(u32);
207  }
208};
209
210uptr AsanChunkView::Beg() { return chunk_->Beg(); }
211uptr AsanChunkView::End() { return Beg() + UsedSize(); }
212uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
213uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
214uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
215
216static void GetStackTraceFromId(u32 id, StackTrace *stack) {
217  CHECK(id);
218  uptr size = 0;
219  const uptr *trace = StackDepotGet(id, &size);
220  CHECK_LT(size, kStackTraceMax);
221  internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
222  stack->size = size;
223}
224
225void AsanChunkView::GetAllocStack(StackTrace *stack) {
226  if (flags()->use_stack_depot)
227    GetStackTraceFromId(chunk_->alloc_context_id, stack);
228  else
229    StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
230                                chunk_->AllocStackSize());
231}
232
233void AsanChunkView::GetFreeStack(StackTrace *stack) {
234  if (flags()->use_stack_depot)
235    GetStackTraceFromId(chunk_->free_context_id, stack);
236  else
237    StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
238                                chunk_->FreeStackSize());
239}
240
241struct QuarantineCallback;
242typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
243typedef AsanQuarantine::Cache QuarantineCache;
244static AsanQuarantine quarantine(LINKER_INITIALIZED);
245static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
246static AllocatorCache fallback_allocator_cache;
247static SpinMutex fallback_mutex;
248
249QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
250  CHECK(ms);
251  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
252  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
253}
254
255struct QuarantineCallback {
256  explicit QuarantineCallback(AllocatorCache *cache)
257      : cache_(cache) {
258  }
259
260  void Recycle(AsanChunk *m) {
261    CHECK(m->chunk_state == CHUNK_QUARANTINE);
262    m->chunk_state = CHUNK_AVAILABLE;
263    CHECK_NE(m->alloc_tid, kInvalidTid);
264    CHECK_NE(m->free_tid, kInvalidTid);
265    PoisonShadow(m->Beg(),
266                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
267                 kAsanHeapLeftRedzoneMagic);
268    void *p = reinterpret_cast<void *>(m->AllocBeg());
269    if (m->from_memalign) {
270      uptr *memalign_magic = reinterpret_cast<uptr *>(p);
271      CHECK_EQ(memalign_magic[0], kMemalignMagic);
272      CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
273    }
274
275    // Statistics.
276    AsanStats &thread_stats = GetCurrentThreadStats();
277    thread_stats.real_frees++;
278    thread_stats.really_freed += m->UsedSize();
279
280    allocator.Deallocate(cache_, p);
281  }
282
283  void *Allocate(uptr size) {
284    return allocator.Allocate(cache_, size, 1, false);
285  }
286
287  void Deallocate(void *p) {
288    allocator.Deallocate(cache_, p);
289  }
290
291  AllocatorCache *cache_;
292};
293
294void InitializeAllocator() {
295  allocator.Init();
296  quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
297}
298
299static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
300                      AllocType alloc_type) {
301  if (!asan_inited)
302    __asan_init();
303  CHECK(stack);
304  const uptr min_alignment = SHADOW_GRANULARITY;
305  if (alignment < min_alignment)
306    alignment = min_alignment;
307  if (size == 0) {
308    // We'd be happy to avoid allocating memory for zero-size requests, but
309    // some programs/tests depend on this behavior and assume that malloc would
310    // not return NULL even for zero-size allocations. Moreover, it looks like
311    // operator new should never return NULL, and results of consecutive "new"
312    // calls must be different even if the allocated size is zero.
313    size = 1;
314  }
315  CHECK(IsPowerOfTwo(alignment));
316  uptr rz_log = ComputeRZLog(size);
317  uptr rz_size = RZLog2Size(rz_log);
318  uptr rounded_size = RoundUpTo(size, alignment);
319  if (rounded_size < kChunkHeader2Size)
320    rounded_size = kChunkHeader2Size;
321  uptr needed_size = rounded_size + rz_size;
322  if (alignment > min_alignment)
323    needed_size += alignment;
324  bool using_primary_allocator = true;
325  // If we are allocating from the secondary allocator, there will be no
326  // automatic right redzone, so add the right redzone manually.
327  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
328    needed_size += rz_size;
329    using_primary_allocator = false;
330  }
331  CHECK(IsAligned(needed_size, min_alignment));
332  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
333    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
334           (void*)size);
335    return 0;
336  }
337
338  AsanThread *t = GetCurrentThread();
339  void *allocated;
340  if (t) {
341    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
342    allocated = allocator.Allocate(cache, needed_size, 8, false);
343  } else {
344    SpinMutexLock l(&fallback_mutex);
345    AllocatorCache *cache = &fallback_allocator_cache;
346    allocated = allocator.Allocate(cache, needed_size, 8, false);
347  }
348  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
349  // Clear the first allocated word (an old kMemalignMagic may still be there).
350  reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
351  uptr alloc_end = alloc_beg + needed_size;
352  uptr beg_plus_redzone = alloc_beg + rz_size;
353  uptr user_beg = beg_plus_redzone;
354  if (!IsAligned(user_beg, alignment))
355    user_beg = RoundUpTo(user_beg, alignment);
356  uptr user_end = user_beg + size;
357  CHECK_LE(user_end, alloc_end);
358  uptr chunk_beg = user_beg - kChunkHeaderSize;
359  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
360  m->chunk_state = CHUNK_ALLOCATED;
361  m->alloc_type = alloc_type;
362  m->rz_log = rz_log;
363  u32 alloc_tid = t ? t->tid() : 0;
364  m->alloc_tid = alloc_tid;
365  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
366  m->free_tid = kInvalidTid;
367  m->from_memalign = user_beg != beg_plus_redzone;
368  if (m->from_memalign) {
369    CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
370    uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
371    memalign_magic[0] = kMemalignMagic;
372    memalign_magic[1] = chunk_beg;
373  }
374  if (using_primary_allocator) {
375    CHECK(size);
376    m->user_requested_size = size;
377    CHECK(allocator.FromPrimary(allocated));
378  } else {
379    CHECK(!allocator.FromPrimary(allocated));
380    m->user_requested_size = SizeClassMap::kMaxSize;
381    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
382    meta[0] = size;
383    meta[1] = chunk_beg;
384  }
385
386  if (flags()->use_stack_depot) {
387    m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
388  } else {
389    m->alloc_context_id = 0;
390    StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
391  }
392
393  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
394  // Unpoison the bulk of the memory region.
395  if (size_rounded_down_to_granularity)
396    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
397  // Deal with the end of the region if size is not aligned to granularity.
398  if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
399    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
400    *shadow = size & (SHADOW_GRANULARITY - 1);
401  }
402
403  AsanStats &thread_stats = GetCurrentThreadStats();
404  thread_stats.mallocs++;
405  thread_stats.malloced += size;
406  thread_stats.malloced_redzones += needed_size - size;
407  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
408  thread_stats.malloced_by_size[class_id]++;
409  if (needed_size > SizeClassMap::kMaxSize)
410    thread_stats.malloc_large++;
411
412  void *res = reinterpret_cast<void *>(user_beg);
413  ASAN_MALLOC_HOOK(res, size);
414  return res;
415}
416
417static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
418  uptr p = reinterpret_cast<uptr>(ptr);
419  if (p == 0) return;
420  ASAN_FREE_HOOK(ptr);
421  uptr chunk_beg = p - kChunkHeaderSize;
422  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
423
424  u8 old_chunk_state = CHUNK_ALLOCATED;
425  // Flip the chunk_state atomically to avoid race on double-free.
426  if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
427                                      CHUNK_QUARANTINE, memory_order_relaxed)) {
428    if (old_chunk_state == CHUNK_QUARANTINE)
429      ReportDoubleFree((uptr)ptr, stack);
430    else
431      ReportFreeNotMalloced((uptr)ptr, stack);
432  }
433  CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
434
435  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
436    ReportAllocTypeMismatch((uptr)ptr, stack,
437                            (AllocType)m->alloc_type, (AllocType)alloc_type);
438
439  CHECK_GE(m->alloc_tid, 0);
440  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
441    CHECK_EQ(m->free_tid, kInvalidTid);
442  AsanThread *t = GetCurrentThread();
443  m->free_tid = t ? t->tid() : 0;
444  if (flags()->use_stack_depot) {
445    m->free_context_id = StackDepotPut(stack->trace, stack->size);
446  } else {
447    m->free_context_id = 0;
448    StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
449  }
450  CHECK(m->chunk_state == CHUNK_QUARANTINE);
451  // Poison the region.
452  PoisonShadow(m->Beg(),
453               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
454               kAsanHeapFreeMagic);
455
456  AsanStats &thread_stats = GetCurrentThreadStats();
457  thread_stats.frees++;
458  thread_stats.freed += m->UsedSize();
459
460  // Push into quarantine.
461  if (t) {
462    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
463    AllocatorCache *ac = GetAllocatorCache(ms);
464    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
465                   m, m->UsedSize());
466  } else {
467    SpinMutexLock l(&fallback_mutex);
468    AllocatorCache *ac = &fallback_allocator_cache;
469    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
470                   m, m->UsedSize());
471  }
472}
473
474static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
475  CHECK(old_ptr && new_size);
476  uptr p = reinterpret_cast<uptr>(old_ptr);
477  uptr chunk_beg = p - kChunkHeaderSize;
478  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
479
480  AsanStats &thread_stats = GetCurrentThreadStats();
481  thread_stats.reallocs++;
482  thread_stats.realloced += new_size;
483
484  CHECK(m->chunk_state == CHUNK_ALLOCATED);
485  uptr old_size = m->UsedSize();
486  uptr memcpy_size = Min(new_size, old_size);
487  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
488  if (new_ptr) {
489    CHECK_NE(REAL(memcpy), (void*)0);
490    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
491    Deallocate(old_ptr, stack, FROM_MALLOC);
492  }
493  return new_ptr;
494}
495
496static AsanChunk *GetAsanChunkByAddr(uptr p) {
497  void *ptr = reinterpret_cast<void *>(p);
498  uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
499  if (!alloc_beg) return 0;
500  uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
501  if (memalign_magic[0] == kMemalignMagic) {
502    AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
503    CHECK(m->from_memalign);
504    return m;
505  }
506  if (!allocator.FromPrimary(ptr)) {
507    uptr *meta = reinterpret_cast<uptr *>(
508        allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
509    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
510    return m;
511  }
512  uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
513  CHECK_LE(actual_size, SizeClassMap::kMaxSize);
514  // We know the actually allocted size, but we don't know the redzone size.
515  // Just try all possible redzone sizes.
516  for (u32 rz_log = 0; rz_log < 8; rz_log++) {
517    u32 rz_size = RZLog2Size(rz_log);
518    uptr max_possible_size = actual_size - rz_size;
519    if (ComputeRZLog(max_possible_size) != rz_log)
520      continue;
521    return reinterpret_cast<AsanChunk *>(
522        alloc_beg + rz_size - kChunkHeaderSize);
523  }
524  return 0;
525}
526
527static uptr AllocationSize(uptr p) {
528  AsanChunk *m = GetAsanChunkByAddr(p);
529  if (!m) return 0;
530  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
531  if (m->Beg() != p) return 0;
532  return m->UsedSize();
533}
534
535// We have an address between two chunks, and we want to report just one.
536AsanChunk *ChooseChunk(uptr addr,
537                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
538  // Prefer an allocated chunk over freed chunk and freed chunk
539  // over available chunk.
540  if (left_chunk->chunk_state != right_chunk->chunk_state) {
541    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
542      return left_chunk;
543    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
544      return right_chunk;
545    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
546      return left_chunk;
547    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
548      return right_chunk;
549  }
550  // Same chunk_state: choose based on offset.
551  sptr l_offset = 0, r_offset = 0;
552  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
553  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
554  if (l_offset < r_offset)
555    return left_chunk;
556  return right_chunk;
557}
558
559AsanChunkView FindHeapChunkByAddress(uptr addr) {
560  AsanChunk *m1 = GetAsanChunkByAddr(addr);
561  if (!m1) return AsanChunkView(m1);
562  sptr offset = 0;
563  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
564    // The address is in the chunk's left redzone, so maybe it is actually
565    // a right buffer overflow from the other chunk to the left.
566    // Search a bit to the left to see if there is another chunk.
567    AsanChunk *m2 = 0;
568    for (uptr l = 1; l < GetPageSizeCached(); l++) {
569      m2 = GetAsanChunkByAddr(addr - l);
570      if (m2 == m1) continue;  // Still the same chunk.
571      break;
572    }
573    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
574      m1 = ChooseChunk(addr, m2, m1);
575  }
576  return AsanChunkView(m1);
577}
578
579void AsanThreadLocalMallocStorage::CommitBack() {
580  AllocatorCache *ac = GetAllocatorCache(this);
581  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
582  allocator.SwallowCache(GetAllocatorCache(this));
583}
584
585void PrintInternalAllocatorStats() {
586  allocator.PrintStats();
587}
588
589SANITIZER_INTERFACE_ATTRIBUTE
590void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
591                    AllocType alloc_type) {
592  return Allocate(size, alignment, stack, alloc_type);
593}
594
595SANITIZER_INTERFACE_ATTRIBUTE
596void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
597  Deallocate(ptr, stack, alloc_type);
598}
599
600SANITIZER_INTERFACE_ATTRIBUTE
601void *asan_malloc(uptr size, StackTrace *stack) {
602  return Allocate(size, 8, stack, FROM_MALLOC);
603}
604
605void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
606  if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
607  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
608  // If the memory comes from the secondary allocator no need to clear it
609  // as it comes directly from mmap.
610  if (ptr && allocator.FromPrimary(ptr))
611    REAL(memset)(ptr, 0, nmemb * size);
612  return ptr;
613}
614
615void *asan_realloc(void *p, uptr size, StackTrace *stack) {
616  if (p == 0)
617    return Allocate(size, 8, stack, FROM_MALLOC);
618  if (size == 0) {
619    Deallocate(p, stack, FROM_MALLOC);
620    return 0;
621  }
622  return Reallocate(p, size, stack);
623}
624
625void *asan_valloc(uptr size, StackTrace *stack) {
626  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
627}
628
629void *asan_pvalloc(uptr size, StackTrace *stack) {
630  uptr PageSize = GetPageSizeCached();
631  size = RoundUpTo(size, PageSize);
632  if (size == 0) {
633    // pvalloc(0) should allocate one page.
634    size = PageSize;
635  }
636  return Allocate(size, PageSize, stack, FROM_MALLOC);
637}
638
639int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
640                        StackTrace *stack) {
641  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
642  CHECK(IsAligned((uptr)ptr, alignment));
643  *memptr = ptr;
644  return 0;
645}
646
647uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
648  CHECK(stack);
649  if (ptr == 0) return 0;
650  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
651  if (flags()->check_malloc_usable_size && (usable_size == 0))
652    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
653  return usable_size;
654}
655
656uptr asan_mz_size(const void *ptr) {
657  return AllocationSize(reinterpret_cast<uptr>(ptr));
658}
659
660void asan_mz_force_lock() {
661  allocator.ForceLock();
662  fallback_mutex.Lock();
663}
664
665void asan_mz_force_unlock() {
666  fallback_mutex.Unlock();
667  allocator.ForceUnlock();
668}
669
670}  // namespace __asan
671
672// ---------------------- Interface ---------------- {{{1
673using namespace __asan;  // NOLINT
674
675// ASan allocator doesn't reserve extra bytes, so normally we would
676// just return "size". We don't want to expose our redzone sizes, etc here.
677uptr __asan_get_estimated_allocated_size(uptr size) {
678  return size;
679}
680
681bool __asan_get_ownership(const void *p) {
682  uptr ptr = reinterpret_cast<uptr>(p);
683  return (AllocationSize(ptr) > 0);
684}
685
686uptr __asan_get_allocated_size(const void *p) {
687  if (p == 0) return 0;
688  uptr ptr = reinterpret_cast<uptr>(p);
689  uptr allocated_size = AllocationSize(ptr);
690  // Die if p is not malloced or if it is already freed.
691  if (allocated_size == 0) {
692    GET_STACK_TRACE_FATAL_HERE;
693    ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
694  }
695  return allocated_size;
696}
697
698#if !SANITIZER_SUPPORTS_WEAK_HOOKS
699// Provide default (no-op) implementation of malloc hooks.
700extern "C" {
701SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
702void __asan_malloc_hook(void *ptr, uptr size) {
703  (void)ptr;
704  (void)size;
705}
706SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
707void __asan_free_hook(void *ptr) {
708  (void)ptr;
709}
710}  // extern "C"
711#endif
712
713
714#endif  // ASAN_ALLOCATOR_VERSION
715