asan_test.cc revision 48ddbef1d051875b2d0b204e8d78300b58d80a85
15c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===-- asan_test.cc ------------------------------------------------------===//
25c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
35c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
45c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
55c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// License. See LICENSE.TXT for details.
75c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
85c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
95c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
105c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This file is a part of AddressSanitizer, an address sanity checker.
115c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
125c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
135c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <stdio.h>
145c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <signal.h>
155c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <stdlib.h>
165c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <string.h>
175c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <strings.h>
185c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <pthread.h>
195c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <stdint.h>
205c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <setjmp.h>
215c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <assert.h>
225c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <algorithm>
235c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
245c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#ifdef __linux__
255c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)# include <sys/prctl.h>
265c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)# include <sys/types.h>
275c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)# include <sys/stat.h>
2853e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)# include <fcntl.h>
2953e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)#include <unistd.h>
301e202183a5dc46166763171984b285173f8585e5Torne (Richard Coles)#endif
3109380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)
325c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#if defined(__i386__) || defined(__x86_64__)
33c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)#include <emmintrin.h>
345c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif
355c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
365c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "asan_test_utils.h"
375c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
385c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#ifndef __APPLE__
395c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <malloc.h>
405c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#else
415c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <malloc/malloc.h>
425c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
435c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <CoreFoundation/CFString.h>
445c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif  // __APPLE__
4509380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)
4609380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)#if ASAN_HAS_EXCEPTIONS
475c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)# define ASAN_THROW(x) throw (x)
485c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#else
495c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)# define ASAN_THROW(x)
505c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif
515c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
525c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <sys/mman.h>
535c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
545c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)typedef uint8_t   U1;
555c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)typedef uint16_t  U2;
565c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)typedef uint32_t  U4;
575c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)typedef uint64_t  U8;
585c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
59c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)static const int kPageSize = 4096;
605c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
615c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)const size_t kLargeMalloc = 1 << 24;
625c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
635c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)template<typename T>
6493ac45cfc74041c8ae536ce58a9534d46db2024eTorne (Richard Coles)NOINLINE void asan_write(T *a) {
655c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  *a = 0;
66591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch}
67591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch
68591b958dee2cf159d33a0b931e6231072eaf38d5Ben MurdochNOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
69591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch  EXPECT_EQ(0U, ((uintptr_t)p % size));
705c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  if      (size == 1) asan_write((uint8_t*)p);
7107a852d8c1953036774d8f3b65d18dcfea3bb4a2Ben Murdoch  else if (size == 2) asan_write((uint16_t*)p);
7207a852d8c1953036774d8f3b65d18dcfea3bb4a2Ben Murdoch  else if (size == 4) asan_write((uint32_t*)p);
7307a852d8c1953036774d8f3b65d18dcfea3bb4a2Ben Murdoch  else if (size == 8) asan_write((uint64_t*)p);
7407a852d8c1953036774d8f3b65d18dcfea3bb4a2Ben Murdoch}
755c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
765c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *malloc_fff(size_t size) {
77f6b7aed3f7ce69aca0d7a032d144cbd088b04393Torne (Richard Coles)  void *res = malloc/**/(size); break_optimization(0); return res;}
785c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *malloc_eee(size_t size) {
795c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = malloc_fff(size); break_optimization(0); return res;}
805c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *malloc_ddd(size_t size) {
815c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = malloc_eee(size); break_optimization(0); return res;}
825c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *malloc_ccc(size_t size) {
835c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = malloc_ddd(size); break_optimization(0); return res;}
845c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *malloc_bbb(size_t size) {
855c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = malloc_ccc(size); break_optimization(0); return res;}
865c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *malloc_aaa(size_t size) {
875c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = malloc_bbb(size); break_optimization(0); return res;}
885c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
895c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#ifndef __APPLE__
905c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *memalign_fff(size_t alignment, size_t size) {
915c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
925c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *memalign_eee(size_t alignment, size_t size) {
9309380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
9409380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
9509380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
965c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
975c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
985c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
995c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
1005c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
10109380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
1025c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif  // __APPLE__
1035c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1045c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1055c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
1065c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
1075c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
1085c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1095c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)template<typename T>
1105c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void oob_test(int size, int off) {
1115c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  char *p = (char*)malloc_aaa(size);
1125c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
1135c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  //        sizeof(T), p, p + size, off);
1145c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  asan_write((T*)(p + off));
1155c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free_aaa(p);
1165c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
1175c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1185c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1195c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)template<typename T>
1205c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)NOINLINE void uaf_test(int size, int off) {
1215c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  char *p = (char *)malloc_aaa(size);
1225c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free_aaa(p);
1235c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  for (int i = 1; i < 100; i++)
1245c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    free_aaa(malloc_aaa(i));
1255c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
1265c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)          (long)sizeof(T), p, off);
1275c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  asan_write((T*)(p + off));
1285c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
1295c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1305c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
1315c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#if defined(__has_feature) && __has_feature(address_sanitizer)
1328abfc5808a4e34d6e03867af8bc440dee641886fTorne (Richard Coles)  bool asan = 1;
1335c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#elif defined(__SANITIZE_ADDRESS__)
1345c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  bool asan = 1;
13509380295ba73501a205346becac22c6978e4671dTorne (Richard Coles)#else
1365c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  bool asan = 0;
1375c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif
138926b001d589ce2f10facb93dd4b87578ea35a855Torne (Richard Coles)  EXPECT_EQ(true, asan);
1395c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
1405c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1415c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)TEST(AddressSanitizer, SimpleDeathTest) {
1425c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  EXPECT_DEATH(exit(1), "");
1435c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
1445c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1455c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)TEST(AddressSanitizer, VariousMallocsTest) {
1465c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  int *a = (int*)malloc(100 * sizeof(int));
1475c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  a[50] = 0;
1485c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free(a);
1495c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1505c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  int *r = (int*)malloc(10);
1515c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  r = (int*)realloc(r, 2000 * sizeof(int));
1525c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  r[1000] = 0;
1535c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free(r);
1545c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1555c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  int *b = new int[100];
1565c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  b[50] = 0;
1575c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  delete [] b;
1585c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
159926b001d589ce2f10facb93dd4b87578ea35a855Torne (Richard Coles)  int *c = new int;
160926b001d589ce2f10facb93dd4b87578ea35a855Torne (Richard Coles)  *c = 0;
161d5428f32f5d1719f774f62e19147104ca245a3abTorne (Richard Coles)  delete c;
1625c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1635c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
1645c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  int *pm;
1655c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
1665c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  EXPECT_EQ(0, pm_res);
1675c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free(pm);
1685c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif
169c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)
170c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)#if !defined(__APPLE__)
1715c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  int *ma = (int*)memalign(kPageSize, kPageSize);
1725c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
1735c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  ma[123] = 0;
1745c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free(ma);
1755c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif  // __APPLE__
1765c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
1775c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1785c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)TEST(AddressSanitizer, CallocTest) {
1795c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  int *a = (int*)calloc(100, sizeof(int));
1805c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  EXPECT_EQ(0, a[10]);
1815c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free(a);
1825c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
1835c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1845c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)TEST(AddressSanitizer, VallocTest) {
1855c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  void *a = valloc(100);
1865c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
1875c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free(a);
1885c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
1895c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1905c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#ifndef __APPLE__
1915c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)TEST(AddressSanitizer, PvallocTest) {
1925c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  char *a = (char*)pvalloc(kPageSize + 100);
1935c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
1945c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  a[kPageSize + 101] = 1;  // we should not report an error here.
1955c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  free(a);
1965c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
1975c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
198e1f1df5f01594c0e62e751e4b46e779b85c2faa5Torne (Richard Coles)  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
199e1f1df5f01594c0e62e751e4b46e779b85c2faa5Torne (Richard Coles)  a[101] = 1;  // we should not report an error here.
200e1f1df5f01594c0e62e751e4b46e779b85c2faa5Torne (Richard Coles)  free(a);
2015c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
2025c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#endif  // __APPLE__
2035c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
2045c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)void *TSDWorker(void *test_key) {
2055c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  if (test_key) {
2065c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
2075c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  }
2085c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  return NULL;
2095c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}
2105c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
211c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)void TSDDestructor(void *tsd) {
2125c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // Spawning a thread will check that the current thread id is not -1.
2135c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  pthread_t th;
214  PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
215  PTHREAD_JOIN(th, NULL);
216}
217
218// This tests triggers the thread-specific data destruction fiasco which occurs
219// if we don't manage the TSD destructors ourselves. We create a new pthread
220// key with a non-NULL destructor which is likely to be put after the destructor
221// of AsanThread in the list of destructors.
222// In this case the TSD for AsanThread will be destroyed before TSDDestructor
223// is called for the child thread, and a CHECK will fail when we call
224// pthread_create() to spawn the grandchild.
225TEST(AddressSanitizer, DISABLED_TSDTest) {
226  pthread_t th;
227  pthread_key_t test_key;
228  pthread_key_create(&test_key, TSDDestructor);
229  PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
230  PTHREAD_JOIN(th, NULL);
231  pthread_key_delete(test_key);
232}
233
234template<typename T>
235void OOBTest() {
236  char expected_str[100];
237  for (int size = sizeof(T); size < 20; size += 5) {
238    for (int i = -5; i < 0; i++) {
239      const char *str =
240          "is located.*%d byte.*to the left";
241      sprintf(expected_str, str, abs(i));
242      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
243    }
244
245    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
246      oob_test<T>(size, i);
247
248    for (int i = size - sizeof(T) + 1; i <= (int)(size + 2 * sizeof(T)); i++) {
249      const char *str =
250          "is located.*%d byte.*to the right";
251      int off = i >= size ? (i - size) : 0;
252      // we don't catch unaligned partially OOB accesses.
253      if (i % sizeof(T)) continue;
254      sprintf(expected_str, str, off);
255      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
256    }
257  }
258
259  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
260          "is located.*1 byte.*to the left");
261  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
262          "is located.*0 byte.*to the right");
263}
264
265// TODO(glider): the following tests are EXTREMELY slow on Darwin:
266//   AddressSanitizer.OOB_char (125503 ms)
267//   AddressSanitizer.OOB_int (126890 ms)
268//   AddressSanitizer.OOBRightTest (315605 ms)
269//   AddressSanitizer.SimpleStackTest (366559 ms)
270
271TEST(AddressSanitizer, OOB_char) {
272  OOBTest<U1>();
273}
274
275TEST(AddressSanitizer, OOB_int) {
276  OOBTest<U4>();
277}
278
279TEST(AddressSanitizer, OOBRightTest) {
280  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
281    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
282      for (size_t offset = 0; offset <= 8; offset += access_size) {
283        void *p = malloc(alloc_size);
284        // allocated: [p, p + alloc_size)
285        // accessed:  [p + offset, p + offset + access_size)
286        uint8_t *addr = (uint8_t*)p + offset;
287        if (offset + access_size <= alloc_size) {
288          asan_write_sized_aligned(addr, access_size);
289        } else {
290          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
291          const char *str =
292              "is located.%d *byte.*to the right";
293          char expected_str[100];
294          sprintf(expected_str, str, outside_bytes);
295          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
296                       expected_str);
297        }
298        free(p);
299      }
300    }
301  }
302}
303
304#if ASAN_ALLOCATOR_VERSION == 2  // Broken with the asan_allocator1
305TEST(AddressSanitizer, LargeOOBRightTest) {
306  size_t large_power_of_two = 1 << 19;
307  for (size_t i = 16; i <= 256; i *= 2) {
308    size_t size = large_power_of_two - i;
309    char *p = Ident(new char[size]);
310    EXPECT_DEATH(p[size] = 0, "is located 0 bytes to the right");
311    delete [] p;
312  }
313}
314#endif  // ASAN_ALLOCATOR_VERSION == 2
315
316TEST(AddressSanitizer, UAF_char) {
317  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
318  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
319  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
320  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
321  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
322  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
323}
324
325#if ASAN_HAS_BLACKLIST
326TEST(AddressSanitizer, IgnoreTest) {
327  int *x = Ident(new int);
328  delete Ident(x);
329  *x = 0;
330}
331#endif  // ASAN_HAS_BLACKLIST
332
333struct StructWithBitField {
334  int bf1:1;
335  int bf2:1;
336  int bf3:1;
337  int bf4:29;
338};
339
340TEST(AddressSanitizer, BitFieldPositiveTest) {
341  StructWithBitField *x = new StructWithBitField;
342  delete Ident(x);
343  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
344  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
345  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
346  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
347}
348
349struct StructWithBitFields_8_24 {
350  int a:8;
351  int b:24;
352};
353
354TEST(AddressSanitizer, BitFieldNegativeTest) {
355  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
356  x->a = 0;
357  x->b = 0;
358  delete Ident(x);
359}
360
361TEST(AddressSanitizer, OutOfMemoryTest) {
362  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
363  EXPECT_EQ(0, realloc(0, size));
364  EXPECT_EQ(0, realloc(0, ~Ident(0)));
365  EXPECT_EQ(0, malloc(size));
366  EXPECT_EQ(0, malloc(~Ident(0)));
367  EXPECT_EQ(0, calloc(1, size));
368  EXPECT_EQ(0, calloc(1, ~Ident(0)));
369}
370
371#if ASAN_NEEDS_SEGV
372namespace {
373
374const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
375const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
376
377TEST(AddressSanitizer, WildAddressTest) {
378  char *c = (char*)0x123;
379  EXPECT_DEATH(*c = 0, kUnknownCrash);
380}
381
382void my_sigaction_sighandler(int, siginfo_t*, void*) {
383  fprintf(stderr, kOverriddenHandler);
384  exit(1);
385}
386
387void my_signal_sighandler(int signum) {
388  fprintf(stderr, kOverriddenHandler);
389  exit(1);
390}
391
392TEST(AddressSanitizer, SignalTest) {
393  struct sigaction sigact;
394  memset(&sigact, 0, sizeof(sigact));
395  sigact.sa_sigaction = my_sigaction_sighandler;
396  sigact.sa_flags = SA_SIGINFO;
397  // ASan should silently ignore sigaction()...
398  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
399#ifdef __APPLE__
400  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
401#endif
402  char *c = (char*)0x123;
403  EXPECT_DEATH(*c = 0, kUnknownCrash);
404  // ... and signal().
405  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
406  EXPECT_DEATH(*c = 0, kUnknownCrash);
407}
408}  // namespace
409#endif
410
411static void MallocStress(size_t n) {
412  uint32_t seed = my_rand();
413  for (size_t iter = 0; iter < 10; iter++) {
414    vector<void *> vec;
415    for (size_t i = 0; i < n; i++) {
416      if ((i % 3) == 0) {
417        if (vec.empty()) continue;
418        size_t idx = my_rand_r(&seed) % vec.size();
419        void *ptr = vec[idx];
420        vec[idx] = vec.back();
421        vec.pop_back();
422        free_aaa(ptr);
423      } else {
424        size_t size = my_rand_r(&seed) % 1000 + 1;
425#ifndef __APPLE__
426        size_t alignment = 1 << (my_rand_r(&seed) % 7 + 3);
427        char *ptr = (char*)memalign_aaa(alignment, size);
428#else
429        char *ptr = (char*) malloc_aaa(size);
430#endif
431        vec.push_back(ptr);
432        ptr[0] = 0;
433        ptr[size-1] = 0;
434        ptr[size/2] = 0;
435      }
436    }
437    for (size_t i = 0; i < vec.size(); i++)
438      free_aaa(vec[i]);
439  }
440}
441
442TEST(AddressSanitizer, MallocStressTest) {
443  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
444}
445
446static void TestLargeMalloc(size_t size) {
447  char buff[1024];
448  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
449  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
450}
451
452TEST(AddressSanitizer, LargeMallocTest) {
453  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
454    TestLargeMalloc(i);
455  }
456}
457
458#if ASAN_LOW_MEMORY != 1
459TEST(AddressSanitizer, HugeMallocTest) {
460#ifdef __APPLE__
461  // It was empirically found out that 1215 megabytes is the maximum amount of
462  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
463  // 32-bit Mac 10.7 gives even less (< 1G).
464  // (the libSystem malloc() allows allocating up to 2300 megabytes without
465  // ASan).
466  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
467#else
468  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
469#endif
470  TestLargeMalloc(n_megs << 20);
471}
472#endif
473
474#ifndef __APPLE__
475void MemalignRun(size_t align, size_t size, int idx) {
476  char *p = (char *)memalign(align, size);
477  Ident(p)[idx] = 0;
478  free(p);
479}
480
481TEST(AddressSanitizer, memalign) {
482  for (int align = 16; align <= (1 << 23); align *= 2) {
483    size_t size = align * 5;
484    EXPECT_DEATH(MemalignRun(align, size, -1),
485                 "is located 1 bytes to the left");
486    EXPECT_DEATH(MemalignRun(align, size, size + 1),
487                 "is located 1 bytes to the right");
488  }
489}
490#endif
491
492TEST(AddressSanitizer, ThreadedMallocStressTest) {
493  const int kNumThreads = 4;
494  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
495  pthread_t t[kNumThreads];
496  for (int i = 0; i < kNumThreads; i++) {
497    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
498        (void*)kNumIterations);
499  }
500  for (int i = 0; i < kNumThreads; i++) {
501    PTHREAD_JOIN(t[i], 0);
502  }
503}
504
505void *ManyThreadsWorker(void *a) {
506  for (int iter = 0; iter < 100; iter++) {
507    for (size_t size = 100; size < 2000; size *= 2) {
508      free(Ident(malloc(size)));
509    }
510  }
511  return 0;
512}
513
514TEST(AddressSanitizer, ManyThreadsTest) {
515  const size_t kNumThreads =
516      (SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
517  pthread_t t[kNumThreads];
518  for (size_t i = 0; i < kNumThreads; i++) {
519    PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
520  }
521  for (size_t i = 0; i < kNumThreads; i++) {
522    PTHREAD_JOIN(t[i], 0);
523  }
524}
525
526TEST(AddressSanitizer, ReallocTest) {
527  const int kMinElem = 5;
528  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
529  ptr[3] = 3;
530  for (int i = 0; i < 10000; i++) {
531    ptr = (int*)realloc(ptr,
532        (my_rand() % 1000 + kMinElem) * sizeof(int));
533    EXPECT_EQ(3, ptr[3]);
534  }
535}
536
537#ifndef __APPLE__
538static const char *kMallocUsableSizeErrorMsg =
539  "AddressSanitizer: attempting to call malloc_usable_size()";
540
541TEST(AddressSanitizer, MallocUsableSizeTest) {
542  const size_t kArraySize = 100;
543  char *array = Ident((char*)malloc(kArraySize));
544  int *int_ptr = Ident(new int);
545  EXPECT_EQ(0U, malloc_usable_size(NULL));
546  EXPECT_EQ(kArraySize, malloc_usable_size(array));
547  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
548  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
549  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
550               kMallocUsableSizeErrorMsg);
551  free(array);
552  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
553}
554#endif
555
556void WrongFree() {
557  int *x = (int*)malloc(100 * sizeof(int));
558  // Use the allocated memory, otherwise Clang will optimize it out.
559  Ident(x);
560  free(x + 1);
561}
562
563TEST(AddressSanitizer, WrongFreeTest) {
564  EXPECT_DEATH(WrongFree(),
565               "ERROR: AddressSanitizer: attempting free.*not malloc");
566}
567
568void DoubleFree() {
569  int *x = (int*)malloc(100 * sizeof(int));
570  fprintf(stderr, "DoubleFree: x=%p\n", x);
571  free(x);
572  free(x);
573  fprintf(stderr, "should have failed in the second free(%p)\n", x);
574  abort();
575}
576
577TEST(AddressSanitizer, DoubleFreeTest) {
578  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
579               "ERROR: AddressSanitizer: attempting double-free"
580               ".*is located 0 bytes inside of 400-byte region"
581               ".*freed by thread T0 here"
582               ".*previously allocated by thread T0 here");
583}
584
585template<int kSize>
586NOINLINE void SizedStackTest() {
587  char a[kSize];
588  char  *A = Ident((char*)&a);
589  for (size_t i = 0; i < kSize; i++)
590    A[i] = i;
591  EXPECT_DEATH(A[-1] = 0, "");
592  EXPECT_DEATH(A[-20] = 0, "");
593  EXPECT_DEATH(A[-31] = 0, "");
594  EXPECT_DEATH(A[kSize] = 0, "");
595  EXPECT_DEATH(A[kSize + 1] = 0, "");
596  EXPECT_DEATH(A[kSize + 10] = 0, "");
597  EXPECT_DEATH(A[kSize + 31] = 0, "");
598}
599
600TEST(AddressSanitizer, SimpleStackTest) {
601  SizedStackTest<1>();
602  SizedStackTest<2>();
603  SizedStackTest<3>();
604  SizedStackTest<4>();
605  SizedStackTest<5>();
606  SizedStackTest<6>();
607  SizedStackTest<7>();
608  SizedStackTest<16>();
609  SizedStackTest<25>();
610  SizedStackTest<34>();
611  SizedStackTest<43>();
612  SizedStackTest<51>();
613  SizedStackTest<62>();
614  SizedStackTest<64>();
615  SizedStackTest<128>();
616}
617
618TEST(AddressSanitizer, ManyStackObjectsTest) {
619  char XXX[10];
620  char YYY[20];
621  char ZZZ[30];
622  Ident(XXX);
623  Ident(YYY);
624  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
625}
626
627NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
628  char d[4] = {0};
629  char *D = Ident(d);
630  switch (frame) {
631    case 3: a[5]++; break;
632    case 2: b[5]++; break;
633    case 1: c[5]++; break;
634    case 0: D[5]++; break;
635  }
636}
637NOINLINE static void Frame1(int frame, char *a, char *b) {
638  char c[4] = {0}; Frame0(frame, a, b, c);
639  break_optimization(0);
640}
641NOINLINE static void Frame2(int frame, char *a) {
642  char b[4] = {0}; Frame1(frame, a, b);
643  break_optimization(0);
644}
645NOINLINE static void Frame3(int frame) {
646  char a[4] = {0}; Frame2(frame, a);
647  break_optimization(0);
648}
649
650TEST(AddressSanitizer, GuiltyStackFrame0Test) {
651  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
652}
653TEST(AddressSanitizer, GuiltyStackFrame1Test) {
654  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
655}
656TEST(AddressSanitizer, GuiltyStackFrame2Test) {
657  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
658}
659TEST(AddressSanitizer, GuiltyStackFrame3Test) {
660  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
661}
662
663NOINLINE void LongJmpFunc1(jmp_buf buf) {
664  // create three red zones for these two stack objects.
665  int a;
666  int b;
667
668  int *A = Ident(&a);
669  int *B = Ident(&b);
670  *A = *B;
671  longjmp(buf, 1);
672}
673
674NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
675  // create three red zones for these two stack objects.
676  int a;
677  int b;
678
679  int *A = Ident(&a);
680  int *B = Ident(&b);
681  *A = *B;
682  __builtin_longjmp((void**)buf, 1);
683}
684
685NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
686  // create three red zones for these two stack objects.
687  int a;
688  int b;
689
690  int *A = Ident(&a);
691  int *B = Ident(&b);
692  *A = *B;
693  _longjmp(buf, 1);
694}
695
696NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
697  // create three red zones for these two stack objects.
698  int a;
699  int b;
700
701  int *A = Ident(&a);
702  int *B = Ident(&b);
703  *A = *B;
704  siglongjmp(buf, 1);
705}
706
707
708NOINLINE void TouchStackFunc() {
709  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
710  int *A = Ident(a);
711  for (int i = 0; i < 100; i++)
712    A[i] = i*i;
713}
714
715// Test that we handle longjmp and do not report fals positives on stack.
716TEST(AddressSanitizer, LongJmpTest) {
717  static jmp_buf buf;
718  if (!setjmp(buf)) {
719    LongJmpFunc1(buf);
720  } else {
721    TouchStackFunc();
722  }
723}
724
725#if not defined(__ANDROID__)
726TEST(AddressSanitizer, BuiltinLongJmpTest) {
727  static jmp_buf buf;
728  if (!__builtin_setjmp((void**)buf)) {
729    BuiltinLongJmpFunc1(buf);
730  } else {
731    TouchStackFunc();
732  }
733}
734#endif  // not defined(__ANDROID__)
735
736TEST(AddressSanitizer, UnderscopeLongJmpTest) {
737  static jmp_buf buf;
738  if (!_setjmp(buf)) {
739    UnderscopeLongJmpFunc1(buf);
740  } else {
741    TouchStackFunc();
742  }
743}
744
745TEST(AddressSanitizer, SigLongJmpTest) {
746  static sigjmp_buf buf;
747  if (!sigsetjmp(buf, 1)) {
748    SigLongJmpFunc1(buf);
749  } else {
750    TouchStackFunc();
751  }
752}
753
754#ifdef __EXCEPTIONS
755NOINLINE void ThrowFunc() {
756  // create three red zones for these two stack objects.
757  int a;
758  int b;
759
760  int *A = Ident(&a);
761  int *B = Ident(&b);
762  *A = *B;
763  ASAN_THROW(1);
764}
765
766TEST(AddressSanitizer, CxxExceptionTest) {
767  if (ASAN_UAR) return;
768  // TODO(kcc): this test crashes on 32-bit for some reason...
769  if (SANITIZER_WORDSIZE == 32) return;
770  try {
771    ThrowFunc();
772  } catch(...) {}
773  TouchStackFunc();
774}
775#endif
776
777void *ThreadStackReuseFunc1(void *unused) {
778  // create three red zones for these two stack objects.
779  int a;
780  int b;
781
782  int *A = Ident(&a);
783  int *B = Ident(&b);
784  *A = *B;
785  pthread_exit(0);
786  return 0;
787}
788
789void *ThreadStackReuseFunc2(void *unused) {
790  TouchStackFunc();
791  return 0;
792}
793
794TEST(AddressSanitizer, ThreadStackReuseTest) {
795  pthread_t t;
796  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
797  PTHREAD_JOIN(t, 0);
798  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
799  PTHREAD_JOIN(t, 0);
800}
801
802#if defined(__i386__) || defined(__x86_64__)
803TEST(AddressSanitizer, Store128Test) {
804  char *a = Ident((char*)malloc(Ident(12)));
805  char *p = a;
806  if (((uintptr_t)a % 16) != 0)
807    p = a + 8;
808  assert(((uintptr_t)p % 16) == 0);
809  __m128i value_wide = _mm_set1_epi16(0x1234);
810  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
811               "AddressSanitizer: heap-buffer-overflow");
812  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
813               "WRITE of size 16");
814  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
815               "located 0 bytes to the right of 12-byte");
816  free(a);
817}
818#endif
819
820static string RightOOBErrorMessage(int oob_distance, bool is_write) {
821  assert(oob_distance >= 0);
822  char expected_str[100];
823  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the right",
824          is_write ? "WRITE" : "READ", oob_distance);
825  return string(expected_str);
826}
827
828static string RightOOBWriteMessage(int oob_distance) {
829  return RightOOBErrorMessage(oob_distance, /*is_write*/true);
830}
831
832static string RightOOBReadMessage(int oob_distance) {
833  return RightOOBErrorMessage(oob_distance, /*is_write*/false);
834}
835
836static string LeftOOBErrorMessage(int oob_distance, bool is_write) {
837  assert(oob_distance > 0);
838  char expected_str[100];
839  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the left",
840          is_write ? "WRITE" : "READ", oob_distance);
841  return string(expected_str);
842}
843
844static string LeftOOBWriteMessage(int oob_distance) {
845  return LeftOOBErrorMessage(oob_distance, /*is_write*/true);
846}
847
848static string LeftOOBReadMessage(int oob_distance) {
849  return LeftOOBErrorMessage(oob_distance, /*is_write*/false);
850}
851
852static string LeftOOBAccessMessage(int oob_distance) {
853  assert(oob_distance > 0);
854  char expected_str[100];
855  sprintf(expected_str, "located %d bytes to the left", oob_distance);
856  return string(expected_str);
857}
858
859template<typename T>
860void MemSetOOBTestTemplate(size_t length) {
861  if (length == 0) return;
862  size_t size = Ident(sizeof(T) * length);
863  T *array = Ident((T*)malloc(size));
864  int element = Ident(42);
865  int zero = Ident(0);
866  void *(*MEMSET)(void *s, int c, size_t n) = Ident(memset);
867  // memset interval inside array
868  MEMSET(array, element, size);
869  MEMSET(array, element, size - 1);
870  MEMSET(array + length - 1, element, sizeof(T));
871  MEMSET(array, element, 1);
872
873  // memset 0 bytes
874  MEMSET(array - 10, element, zero);
875  MEMSET(array - 1, element, zero);
876  MEMSET(array, element, zero);
877  MEMSET(array + length, 0, zero);
878  MEMSET(array + length + 1, 0, zero);
879
880  // try to memset bytes to the right of array
881  EXPECT_DEATH(MEMSET(array, 0, size + 1),
882               RightOOBWriteMessage(0));
883  EXPECT_DEATH(MEMSET((char*)(array + length) - 1, element, 6),
884               RightOOBWriteMessage(0));
885  EXPECT_DEATH(MEMSET(array + 1, element, size + sizeof(T)),
886               RightOOBWriteMessage(0));
887  // whole interval is to the right
888  EXPECT_DEATH(MEMSET(array + length + 1, 0, 10),
889               RightOOBWriteMessage(sizeof(T)));
890
891  // try to memset bytes to the left of array
892  EXPECT_DEATH(MEMSET((char*)array - 1, element, size),
893               LeftOOBWriteMessage(1));
894  EXPECT_DEATH(MEMSET((char*)array - 5, 0, 6),
895               LeftOOBWriteMessage(5));
896  if (length >= 100) {
897    // Large OOB, we find it only if the redzone is large enough.
898    EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
899                 LeftOOBWriteMessage(5 * sizeof(T)));
900  }
901  // whole interval is to the left
902  EXPECT_DEATH(MEMSET(array - 2, 0, sizeof(T)),
903               LeftOOBWriteMessage(2 * sizeof(T)));
904
905  // try to memset bytes both to the left & to the right
906  EXPECT_DEATH(MEMSET((char*)array - 2, element, size + 4),
907               LeftOOBWriteMessage(2));
908
909  free(array);
910}
911
912TEST(AddressSanitizer, MemSetOOBTest) {
913  MemSetOOBTestTemplate<char>(100);
914  MemSetOOBTestTemplate<int>(5);
915  MemSetOOBTestTemplate<double>(256);
916  // We can test arrays of structres/classes here, but what for?
917}
918
919// Try to allocate two arrays of 'size' bytes that are near each other.
920// Strictly speaking we are not guaranteed to find such two pointers,
921// but given the structure of asan's allocator we will.
922static bool AllocateTwoAdjacentArrays(char **x1, char **x2, size_t size) {
923  vector<char *> v;
924  bool res = false;
925  for (size_t i = 0; i < 1000U && !res; i++) {
926    v.push_back(new char[size]);
927    if (i == 0) continue;
928    sort(v.begin(), v.end());
929    for (size_t j = 1; j < v.size(); j++) {
930      assert(v[j] > v[j-1]);
931      if ((size_t)(v[j] - v[j-1]) < size * 2) {
932        *x2 = v[j];
933        *x1 = v[j-1];
934        res = true;
935        break;
936      }
937    }
938  }
939
940  for (size_t i = 0; i < v.size(); i++) {
941    if (res && v[i] == *x1) continue;
942    if (res && v[i] == *x2) continue;
943    delete [] v[i];
944  }
945  return res;
946}
947
948TEST(AddressSanitizer, LargeOOBInMemset) {
949  for (size_t size = 200; size < 100000; size += size / 2) {
950    char *x1, *x2;
951    if (!Ident(AllocateTwoAdjacentArrays)(&x1, &x2, size))
952      continue;
953    // fprintf(stderr, "  large oob memset: %p %p %zd\n", x1, x2, size);
954    // Do a memset on x1 with huge out-of-bound access that will end up in x2.
955    EXPECT_DEATH(Ident(memset)(x1, 0, size * 2),
956                 "is located 0 bytes to the right");
957    delete [] x1;
958    delete [] x2;
959    return;
960  }
961  assert(0 && "Did not find two adjacent malloc-ed pointers");
962}
963
964// Same test for memcpy and memmove functions
965template <typename T, class M>
966void MemTransferOOBTestTemplate(size_t length) {
967  if (length == 0) return;
968  size_t size = Ident(sizeof(T) * length);
969  T *src = Ident((T*)malloc(size));
970  T *dest = Ident((T*)malloc(size));
971  int zero = Ident(0);
972
973  // valid transfer of bytes between arrays
974  M::transfer(dest, src, size);
975  M::transfer(dest + 1, src, size - sizeof(T));
976  M::transfer(dest, src + length - 1, sizeof(T));
977  M::transfer(dest, src, 1);
978
979  // transfer zero bytes
980  M::transfer(dest - 1, src, 0);
981  M::transfer(dest + length, src, zero);
982  M::transfer(dest, src - 1, zero);
983  M::transfer(dest, src, zero);
984
985  // try to change mem to the right of dest
986  EXPECT_DEATH(M::transfer(dest + 1, src, size),
987               RightOOBWriteMessage(0));
988  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
989               RightOOBWriteMessage(0));
990
991  // try to change mem to the left of dest
992  EXPECT_DEATH(M::transfer(dest - 2, src, size),
993               LeftOOBWriteMessage(2 * sizeof(T)));
994  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
995               LeftOOBWriteMessage(3));
996
997  // try to access mem to the right of src
998  EXPECT_DEATH(M::transfer(dest, src + 2, size),
999               RightOOBReadMessage(0));
1000  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
1001               RightOOBReadMessage(0));
1002
1003  // try to access mem to the left of src
1004  EXPECT_DEATH(M::transfer(dest, src - 1, size),
1005               LeftOOBReadMessage(sizeof(T)));
1006  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
1007               LeftOOBReadMessage(6));
1008
1009  // Generally we don't need to test cases where both accessing src and writing
1010  // to dest address to poisoned memory.
1011
1012  T *big_src = Ident((T*)malloc(size * 2));
1013  T *big_dest = Ident((T*)malloc(size * 2));
1014  // try to change mem to both sides of dest
1015  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
1016               LeftOOBWriteMessage(sizeof(T)));
1017  // try to access mem to both sides of src
1018  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
1019               LeftOOBReadMessage(2 * sizeof(T)));
1020
1021  free(src);
1022  free(dest);
1023  free(big_src);
1024  free(big_dest);
1025}
1026
1027class MemCpyWrapper {
1028 public:
1029  static void* transfer(void *to, const void *from, size_t size) {
1030    return Ident(memcpy)(to, from, size);
1031  }
1032};
1033TEST(AddressSanitizer, MemCpyOOBTest) {
1034  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
1035  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
1036}
1037
1038class MemMoveWrapper {
1039 public:
1040  static void* transfer(void *to, const void *from, size_t size) {
1041    return Ident(memmove)(to, from, size);
1042  }
1043};
1044TEST(AddressSanitizer, MemMoveOOBTest) {
1045  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
1046  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
1047}
1048
1049// Tests for string functions
1050
1051// Used for string functions tests
1052static char global_string[] = "global";
1053static size_t global_string_length = 6;
1054
1055// Input to a test is a zero-terminated string str with given length
1056// Accesses to the bytes to the left and to the right of str
1057// are presumed to produce OOB errors
1058void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
1059  // Normal strlen calls
1060  EXPECT_EQ(strlen(str), length);
1061  if (length > 0) {
1062    EXPECT_EQ(length - 1, strlen(str + 1));
1063    EXPECT_EQ(0U, strlen(str + length));
1064  }
1065  // Arg of strlen is not malloced, OOB access
1066  if (!is_global) {
1067    // We don't insert RedZones to the left of global variables
1068    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBReadMessage(1));
1069    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBReadMessage(5));
1070  }
1071  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBReadMessage(0));
1072  // Overwrite terminator
1073  str[length] = 'a';
1074  // String is not zero-terminated, strlen will lead to OOB access
1075  EXPECT_DEATH(Ident(strlen(str)), RightOOBReadMessage(0));
1076  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBReadMessage(0));
1077  // Restore terminator
1078  str[length] = 0;
1079}
1080TEST(AddressSanitizer, StrLenOOBTest) {
1081  // Check heap-allocated string
1082  size_t length = Ident(10);
1083  char *heap_string = Ident((char*)malloc(length + 1));
1084  char stack_string[10 + 1];
1085  break_optimization(&stack_string);
1086  for (size_t i = 0; i < length; i++) {
1087    heap_string[i] = 'a';
1088    stack_string[i] = 'b';
1089  }
1090  heap_string[length] = 0;
1091  stack_string[length] = 0;
1092  StrLenOOBTestTemplate(heap_string, length, false);
1093  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
1094  //      make test for stack_string work. Or move it to output tests.
1095  // StrLenOOBTestTemplate(stack_string, length, false);
1096  StrLenOOBTestTemplate(global_string, global_string_length, true);
1097  free(heap_string);
1098}
1099
1100static inline char* MallocAndMemsetString(size_t size, char ch) {
1101  char *s = Ident((char*)malloc(size));
1102  memset(s, ch, size);
1103  return s;
1104}
1105static inline char* MallocAndMemsetString(size_t size) {
1106  return MallocAndMemsetString(size, 'z');
1107}
1108
1109#ifndef __APPLE__
1110TEST(AddressSanitizer, StrNLenOOBTest) {
1111  size_t size = Ident(123);
1112  char *str = MallocAndMemsetString(size);
1113  // Normal strnlen calls.
1114  Ident(strnlen(str - 1, 0));
1115  Ident(strnlen(str, size));
1116  Ident(strnlen(str + size - 1, 1));
1117  str[size - 1] = '\0';
1118  Ident(strnlen(str, 2 * size));
1119  // Argument points to not allocated memory.
1120  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBReadMessage(1));
1121  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBReadMessage(0));
1122  // Overwrite the terminating '\0' and hit unallocated memory.
1123  str[size - 1] = 'z';
1124  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBReadMessage(0));
1125  free(str);
1126}
1127#endif
1128
1129TEST(AddressSanitizer, StrDupOOBTest) {
1130  size_t size = Ident(42);
1131  char *str = MallocAndMemsetString(size);
1132  char *new_str;
1133  // Normal strdup calls.
1134  str[size - 1] = '\0';
1135  new_str = strdup(str);
1136  free(new_str);
1137  new_str = strdup(str + size - 1);
1138  free(new_str);
1139  // Argument points to not allocated memory.
1140  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBReadMessage(1));
1141  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBReadMessage(0));
1142  // Overwrite the terminating '\0' and hit unallocated memory.
1143  str[size - 1] = 'z';
1144  EXPECT_DEATH(Ident(strdup(str)), RightOOBReadMessage(0));
1145  free(str);
1146}
1147
1148TEST(AddressSanitizer, StrCpyOOBTest) {
1149  size_t to_size = Ident(30);
1150  size_t from_size = Ident(6);  // less than to_size
1151  char *to = Ident((char*)malloc(to_size));
1152  char *from = Ident((char*)malloc(from_size));
1153  // Normal strcpy calls.
1154  strcpy(from, "hello");
1155  strcpy(to, from);
1156  strcpy(to + to_size - from_size, from);
1157  // Length of "from" is too small.
1158  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBWriteMessage(0));
1159  // "to" or "from" points to not allocated memory.
1160  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBWriteMessage(1));
1161  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBReadMessage(1));
1162  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBReadMessage(0));
1163  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBWriteMessage(0));
1164  // Overwrite the terminating '\0' character and hit unallocated memory.
1165  from[from_size - 1] = '!';
1166  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBReadMessage(0));
1167  free(to);
1168  free(from);
1169}
1170
1171TEST(AddressSanitizer, StrNCpyOOBTest) {
1172  size_t to_size = Ident(20);
1173  size_t from_size = Ident(6);  // less than to_size
1174  char *to = Ident((char*)malloc(to_size));
1175  // From is a zero-terminated string "hello\0" of length 6
1176  char *from = Ident((char*)malloc(from_size));
1177  strcpy(from, "hello");
1178  // copy 0 bytes
1179  strncpy(to, from, 0);
1180  strncpy(to - 1, from - 1, 0);
1181  // normal strncpy calls
1182  strncpy(to, from, from_size);
1183  strncpy(to, from, to_size);
1184  strncpy(to, from + from_size - 1, to_size);
1185  strncpy(to + to_size - 1, from, 1);
1186  // One of {to, from} points to not allocated memory
1187  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1188               LeftOOBReadMessage(1));
1189  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1190               LeftOOBWriteMessage(1));
1191  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1192               RightOOBReadMessage(0));
1193  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1194               RightOOBWriteMessage(0));
1195  // Length of "to" is too small
1196  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1197               RightOOBWriteMessage(0));
1198  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1199               RightOOBWriteMessage(0));
1200  // Overwrite terminator in from
1201  from[from_size - 1] = '!';
1202  // normal strncpy call
1203  strncpy(to, from, from_size);
1204  // Length of "from" is too small
1205  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1206               RightOOBReadMessage(0));
1207  free(to);
1208  free(from);
1209}
1210
1211// Users may have different definitions of "strchr" and "index", so provide
1212// function pointer typedefs and overload RunStrChrTest implementation.
1213// We can't use macro for RunStrChrTest body here, as this macro would
1214// confuse EXPECT_DEATH gtest macro.
1215typedef char*(*PointerToStrChr1)(const char*, int);
1216typedef char*(*PointerToStrChr2)(char*, int);
1217
1218USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1219  size_t size = Ident(100);
1220  char *str = MallocAndMemsetString(size);
1221  str[10] = 'q';
1222  str[11] = '\0';
1223  EXPECT_EQ(str, StrChr(str, 'z'));
1224  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1225  EXPECT_EQ(NULL, StrChr(str, 'a'));
1226  // StrChr argument points to not allocated memory.
1227  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1228  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1229  // Overwrite the terminator and hit not allocated memory.
1230  str[11] = 'z';
1231  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1232  free(str);
1233}
1234USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1235  size_t size = Ident(100);
1236  char *str = MallocAndMemsetString(size);
1237  str[10] = 'q';
1238  str[11] = '\0';
1239  EXPECT_EQ(str, StrChr(str, 'z'));
1240  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1241  EXPECT_EQ(NULL, StrChr(str, 'a'));
1242  // StrChr argument points to not allocated memory.
1243  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1244  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1245  // Overwrite the terminator and hit not allocated memory.
1246  str[11] = 'z';
1247  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1248  free(str);
1249}
1250
1251TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1252  RunStrChrTest(&strchr);
1253  RunStrChrTest(&index);
1254}
1255
1256TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1257  // strcmp
1258  EXPECT_EQ(0, strcmp("", ""));
1259  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1260  EXPECT_GT(0, strcmp("ab", "ac"));
1261  EXPECT_GT(0, strcmp("abc", "abcd"));
1262  EXPECT_LT(0, strcmp("acc", "abc"));
1263  EXPECT_LT(0, strcmp("abcd", "abc"));
1264
1265  // strncmp
1266  EXPECT_EQ(0, strncmp("a", "b", 0));
1267  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1268  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1269  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1270  EXPECT_GT(0, strncmp("a", "b", 5));
1271  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1272  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1273  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1274  EXPECT_LT(0, strncmp("zyx", "", 2));
1275
1276  // strcasecmp
1277  EXPECT_EQ(0, strcasecmp("", ""));
1278  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1279  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1280  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1281  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1282  EXPECT_LT(0, strcasecmp("acc", "abc"));
1283  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1284
1285  // strncasecmp
1286  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1287  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1288  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1289  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1290  EXPECT_GT(0, strncasecmp("a", "B", 5));
1291  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1292  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1293  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1294  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1295
1296  // memcmp
1297  EXPECT_EQ(0, memcmp("a", "b", 0));
1298  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1299  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1300  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1301  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1302  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1303}
1304
1305typedef int(*PointerToStrCmp)(const char*, const char*);
1306void RunStrCmpTest(PointerToStrCmp StrCmp) {
1307  size_t size = Ident(100);
1308  int fill = 'o';
1309  char *s1 = MallocAndMemsetString(size, fill);
1310  char *s2 = MallocAndMemsetString(size, fill);
1311  s1[size - 1] = '\0';
1312  s2[size - 1] = '\0';
1313  // Normal StrCmp calls
1314  Ident(StrCmp(s1, s2));
1315  Ident(StrCmp(s1, s2 + size - 1));
1316  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1317  s1[size - 1] = 'z';
1318  s2[size - 1] = 'x';
1319  Ident(StrCmp(s1, s2));
1320  // One of arguments points to not allocated memory.
1321  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBReadMessage(1));
1322  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBReadMessage(1));
1323  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBReadMessage(0));
1324  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBReadMessage(0));
1325  // Hit unallocated memory and die.
1326  s1[size - 1] = fill;
1327  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBReadMessage(0));
1328  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBReadMessage(0));
1329  free(s1);
1330  free(s2);
1331}
1332
1333TEST(AddressSanitizer, StrCmpOOBTest) {
1334  RunStrCmpTest(&strcmp);
1335}
1336
1337TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1338  RunStrCmpTest(&strcasecmp);
1339}
1340
1341typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1342void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1343  size_t size = Ident(100);
1344  char *s1 = MallocAndMemsetString(size);
1345  char *s2 = MallocAndMemsetString(size);
1346  s1[size - 1] = '\0';
1347  s2[size - 1] = '\0';
1348  // Normal StrNCmp calls
1349  Ident(StrNCmp(s1, s2, size + 2));
1350  s1[size - 1] = 'z';
1351  s2[size - 1] = 'x';
1352  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1353  s2[size - 1] = 'z';
1354  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1355  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1356  // One of arguments points to not allocated memory.
1357  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1358  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1359  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1360  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1361  // Hit unallocated memory and die.
1362  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1363  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1364  free(s1);
1365  free(s2);
1366}
1367
1368TEST(AddressSanitizer, StrNCmpOOBTest) {
1369  RunStrNCmpTest(&strncmp);
1370}
1371
1372TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1373  RunStrNCmpTest(&strncasecmp);
1374}
1375
1376TEST(AddressSanitizer, MemCmpOOBTest) {
1377  size_t size = Ident(100);
1378  char *s1 = MallocAndMemsetString(size);
1379  char *s2 = MallocAndMemsetString(size);
1380  // Normal memcmp calls.
1381  Ident(memcmp(s1, s2, size));
1382  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1383  Ident(memcmp(s1 - 1, s2 - 1, 0));
1384  // One of arguments points to not allocated memory.
1385  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1386  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1387  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1388  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1389  // Hit unallocated memory and die.
1390  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1391  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1392  // Zero bytes are not terminators and don't prevent from OOB.
1393  s1[size - 1] = '\0';
1394  s2[size - 1] = '\0';
1395  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
1396  free(s1);
1397  free(s2);
1398}
1399
1400TEST(AddressSanitizer, StrCatOOBTest) {
1401  // strcat() reads strlen(to) bytes from |to| before concatenating.
1402  size_t to_size = Ident(100);
1403  char *to = MallocAndMemsetString(to_size);
1404  to[0] = '\0';
1405  size_t from_size = Ident(20);
1406  char *from = MallocAndMemsetString(from_size);
1407  from[from_size - 1] = '\0';
1408  // Normal strcat calls.
1409  strcat(to, from);
1410  strcat(to, from);
1411  strcat(to + from_size, from + from_size - 2);
1412  // Passing an invalid pointer is an error even when concatenating an empty
1413  // string.
1414  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBAccessMessage(1));
1415  // One of arguments points to not allocated memory.
1416  EXPECT_DEATH(strcat(to - 1, from), LeftOOBAccessMessage(1));
1417  EXPECT_DEATH(strcat(to, from - 1), LeftOOBReadMessage(1));
1418  EXPECT_DEATH(strcat(to + to_size, from), RightOOBWriteMessage(0));
1419  EXPECT_DEATH(strcat(to, from + from_size), RightOOBReadMessage(0));
1420
1421  // "from" is not zero-terminated.
1422  from[from_size - 1] = 'z';
1423  EXPECT_DEATH(strcat(to, from), RightOOBReadMessage(0));
1424  from[from_size - 1] = '\0';
1425  // "to" is not zero-terminated.
1426  memset(to, 'z', to_size);
1427  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1428  // "to" is too short to fit "from".
1429  to[to_size - from_size + 1] = '\0';
1430  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1431  // length of "to" is just enough.
1432  strcat(to, from + 1);
1433
1434  free(to);
1435  free(from);
1436}
1437
1438TEST(AddressSanitizer, StrNCatOOBTest) {
1439  // strncat() reads strlen(to) bytes from |to| before concatenating.
1440  size_t to_size = Ident(100);
1441  char *to = MallocAndMemsetString(to_size);
1442  to[0] = '\0';
1443  size_t from_size = Ident(20);
1444  char *from = MallocAndMemsetString(from_size);
1445  // Normal strncat calls.
1446  strncat(to, from, 0);
1447  strncat(to, from, from_size);
1448  from[from_size - 1] = '\0';
1449  strncat(to, from, 2 * from_size);
1450  // Catenating empty string with an invalid string is still an error.
1451  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBAccessMessage(1));
1452  strncat(to, from + from_size - 1, 10);
1453  // One of arguments points to not allocated memory.
1454  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBAccessMessage(1));
1455  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBReadMessage(1));
1456  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBWriteMessage(0));
1457  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBReadMessage(0));
1458
1459  memset(from, 'z', from_size);
1460  memset(to, 'z', to_size);
1461  to[0] = '\0';
1462  // "from" is too short.
1463  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBReadMessage(0));
1464  // "to" is not zero-terminated.
1465  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBWriteMessage(0));
1466  // "to" is too short to fit "from".
1467  to[0] = 'z';
1468  to[to_size - from_size + 1] = '\0';
1469  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBWriteMessage(0));
1470  // "to" is just enough.
1471  strncat(to, from, from_size - 2);
1472
1473  free(to);
1474  free(from);
1475}
1476
1477static string OverlapErrorMessage(const string &func) {
1478  return func + "-param-overlap";
1479}
1480
1481TEST(AddressSanitizer, StrArgsOverlapTest) {
1482  size_t size = Ident(100);
1483  char *str = Ident((char*)malloc(size));
1484
1485// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1486// memmove().
1487#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1488    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1489  // Check "memcpy". Use Ident() to avoid inlining.
1490  memset(str, 'z', size);
1491  Ident(memcpy)(str + 1, str + 11, 10);
1492  Ident(memcpy)(str, str, 0);
1493  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1494  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1495#endif
1496
1497  // We do not treat memcpy with to==from as a bug.
1498  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1499  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1500  //              OverlapErrorMessage("memcpy"));
1501
1502  // Check "strcpy".
1503  memset(str, 'z', size);
1504  str[9] = '\0';
1505  strcpy(str + 10, str);
1506  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1507  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1508  strcpy(str, str + 5);
1509
1510  // Check "strncpy".
1511  memset(str, 'z', size);
1512  strncpy(str, str + 10, 10);
1513  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1514  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1515  str[10] = '\0';
1516  strncpy(str + 11, str, 20);
1517  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1518
1519  // Check "strcat".
1520  memset(str, 'z', size);
1521  str[10] = '\0';
1522  str[20] = '\0';
1523  strcat(str, str + 10);
1524  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1525  str[10] = '\0';
1526  strcat(str + 11, str);
1527  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1528  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1529  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1530
1531  // Check "strncat".
1532  memset(str, 'z', size);
1533  str[10] = '\0';
1534  strncat(str, str + 10, 10);  // from is empty
1535  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1536  str[10] = '\0';
1537  str[20] = '\0';
1538  strncat(str + 5, str, 5);
1539  str[10] = '\0';
1540  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1541  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1542
1543  free(str);
1544}
1545
1546void CallAtoi(const char *nptr) {
1547  Ident(atoi(nptr));
1548}
1549void CallAtol(const char *nptr) {
1550  Ident(atol(nptr));
1551}
1552void CallAtoll(const char *nptr) {
1553  Ident(atoll(nptr));
1554}
1555typedef void(*PointerToCallAtoi)(const char*);
1556
1557void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1558  char *array = MallocAndMemsetString(10, '1');
1559  // Invalid pointer to the string.
1560  EXPECT_DEATH(Atoi(array + 11), RightOOBReadMessage(1));
1561  EXPECT_DEATH(Atoi(array - 1), LeftOOBReadMessage(1));
1562  // Die if a buffer doesn't have terminating NULL.
1563  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1564  // Make last symbol a terminating NULL or other non-digit.
1565  array[9] = '\0';
1566  Atoi(array);
1567  array[9] = 'a';
1568  Atoi(array);
1569  Atoi(array + 9);
1570  // Sometimes we need to detect overflow if no digits are found.
1571  memset(array, ' ', 10);
1572  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1573  array[9] = '-';
1574  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1575  EXPECT_DEATH(Atoi(array + 9), RightOOBReadMessage(0));
1576  array[8] = '-';
1577  Atoi(array);
1578  free(array);
1579}
1580
1581TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1582  RunAtoiOOBTest(&CallAtoi);
1583  RunAtoiOOBTest(&CallAtol);
1584  RunAtoiOOBTest(&CallAtoll);
1585}
1586
1587void CallStrtol(const char *nptr, char **endptr, int base) {
1588  Ident(strtol(nptr, endptr, base));
1589}
1590void CallStrtoll(const char *nptr, char **endptr, int base) {
1591  Ident(strtoll(nptr, endptr, base));
1592}
1593typedef void(*PointerToCallStrtol)(const char*, char**, int);
1594
1595void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1596  char *array = MallocAndMemsetString(3);
1597  char *endptr = NULL;
1598  array[0] = '1';
1599  array[1] = '2';
1600  array[2] = '3';
1601  // Invalid pointer to the string.
1602  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBReadMessage(0));
1603  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBReadMessage(1));
1604  // Buffer overflow if there is no terminating null (depends on base).
1605  Strtol(array, &endptr, 3);
1606  EXPECT_EQ(array + 2, endptr);
1607  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1608  array[2] = 'z';
1609  Strtol(array, &endptr, 35);
1610  EXPECT_EQ(array + 2, endptr);
1611  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBReadMessage(0));
1612  // Add terminating zero to get rid of overflow.
1613  array[2] = '\0';
1614  Strtol(array, NULL, 36);
1615  // Don't check for overflow if base is invalid.
1616  Strtol(array - 1, NULL, -1);
1617  Strtol(array + 3, NULL, 1);
1618  // Sometimes we need to detect overflow if no digits are found.
1619  array[0] = array[1] = array[2] = ' ';
1620  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1621  array[2] = '+';
1622  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1623  array[2] = '-';
1624  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1625  array[1] = '+';
1626  Strtol(array, NULL, 0);
1627  array[1] = array[2] = 'z';
1628  Strtol(array, &endptr, 0);
1629  EXPECT_EQ(array, endptr);
1630  Strtol(array + 2, NULL, 0);
1631  EXPECT_EQ(array, endptr);
1632  free(array);
1633}
1634
1635TEST(AddressSanitizer, StrtollOOBTest) {
1636  RunStrtolOOBTest(&CallStrtoll);
1637}
1638TEST(AddressSanitizer, StrtolOOBTest) {
1639  RunStrtolOOBTest(&CallStrtol);
1640}
1641
1642// At the moment we instrument memcpy/memove/memset calls at compile time so we
1643// can't handle OOB error if these functions are called by pointer, see disabled
1644// MemIntrinsicCallByPointerTest below
1645typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1646typedef void*(*PointerToMemSet)(void*, int, size_t);
1647
1648void CallMemSetByPointer(PointerToMemSet MemSet) {
1649  size_t size = Ident(100);
1650  char *array = Ident((char*)malloc(size));
1651  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBWriteMessage(0));
1652  free(array);
1653}
1654
1655void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1656  size_t size = Ident(100);
1657  char *src = Ident((char*)malloc(size));
1658  char *dst = Ident((char*)malloc(size));
1659  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBWriteMessage(0));
1660  free(src);
1661  free(dst);
1662}
1663
1664TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1665  CallMemSetByPointer(&memset);
1666  CallMemTransferByPointer(&memcpy);
1667  CallMemTransferByPointer(&memmove);
1668}
1669
1670#if defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1671TEST(AddressSanitizer, pread) {
1672  char *x = new char[10];
1673  int fd = open("/proc/self/stat", O_RDONLY);
1674  ASSERT_GT(fd, 0);
1675  EXPECT_DEATH(pread(fd, x, 15, 0),
1676               ASAN_PCRE_DOTALL
1677               "AddressSanitizer: heap-buffer-overflow"
1678               ".* is located 0 bytes to the right of 10-byte region");
1679  close(fd);
1680  delete [] x;
1681}
1682
1683TEST(AddressSanitizer, pread64) {
1684  char *x = new char[10];
1685  int fd = open("/proc/self/stat", O_RDONLY);
1686  ASSERT_GT(fd, 0);
1687  EXPECT_DEATH(pread64(fd, x, 15, 0),
1688               ASAN_PCRE_DOTALL
1689               "AddressSanitizer: heap-buffer-overflow"
1690               ".* is located 0 bytes to the right of 10-byte region");
1691  close(fd);
1692  delete [] x;
1693}
1694
1695TEST(AddressSanitizer, read) {
1696  char *x = new char[10];
1697  int fd = open("/proc/self/stat", O_RDONLY);
1698  ASSERT_GT(fd, 0);
1699  EXPECT_DEATH(read(fd, x, 15),
1700               ASAN_PCRE_DOTALL
1701               "AddressSanitizer: heap-buffer-overflow"
1702               ".* is located 0 bytes to the right of 10-byte region");
1703  close(fd);
1704  delete [] x;
1705}
1706
1707#endif  // defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1708
1709// This test case fails
1710// Clang optimizes memcpy/memset calls which lead to unaligned access
1711TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1712  int size = Ident(4096);
1713  char *s = Ident((char*)malloc(size));
1714  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBWriteMessage(0));
1715  free(s);
1716}
1717
1718// TODO(samsonov): Add a test with malloc(0)
1719// TODO(samsonov): Add tests for str* and mem* functions.
1720
1721NOINLINE static int LargeFunction(bool do_bad_access) {
1722  int *x = new int[100];
1723  x[0]++;
1724  x[1]++;
1725  x[2]++;
1726  x[3]++;
1727  x[4]++;
1728  x[5]++;
1729  x[6]++;
1730  x[7]++;
1731  x[8]++;
1732  x[9]++;
1733
1734  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1735
1736  x[10]++;
1737  x[11]++;
1738  x[12]++;
1739  x[13]++;
1740  x[14]++;
1741  x[15]++;
1742  x[16]++;
1743  x[17]++;
1744  x[18]++;
1745  x[19]++;
1746
1747  delete x;
1748  return res;
1749}
1750
1751// Test the we have correct debug info for the failing instruction.
1752// This test requires the in-process symbolizer to be enabled by default.
1753TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1754  int failing_line = LargeFunction(false);
1755  char expected_warning[128];
1756  sprintf(expected_warning, "LargeFunction.*asan_test.*:%d", failing_line);
1757  EXPECT_DEATH(LargeFunction(true), expected_warning);
1758}
1759
1760// Check that we unwind and symbolize correctly.
1761TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1762  int *a = (int*)malloc_aaa(sizeof(int));
1763  *a = 1;
1764  free_aaa(a);
1765  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1766               "malloc_fff.*malloc_eee.*malloc_ddd");
1767}
1768
1769static bool TryToSetThreadName(const char *name) {
1770#if defined(__linux__) && defined(PR_SET_NAME)
1771  return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0);
1772#else
1773  return false;
1774#endif
1775}
1776
1777void *ThreadedTestAlloc(void *a) {
1778  EXPECT_EQ(true, TryToSetThreadName("AllocThr"));
1779  int **p = (int**)a;
1780  *p = new int;
1781  return 0;
1782}
1783
1784void *ThreadedTestFree(void *a) {
1785  EXPECT_EQ(true, TryToSetThreadName("FreeThr"));
1786  int **p = (int**)a;
1787  delete *p;
1788  return 0;
1789}
1790
1791void *ThreadedTestUse(void *a) {
1792  EXPECT_EQ(true, TryToSetThreadName("UseThr"));
1793  int **p = (int**)a;
1794  **p = 1;
1795  return 0;
1796}
1797
1798void ThreadedTestSpawn() {
1799  pthread_t t;
1800  int *x;
1801  PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
1802  PTHREAD_JOIN(t, 0);
1803  PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
1804  PTHREAD_JOIN(t, 0);
1805  PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
1806  PTHREAD_JOIN(t, 0);
1807}
1808
1809TEST(AddressSanitizer, ThreadedTest) {
1810  EXPECT_DEATH(ThreadedTestSpawn(),
1811               ASAN_PCRE_DOTALL
1812               "Thread T.*created"
1813               ".*Thread T.*created"
1814               ".*Thread T.*created");
1815}
1816
1817void *ThreadedTestFunc(void *unused) {
1818  // Check if prctl(PR_SET_NAME) is supported. Return if not.
1819  if (!TryToSetThreadName("TestFunc"))
1820    return 0;
1821  EXPECT_DEATH(ThreadedTestSpawn(),
1822               ASAN_PCRE_DOTALL
1823               "WRITE .*thread T. .UseThr."
1824               ".*freed by thread T. .FreeThr. here:"
1825               ".*previously allocated by thread T. .AllocThr. here:"
1826               ".*Thread T. .UseThr. created by T.*TestFunc"
1827               ".*Thread T. .FreeThr. created by T"
1828               ".*Thread T. .AllocThr. created by T"
1829               "");
1830  return 0;
1831}
1832
1833TEST(AddressSanitizer, ThreadNamesTest) {
1834  // Run ThreadedTestFunc in a separate thread because it tries to set a
1835  // thread name and we don't want to change the main thread's name.
1836  pthread_t t;
1837  PTHREAD_CREATE(&t, 0, ThreadedTestFunc, 0);
1838  PTHREAD_JOIN(t, 0);
1839}
1840
1841#if ASAN_NEEDS_SEGV
1842TEST(AddressSanitizer, ShadowGapTest) {
1843#if SANITIZER_WORDSIZE == 32
1844  char *addr = (char*)0x22000000;
1845#else
1846  char *addr = (char*)0x0000100000080000;
1847#endif
1848  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1849}
1850#endif  // ASAN_NEEDS_SEGV
1851
1852extern "C" {
1853NOINLINE static void UseThenFreeThenUse() {
1854  char *x = Ident((char*)malloc(8));
1855  *x = 1;
1856  free_aaa(x);
1857  *x = 2;
1858}
1859}
1860
1861TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1862  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1863}
1864
1865TEST(AddressSanitizer, StrDupTest) {
1866  free(strdup(Ident("123")));
1867}
1868
1869// Currently we create and poison redzone at right of global variables.
1870char glob5[5];
1871static char static110[110];
1872const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1873static const char StaticConstGlob[3] = {9, 8, 7};
1874extern int GlobalsTest(int x);
1875
1876TEST(AddressSanitizer, GlobalTest) {
1877  static char func_static15[15];
1878
1879  static char fs1[10];
1880  static char fs2[10];
1881  static char fs3[10];
1882
1883  glob5[Ident(0)] = 0;
1884  glob5[Ident(1)] = 0;
1885  glob5[Ident(2)] = 0;
1886  glob5[Ident(3)] = 0;
1887  glob5[Ident(4)] = 0;
1888
1889  EXPECT_DEATH(glob5[Ident(5)] = 0,
1890               "0 bytes to the right of global variable.*glob5.* size 5");
1891  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1892               "6 bytes to the right of global variable.*glob5.* size 5");
1893  Ident(static110);  // avoid optimizations
1894  static110[Ident(0)] = 0;
1895  static110[Ident(109)] = 0;
1896  EXPECT_DEATH(static110[Ident(110)] = 0,
1897               "0 bytes to the right of global variable");
1898  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1899               "7 bytes to the right of global variable");
1900
1901  Ident(func_static15);  // avoid optimizations
1902  func_static15[Ident(0)] = 0;
1903  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1904               "0 bytes to the right of global variable");
1905  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1906               "9 bytes to the right of global variable");
1907
1908  Ident(fs1);
1909  Ident(fs2);
1910  Ident(fs3);
1911
1912  // We don't create left redzones, so this is not 100% guaranteed to fail.
1913  // But most likely will.
1914  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1915
1916  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1917               "is located 1 bytes to the right of .*ConstGlob");
1918  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1919               "is located 2 bytes to the right of .*StaticConstGlob");
1920
1921  // call stuff from another file.
1922  GlobalsTest(0);
1923}
1924
1925TEST(AddressSanitizer, GlobalStringConstTest) {
1926  static const char *zoo = "FOOBAR123";
1927  const char *p = Ident(zoo);
1928  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1929}
1930
1931TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1932  static char zoo[10];
1933  const char *p = Ident(zoo);
1934  // The file name should be present in the report.
1935  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.");
1936}
1937
1938int *ReturnsPointerToALocalObject() {
1939  int a = 0;
1940  return Ident(&a);
1941}
1942
1943#if ASAN_UAR == 1
1944TEST(AddressSanitizer, LocalReferenceReturnTest) {
1945  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1946  int *p = f();
1947  // Call 'f' a few more times, 'p' should still be poisoned.
1948  for (int i = 0; i < 32; i++)
1949    f();
1950  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1951  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1952}
1953#endif
1954
1955template <int kSize>
1956NOINLINE static void FuncWithStack() {
1957  char x[kSize];
1958  Ident(x)[0] = 0;
1959  Ident(x)[kSize-1] = 0;
1960}
1961
1962static void LotsOfStackReuse() {
1963  int LargeStack[10000];
1964  Ident(LargeStack)[0] = 0;
1965  for (int i = 0; i < 10000; i++) {
1966    FuncWithStack<128 * 1>();
1967    FuncWithStack<128 * 2>();
1968    FuncWithStack<128 * 4>();
1969    FuncWithStack<128 * 8>();
1970    FuncWithStack<128 * 16>();
1971    FuncWithStack<128 * 32>();
1972    FuncWithStack<128 * 64>();
1973    FuncWithStack<128 * 128>();
1974    FuncWithStack<128 * 256>();
1975    FuncWithStack<128 * 512>();
1976    Ident(LargeStack)[0] = 0;
1977  }
1978}
1979
1980TEST(AddressSanitizer, StressStackReuseTest) {
1981  LotsOfStackReuse();
1982}
1983
1984TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1985  const int kNumThreads = 20;
1986  pthread_t t[kNumThreads];
1987  for (int i = 0; i < kNumThreads; i++) {
1988    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1989  }
1990  for (int i = 0; i < kNumThreads; i++) {
1991    PTHREAD_JOIN(t[i], 0);
1992  }
1993}
1994
1995static void *PthreadExit(void *a) {
1996  pthread_exit(0);
1997  return 0;
1998}
1999
2000TEST(AddressSanitizer, PthreadExitTest) {
2001  pthread_t t;
2002  for (int i = 0; i < 1000; i++) {
2003    PTHREAD_CREATE(&t, 0, PthreadExit, 0);
2004    PTHREAD_JOIN(t, 0);
2005  }
2006}
2007
2008#ifdef __EXCEPTIONS
2009NOINLINE static void StackReuseAndException() {
2010  int large_stack[1000];
2011  Ident(large_stack);
2012  ASAN_THROW(1);
2013}
2014
2015// TODO(kcc): support exceptions with use-after-return.
2016TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
2017  for (int i = 0; i < 10000; i++) {
2018    try {
2019    StackReuseAndException();
2020    } catch(...) {
2021    }
2022  }
2023}
2024#endif
2025
2026TEST(AddressSanitizer, MlockTest) {
2027  EXPECT_EQ(0, mlockall(MCL_CURRENT));
2028  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
2029  EXPECT_EQ(0, munlockall());
2030  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
2031}
2032
2033struct LargeStruct {
2034  int foo[100];
2035};
2036
2037// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
2038// Struct copy should not cause asan warning even if lhs == rhs.
2039TEST(AddressSanitizer, LargeStructCopyTest) {
2040  LargeStruct a;
2041  *Ident(&a) = *Ident(&a);
2042}
2043
2044ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
2045static void NoAddressSafety() {
2046  char *foo = new char[10];
2047  Ident(foo)[10] = 0;
2048  delete [] foo;
2049}
2050
2051TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
2052  Ident(NoAddressSafety)();
2053}
2054
2055// TODO(glider): Enable this test on Mac.
2056// It doesn't work on Android, as calls to new/delete go through malloc/free.
2057#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
2058static string MismatchStr(const string &str) {
2059  return string("AddressSanitizer: alloc-dealloc-mismatch \\(") + str;
2060}
2061
2062TEST(AddressSanitizer, AllocDeallocMismatch) {
2063  EXPECT_DEATH(free(Ident(new int)),
2064               MismatchStr("operator new vs free"));
2065  EXPECT_DEATH(free(Ident(new int[2])),
2066               MismatchStr("operator new \\[\\] vs free"));
2067  EXPECT_DEATH(delete (Ident(new int[2])),
2068               MismatchStr("operator new \\[\\] vs operator delete"));
2069  EXPECT_DEATH(delete (Ident((int*)malloc(2 * sizeof(int)))),
2070               MismatchStr("malloc vs operator delete"));
2071  EXPECT_DEATH(delete [] (Ident(new int)),
2072               MismatchStr("operator new vs operator delete \\[\\]"));
2073  EXPECT_DEATH(delete [] (Ident((int*)malloc(2 * sizeof(int)))),
2074               MismatchStr("malloc vs operator delete \\[\\]"));
2075}
2076#endif
2077
2078// ------------------ demo tests; run each one-by-one -------------
2079// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
2080TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
2081  ThreadedTestSpawn();
2082}
2083
2084void *SimpleBugOnSTack(void *x = 0) {
2085  char a[20];
2086  Ident(a)[20] = 0;
2087  return 0;
2088}
2089
2090TEST(AddressSanitizer, DISABLED_DemoStackTest) {
2091  SimpleBugOnSTack();
2092}
2093
2094TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
2095  pthread_t t;
2096  PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
2097  PTHREAD_JOIN(t, 0);
2098}
2099
2100TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
2101  uaf_test<U1>(10, 0);
2102}
2103TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
2104  uaf_test<U1>(10, -2);
2105}
2106TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
2107  uaf_test<U1>(10, 10);
2108}
2109
2110TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
2111  uaf_test<U1>(kLargeMalloc, 0);
2112}
2113
2114TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
2115  oob_test<U1>(10, -1);
2116}
2117
2118TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
2119  oob_test<U1>(kLargeMalloc, -1);
2120}
2121
2122TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
2123  oob_test<U1>(10, 10);
2124}
2125
2126TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
2127  oob_test<U1>(kLargeMalloc, kLargeMalloc);
2128}
2129
2130TEST(AddressSanitizer, DISABLED_DemoOOM) {
2131  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
2132  printf("%p\n", malloc(size));
2133}
2134
2135TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
2136  DoubleFree();
2137}
2138
2139TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
2140  int *a = 0;
2141  Ident(a)[10] = 0;
2142}
2143
2144TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
2145  static char a[100];
2146  static char b[100];
2147  static char c[100];
2148  Ident(a);
2149  Ident(b);
2150  Ident(c);
2151  Ident(a)[5] = 0;
2152  Ident(b)[105] = 0;
2153  Ident(a)[5] = 0;
2154}
2155
2156TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
2157  const size_t kAllocSize = (1 << 28) - 1024;
2158  size_t total_size = 0;
2159  while (true) {
2160    char *x = (char*)malloc(kAllocSize);
2161    memset(x, 0, kAllocSize);
2162    total_size += kAllocSize;
2163    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
2164  }
2165}
2166
2167// http://code.google.com/p/address-sanitizer/issues/detail?id=66
2168TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
2169  for (int i = 0; i < 1000000; i++) {
2170    delete [] (Ident(new char [8644]));
2171  }
2172  char *x = new char[8192];
2173  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
2174  delete [] Ident(x);
2175}
2176
2177#ifdef __APPLE__
2178#include "asan_mac_test.h"
2179TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
2180  EXPECT_DEATH(
2181      CFAllocatorDefaultDoubleFree(NULL),
2182      "attempting double-free");
2183}
2184
2185void CFAllocator_DoubleFreeOnPthread() {
2186  pthread_t child;
2187  PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
2188  PTHREAD_JOIN(child, NULL);  // Shouldn't be reached.
2189}
2190
2191TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
2192  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
2193}
2194
2195namespace {
2196
2197void *GLOB;
2198
2199void *CFAllocatorAllocateToGlob(void *unused) {
2200  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
2201  return NULL;
2202}
2203
2204void *CFAllocatorDeallocateFromGlob(void *unused) {
2205  char *p = (char*)GLOB;
2206  p[100] = 'A';  // ASan should report an error here.
2207  CFAllocatorDeallocate(NULL, GLOB);
2208  return NULL;
2209}
2210
2211void CFAllocator_PassMemoryToAnotherThread() {
2212  pthread_t th1, th2;
2213  PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2214  PTHREAD_JOIN(th1, NULL);
2215  PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2216  PTHREAD_JOIN(th2, NULL);
2217}
2218
2219TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2220  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2221               "heap-buffer-overflow");
2222}
2223
2224}  // namespace
2225
2226// TODO(glider): figure out whether we still need these tests. Is it correct
2227// to intercept the non-default CFAllocators?
2228TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2229  EXPECT_DEATH(
2230      CFAllocatorSystemDefaultDoubleFree(),
2231      "attempting double-free");
2232}
2233
2234// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2235TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2236  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2237}
2238
2239TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2240  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2241}
2242
2243// For libdispatch tests below we check that ASan got to the shadow byte
2244// legend, i.e. managed to print the thread stacks (this almost certainly
2245// means that the libdispatch task creation has been intercepted correctly).
2246TEST(AddressSanitizerMac, GCDDispatchAsync) {
2247  // Make sure the whole ASan report is printed, i.e. that we don't die
2248  // on a CHECK.
2249  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte legend");
2250}
2251
2252TEST(AddressSanitizerMac, GCDDispatchSync) {
2253  // Make sure the whole ASan report is printed, i.e. that we don't die
2254  // on a CHECK.
2255  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte legend");
2256}
2257
2258
2259TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2260  // Make sure the whole ASan report is printed, i.e. that we don't die
2261  // on a CHECK.
2262  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte legend");
2263}
2264
2265TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2266  // Make sure the whole ASan report is printed, i.e. that we don't die
2267  // on a CHECK.
2268  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte legend");
2269}
2270
2271TEST(AddressSanitizerMac, GCDDispatchAfter) {
2272  // Make sure the whole ASan report is printed, i.e. that we don't die
2273  // on a CHECK.
2274  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte legend");
2275}
2276
2277TEST(AddressSanitizerMac, GCDSourceEvent) {
2278  // Make sure the whole ASan report is printed, i.e. that we don't die
2279  // on a CHECK.
2280  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte legend");
2281}
2282
2283TEST(AddressSanitizerMac, GCDSourceCancel) {
2284  // Make sure the whole ASan report is printed, i.e. that we don't die
2285  // on a CHECK.
2286  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte legend");
2287}
2288
2289TEST(AddressSanitizerMac, GCDGroupAsync) {
2290  // Make sure the whole ASan report is printed, i.e. that we don't die
2291  // on a CHECK.
2292  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte legend");
2293}
2294
2295void *MallocIntrospectionLockWorker(void *_) {
2296  const int kNumPointers = 100;
2297  int i;
2298  void *pointers[kNumPointers];
2299  for (i = 0; i < kNumPointers; i++) {
2300    pointers[i] = malloc(i + 1);
2301  }
2302  for (i = 0; i < kNumPointers; i++) {
2303    free(pointers[i]);
2304  }
2305
2306  return NULL;
2307}
2308
2309void *MallocIntrospectionLockForker(void *_) {
2310  pid_t result = fork();
2311  if (result == -1) {
2312    perror("fork");
2313  }
2314  assert(result != -1);
2315  if (result == 0) {
2316    // Call malloc in the child process to make sure we won't deadlock.
2317    void *ptr = malloc(42);
2318    free(ptr);
2319    exit(0);
2320  } else {
2321    // Return in the parent process.
2322    return NULL;
2323  }
2324}
2325
2326TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2327  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2328  // will cause forked processes to deadlock.
2329  // TODO(glider): need to detect that none of the child processes deadlocked.
2330  const int kNumWorkers = 5, kNumIterations = 100;
2331  int i, iter;
2332  for (iter = 0; iter < kNumIterations; iter++) {
2333    pthread_t workers[kNumWorkers], forker;
2334    for (i = 0; i < kNumWorkers; i++) {
2335      PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2336    }
2337    PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
2338    for (i = 0; i < kNumWorkers; i++) {
2339      PTHREAD_JOIN(workers[i], 0);
2340    }
2341    PTHREAD_JOIN(forker, 0);
2342  }
2343}
2344
2345void *TSDAllocWorker(void *test_key) {
2346  if (test_key) {
2347    void *mem = malloc(10);
2348    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2349  }
2350  return NULL;
2351}
2352
2353TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2354  pthread_t th;
2355  pthread_key_t test_key;
2356  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2357  PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
2358  PTHREAD_JOIN(th, NULL);
2359  pthread_key_delete(test_key);
2360}
2361
2362// Test that CFStringCreateCopy does not copy constant strings.
2363TEST(AddressSanitizerMac, CFStringCreateCopy) {
2364  CFStringRef str = CFSTR("Hello world!\n");
2365  CFStringRef str2 = CFStringCreateCopy(0, str);
2366  EXPECT_EQ(str, str2);
2367}
2368
2369TEST(AddressSanitizerMac, NSObjectOOB) {
2370  // Make sure that our allocators are used for NSObjects.
2371  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2372}
2373
2374// Make sure that correct pointer is passed to free() when deallocating a
2375// NSURL object.
2376// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2377TEST(AddressSanitizerMac, NSURLDeallocation) {
2378  TestNSURLDeallocation();
2379}
2380
2381// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2382TEST(AddressSanitizerMac, Mstats) {
2383  malloc_statistics_t stats1, stats2;
2384  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2385  const size_t kMallocSize = 100000;
2386  void *alloc = Ident(malloc(kMallocSize));
2387  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2388  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2389  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2390  free(alloc);
2391  // Even the default OSX allocator may not change the stats after free().
2392}
2393#endif  // __APPLE__
2394
2395// Test that instrumentation of stack allocations takes into account
2396// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2397// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2398TEST(AddressSanitizer, LongDoubleNegativeTest) {
2399  long double a, b;
2400  static long double c;
2401  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2402  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2403}
2404