asan_test.cc revision a390ece58317a25ef26866cef6753df4b06a3e65
1b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//===-- asan_test.cc ------------------------------------------------------===//
2b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//
3b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//                     The LLVM Compiler Infrastructure
4b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//
5b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov// This file is distributed under the University of Illinois Open Source
6b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov// License. See LICENSE.TXT for details.
7b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//
8b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//===----------------------------------------------------------------------===//
9b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//
10b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov// This file is a part of AddressSanitizer, an address sanity checker.
11eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov//
12b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov//===----------------------------------------------------------------------===//
13b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <stdio.h>
14b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <signal.h>
15eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov#include <stdlib.h>
16b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <string.h>
17b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <strings.h>
18b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <pthread.h>
19b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <stdint.h>
20b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <setjmp.h>
21b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <assert.h>
22b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
23b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#ifdef __linux__
24b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov# include <sys/prctl.h>
25b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif
26b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
27b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#if defined(__i386__) || defined(__x86_64__)
28b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <emmintrin.h>
29b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif
30b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
31b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include "asan_test_utils.h"
32b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
33b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#ifndef __APPLE__
34b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <malloc.h>
35b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#else
36b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <malloc/malloc.h>
37b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
38b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <CoreFoundation/CFString.h>
39b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif  // __APPLE__
40b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
41b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#if ASAN_HAS_EXCEPTIONS
42b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov# define ASAN_THROW(x) throw (x)
43b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#else
44b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov# define ASAN_THROW(x)
45b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif
46b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
47b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#include <sys/mman.h>
48b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
49b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovtypedef uint8_t   U1;
50b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovtypedef uint16_t  U2;
51b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovtypedef uint32_t  U4;
52b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovtypedef uint64_t  U8;
53b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
54b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovstatic const int kPageSize = 4096;
55b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
56b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov// Simple stand-alone pseudorandom number generator.
57b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov// Current algorithm is ANSI C linear congruential PRNG.
58b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovstatic inline uint32_t my_rand(uint32_t* state) {
59b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  return (*state = *state * 1103515245 + 12345) >> 16;
60b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
61b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
62b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovstatic uint32_t global_seed = 0;
63b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
64b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovconst size_t kLargeMalloc = 1 << 24;
65b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
66b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovtemplate<typename T>
67b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void asan_write(T *a) {
68b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  *a = 0;
69b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
70b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
71b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
72b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_EQ(0U, ((uintptr_t)p % size));
73b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  if      (size == 1) asan_write((uint8_t*)p);
74b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  else if (size == 2) asan_write((uint16_t*)p);
75b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  else if (size == 4) asan_write((uint32_t*)p);
76b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  else if (size == 8) asan_write((uint64_t*)p);
77b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
78b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
79b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *malloc_fff(size_t size) {
80b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = malloc/**/(size); break_optimization(0); return res;}
81b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *malloc_eee(size_t size) {
82b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = malloc_fff(size); break_optimization(0); return res;}
83b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *malloc_ddd(size_t size) {
84b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = malloc_eee(size); break_optimization(0); return res;}
85b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *malloc_ccc(size_t size) {
86b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = malloc_ddd(size); break_optimization(0); return res;}
87b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *malloc_bbb(size_t size) {
88b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = malloc_ccc(size); break_optimization(0); return res;}
89b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *malloc_aaa(size_t size) {
90b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = malloc_bbb(size); break_optimization(0); return res;}
91b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
92b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#ifndef __APPLE__
93b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *memalign_fff(size_t alignment, size_t size) {
94b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
95b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *memalign_eee(size_t alignment, size_t size) {
96b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
97b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *memalign_ddd(size_t alignment, size_t size) {
98b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
99b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *memalign_ccc(size_t alignment, size_t size) {
100b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
101b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *memalign_bbb(size_t alignment, size_t size) {
102b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
103b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void *memalign_aaa(size_t alignment, size_t size) {
104b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
105b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif  // __APPLE__
106b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
107b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
108b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
109b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
110b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
111b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
112b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovtemplate<typename T>
113b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void oob_test(int size, int off) {
114b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  char *p = (char*)malloc_aaa(size);
115b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
116b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  //        sizeof(T), p, p + size, off);
117b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  asan_write((T*)(p + off));
118b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free_aaa(p);
119b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
120b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
121b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
122b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanovtemplate<typename T>
123b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovNOINLINE void uaf_test(int size, int off) {
124b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  char *p = (char *)malloc_aaa(size);
125b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free_aaa(p);
126b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  for (int i = 1; i < 100; i++)
127b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov    free_aaa(malloc_aaa(i));
128b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
129b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov          (long)sizeof(T), p, off);
130b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  asan_write((T*)(p + off));
131b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
132b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
133b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovTEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
134b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#if defined(__has_feature) && __has_feature(address_sanitizer)
135b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  bool asan = 1;
136eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov#elif defined(__SANITIZE_ADDRESS__)
137b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  bool asan = 1;
138b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#else
139b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  bool asan = 0;
140b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif
141b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_EQ(true, asan);
142b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
143b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
144b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovTEST(AddressSanitizer, SimpleDeathTest) {
145b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_DEATH(exit(1), "");
146b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
147b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
148b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovTEST(AddressSanitizer, VariousMallocsTest) {
149b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int *a = (int*)malloc(100 * sizeof(int));
150b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  a[50] = 0;
151b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free(a);
152b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
153b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int *r = (int*)malloc(10);
154b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  r = (int*)realloc(r, 2000 * sizeof(int));
155b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  r[1000] = 0;
156b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free(r);
157b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
158b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int *b = new int[100];
159b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  b[50] = 0;
160b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  delete [] b;
161b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
162b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int *c = new int;
163b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  *c = 0;
164b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  delete c;
165b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
166b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
167b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int *pm;
168b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
169b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_EQ(0, pm_res);
170b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free(pm);
171b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif
172b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
173b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#if !defined(__APPLE__)
174b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int *ma = (int*)memalign(kPageSize, kPageSize);
175b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
176b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  ma[123] = 0;
177b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free(ma);
178b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#endif  // __APPLE__
179b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
180b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
181b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovTEST(AddressSanitizer, CallocTest) {
182b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  int *a = (int*)calloc(100, sizeof(int));
183b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_EQ(0, a[10]);
184b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free(a);
185b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
186b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
187b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovTEST(AddressSanitizer, VallocTest) {
188b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  void *a = valloc(100);
189b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
190b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  free(a);
191b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov}
192b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov
193b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov#ifndef __APPLE__
194b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy StepanovTEST(AddressSanitizer, PvallocTest) {
195b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  char *a = (char*)pvalloc(kPageSize + 100);
196b32f58018498ea2225959b0ba11c18f0c433deefEvgeniy Stepanov  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
197eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  a[kPageSize + 101] = 1;  // we should not report an error here.
198eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  free(a);
199eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov
200eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
201eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
202eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  a[101] = 1;  // we should not report an error here.
203eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  free(a);
204eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov}
205eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov#endif  // __APPLE__
206eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov
207eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanovvoid *TSDWorker(void *test_key) {
208eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  if (test_key) {
209eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
210eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  }
211eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  return NULL;
212eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov}
213eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov
214eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanovvoid TSDDestructor(void *tsd) {
215eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  // Spawning a thread will check that the current thread id is not -1.
216eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  pthread_t th;
217eb0bae136f4eeaaf29761dddb148b118fb824632Dmitriy Ivanov  PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
218  PTHREAD_JOIN(th, NULL);
219}
220
221// This tests triggers the thread-specific data destruction fiasco which occurs
222// if we don't manage the TSD destructors ourselves. We create a new pthread
223// key with a non-NULL destructor which is likely to be put after the destructor
224// of AsanThread in the list of destructors.
225// In this case the TSD for AsanThread will be destroyed before TSDDestructor
226// is called for the child thread, and a CHECK will fail when we call
227// pthread_create() to spawn the grandchild.
228TEST(AddressSanitizer, DISABLED_TSDTest) {
229  pthread_t th;
230  pthread_key_t test_key;
231  pthread_key_create(&test_key, TSDDestructor);
232  PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
233  PTHREAD_JOIN(th, NULL);
234  pthread_key_delete(test_key);
235}
236
237template<typename T>
238void OOBTest() {
239  char expected_str[100];
240  for (int size = sizeof(T); size < 20; size += 5) {
241    for (int i = -5; i < 0; i++) {
242      const char *str =
243          "is located.*%d byte.*to the left";
244      sprintf(expected_str, str, abs(i));
245      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
246    }
247
248    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
249      oob_test<T>(size, i);
250
251    for (int i = size - sizeof(T) + 1; i <= (int)(size + 3 * sizeof(T)); i++) {
252      const char *str =
253          "is located.*%d byte.*to the right";
254      int off = i >= size ? (i - size) : 0;
255      // we don't catch unaligned partially OOB accesses.
256      if (i % sizeof(T)) continue;
257      sprintf(expected_str, str, off);
258      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
259    }
260  }
261
262  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
263          "is located.*1 byte.*to the left");
264  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
265          "is located.*0 byte.*to the right");
266}
267
268// TODO(glider): the following tests are EXTREMELY slow on Darwin:
269//   AddressSanitizer.OOB_char (125503 ms)
270//   AddressSanitizer.OOB_int (126890 ms)
271//   AddressSanitizer.OOBRightTest (315605 ms)
272//   AddressSanitizer.SimpleStackTest (366559 ms)
273
274TEST(AddressSanitizer, OOB_char) {
275  OOBTest<U1>();
276}
277
278TEST(AddressSanitizer, OOB_int) {
279  OOBTest<U4>();
280}
281
282TEST(AddressSanitizer, OOBRightTest) {
283  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
284    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
285      for (size_t offset = 0; offset <= 8; offset += access_size) {
286        void *p = malloc(alloc_size);
287        // allocated: [p, p + alloc_size)
288        // accessed:  [p + offset, p + offset + access_size)
289        uint8_t *addr = (uint8_t*)p + offset;
290        if (offset + access_size <= alloc_size) {
291          asan_write_sized_aligned(addr, access_size);
292        } else {
293          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
294          const char *str =
295              "is located.%d *byte.*to the right";
296          char expected_str[100];
297          sprintf(expected_str, str, outside_bytes);
298          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
299                       expected_str);
300        }
301        free(p);
302      }
303    }
304  }
305}
306
307TEST(AddressSanitizer, UAF_char) {
308  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
309  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
310  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
311  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
312  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
313  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
314}
315
316#if ASAN_HAS_BLACKLIST
317TEST(AddressSanitizer, IgnoreTest) {
318  int *x = Ident(new int);
319  delete Ident(x);
320  *x = 0;
321}
322#endif  // ASAN_HAS_BLACKLIST
323
324struct StructWithBitField {
325  int bf1:1;
326  int bf2:1;
327  int bf3:1;
328  int bf4:29;
329};
330
331TEST(AddressSanitizer, BitFieldPositiveTest) {
332  StructWithBitField *x = new StructWithBitField;
333  delete Ident(x);
334  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
335  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
336  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
337  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
338}
339
340struct StructWithBitFields_8_24 {
341  int a:8;
342  int b:24;
343};
344
345TEST(AddressSanitizer, BitFieldNegativeTest) {
346  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
347  x->a = 0;
348  x->b = 0;
349  delete Ident(x);
350}
351
352TEST(AddressSanitizer, OutOfMemoryTest) {
353  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
354  EXPECT_EQ(0, realloc(0, size));
355  EXPECT_EQ(0, realloc(0, ~Ident(0)));
356  EXPECT_EQ(0, malloc(size));
357  EXPECT_EQ(0, malloc(~Ident(0)));
358  EXPECT_EQ(0, calloc(1, size));
359  EXPECT_EQ(0, calloc(1, ~Ident(0)));
360}
361
362#if ASAN_NEEDS_SEGV
363namespace {
364
365const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
366const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
367
368TEST(AddressSanitizer, WildAddressTest) {
369  char *c = (char*)0x123;
370  EXPECT_DEATH(*c = 0, kUnknownCrash);
371}
372
373void my_sigaction_sighandler(int, siginfo_t*, void*) {
374  fprintf(stderr, kOverriddenHandler);
375  exit(1);
376}
377
378void my_signal_sighandler(int signum) {
379  fprintf(stderr, kOverriddenHandler);
380  exit(1);
381}
382
383TEST(AddressSanitizer, SignalTest) {
384  struct sigaction sigact;
385  memset(&sigact, 0, sizeof(sigact));
386  sigact.sa_sigaction = my_sigaction_sighandler;
387  sigact.sa_flags = SA_SIGINFO;
388  // ASan should silently ignore sigaction()...
389  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
390#ifdef __APPLE__
391  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
392#endif
393  char *c = (char*)0x123;
394  EXPECT_DEATH(*c = 0, kUnknownCrash);
395  // ... and signal().
396  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
397  EXPECT_DEATH(*c = 0, kUnknownCrash);
398}
399}  // namespace
400#endif
401
402static void MallocStress(size_t n) {
403  uint32_t seed = my_rand(&global_seed);
404  for (size_t iter = 0; iter < 10; iter++) {
405    vector<void *> vec;
406    for (size_t i = 0; i < n; i++) {
407      if ((i % 3) == 0) {
408        if (vec.empty()) continue;
409        size_t idx = my_rand(&seed) % vec.size();
410        void *ptr = vec[idx];
411        vec[idx] = vec.back();
412        vec.pop_back();
413        free_aaa(ptr);
414      } else {
415        size_t size = my_rand(&seed) % 1000 + 1;
416#ifndef __APPLE__
417        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
418        char *ptr = (char*)memalign_aaa(alignment, size);
419#else
420        char *ptr = (char*) malloc_aaa(size);
421#endif
422        vec.push_back(ptr);
423        ptr[0] = 0;
424        ptr[size-1] = 0;
425        ptr[size/2] = 0;
426      }
427    }
428    for (size_t i = 0; i < vec.size(); i++)
429      free_aaa(vec[i]);
430  }
431}
432
433TEST(AddressSanitizer, MallocStressTest) {
434  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
435}
436
437static void TestLargeMalloc(size_t size) {
438  char buff[1024];
439  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
440  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
441}
442
443TEST(AddressSanitizer, LargeMallocTest) {
444  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
445    TestLargeMalloc(i);
446  }
447}
448
449#if ASAN_LOW_MEMORY != 1
450TEST(AddressSanitizer, HugeMallocTest) {
451#ifdef __APPLE__
452  // It was empirically found out that 1215 megabytes is the maximum amount of
453  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
454  // 32-bit Mac 10.7 gives even less (< 1G).
455  // (the libSystem malloc() allows allocating up to 2300 megabytes without
456  // ASan).
457  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
458#else
459  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
460#endif
461  TestLargeMalloc(n_megs << 20);
462}
463#endif
464
465TEST(AddressSanitizer, ThreadedMallocStressTest) {
466  const int kNumThreads = 4;
467  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
468  pthread_t t[kNumThreads];
469  for (int i = 0; i < kNumThreads; i++) {
470    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
471        (void*)kNumIterations);
472  }
473  for (int i = 0; i < kNumThreads; i++) {
474    PTHREAD_JOIN(t[i], 0);
475  }
476}
477
478void *ManyThreadsWorker(void *a) {
479  for (int iter = 0; iter < 100; iter++) {
480    for (size_t size = 100; size < 2000; size *= 2) {
481      free(Ident(malloc(size)));
482    }
483  }
484  return 0;
485}
486
487TEST(AddressSanitizer, ManyThreadsTest) {
488  const size_t kNumThreads =
489      (SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
490  pthread_t t[kNumThreads];
491  for (size_t i = 0; i < kNumThreads; i++) {
492    PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
493  }
494  for (size_t i = 0; i < kNumThreads; i++) {
495    PTHREAD_JOIN(t[i], 0);
496  }
497}
498
499TEST(AddressSanitizer, ReallocTest) {
500  const int kMinElem = 5;
501  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
502  ptr[3] = 3;
503  for (int i = 0; i < 10000; i++) {
504    ptr = (int*)realloc(ptr,
505        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
506    EXPECT_EQ(3, ptr[3]);
507  }
508}
509
510#ifndef __APPLE__
511static const char *kMallocUsableSizeErrorMsg =
512  "AddressSanitizer: attempting to call malloc_usable_size()";
513
514TEST(AddressSanitizer, MallocUsableSizeTest) {
515  const size_t kArraySize = 100;
516  char *array = Ident((char*)malloc(kArraySize));
517  int *int_ptr = Ident(new int);
518  EXPECT_EQ(0U, malloc_usable_size(NULL));
519  EXPECT_EQ(kArraySize, malloc_usable_size(array));
520  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
521  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
522  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
523               kMallocUsableSizeErrorMsg);
524  free(array);
525  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
526}
527#endif
528
529void WrongFree() {
530  int *x = (int*)malloc(100 * sizeof(int));
531  // Use the allocated memory, otherwise Clang will optimize it out.
532  Ident(x);
533  free(x + 1);
534}
535
536TEST(AddressSanitizer, WrongFreeTest) {
537  EXPECT_DEATH(WrongFree(),
538               "ERROR: AddressSanitizer: attempting free.*not malloc");
539}
540
541void DoubleFree() {
542  int *x = (int*)malloc(100 * sizeof(int));
543  fprintf(stderr, "DoubleFree: x=%p\n", x);
544  free(x);
545  free(x);
546  fprintf(stderr, "should have failed in the second free(%p)\n", x);
547  abort();
548}
549
550TEST(AddressSanitizer, DoubleFreeTest) {
551  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
552               "ERROR: AddressSanitizer: attempting double-free"
553               ".*is located 0 bytes inside of 400-byte region"
554               ".*freed by thread T0 here"
555               ".*previously allocated by thread T0 here");
556}
557
558template<int kSize>
559NOINLINE void SizedStackTest() {
560  char a[kSize];
561  char  *A = Ident((char*)&a);
562  for (size_t i = 0; i < kSize; i++)
563    A[i] = i;
564  EXPECT_DEATH(A[-1] = 0, "");
565  EXPECT_DEATH(A[-20] = 0, "");
566  EXPECT_DEATH(A[-31] = 0, "");
567  EXPECT_DEATH(A[kSize] = 0, "");
568  EXPECT_DEATH(A[kSize + 1] = 0, "");
569  EXPECT_DEATH(A[kSize + 10] = 0, "");
570  EXPECT_DEATH(A[kSize + 31] = 0, "");
571}
572
573TEST(AddressSanitizer, SimpleStackTest) {
574  SizedStackTest<1>();
575  SizedStackTest<2>();
576  SizedStackTest<3>();
577  SizedStackTest<4>();
578  SizedStackTest<5>();
579  SizedStackTest<6>();
580  SizedStackTest<7>();
581  SizedStackTest<16>();
582  SizedStackTest<25>();
583  SizedStackTest<34>();
584  SizedStackTest<43>();
585  SizedStackTest<51>();
586  SizedStackTest<62>();
587  SizedStackTest<64>();
588  SizedStackTest<128>();
589}
590
591TEST(AddressSanitizer, ManyStackObjectsTest) {
592  char XXX[10];
593  char YYY[20];
594  char ZZZ[30];
595  Ident(XXX);
596  Ident(YYY);
597  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
598}
599
600NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
601  char d[4] = {0};
602  char *D = Ident(d);
603  switch (frame) {
604    case 3: a[5]++; break;
605    case 2: b[5]++; break;
606    case 1: c[5]++; break;
607    case 0: D[5]++; break;
608  }
609}
610NOINLINE static void Frame1(int frame, char *a, char *b) {
611  char c[4] = {0}; Frame0(frame, a, b, c);
612  break_optimization(0);
613}
614NOINLINE static void Frame2(int frame, char *a) {
615  char b[4] = {0}; Frame1(frame, a, b);
616  break_optimization(0);
617}
618NOINLINE static void Frame3(int frame) {
619  char a[4] = {0}; Frame2(frame, a);
620  break_optimization(0);
621}
622
623TEST(AddressSanitizer, GuiltyStackFrame0Test) {
624  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
625}
626TEST(AddressSanitizer, GuiltyStackFrame1Test) {
627  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
628}
629TEST(AddressSanitizer, GuiltyStackFrame2Test) {
630  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
631}
632TEST(AddressSanitizer, GuiltyStackFrame3Test) {
633  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
634}
635
636NOINLINE void LongJmpFunc1(jmp_buf buf) {
637  // create three red zones for these two stack objects.
638  int a;
639  int b;
640
641  int *A = Ident(&a);
642  int *B = Ident(&b);
643  *A = *B;
644  longjmp(buf, 1);
645}
646
647NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
648  // create three red zones for these two stack objects.
649  int a;
650  int b;
651
652  int *A = Ident(&a);
653  int *B = Ident(&b);
654  *A = *B;
655  __builtin_longjmp((void**)buf, 1);
656}
657
658NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
659  // create three red zones for these two stack objects.
660  int a;
661  int b;
662
663  int *A = Ident(&a);
664  int *B = Ident(&b);
665  *A = *B;
666  _longjmp(buf, 1);
667}
668
669NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
670  // create three red zones for these two stack objects.
671  int a;
672  int b;
673
674  int *A = Ident(&a);
675  int *B = Ident(&b);
676  *A = *B;
677  siglongjmp(buf, 1);
678}
679
680
681NOINLINE void TouchStackFunc() {
682  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
683  int *A = Ident(a);
684  for (int i = 0; i < 100; i++)
685    A[i] = i*i;
686}
687
688// Test that we handle longjmp and do not report fals positives on stack.
689TEST(AddressSanitizer, LongJmpTest) {
690  static jmp_buf buf;
691  if (!setjmp(buf)) {
692    LongJmpFunc1(buf);
693  } else {
694    TouchStackFunc();
695  }
696}
697
698#if not defined(__ANDROID__)
699TEST(AddressSanitizer, BuiltinLongJmpTest) {
700  static jmp_buf buf;
701  if (!__builtin_setjmp((void**)buf)) {
702    BuiltinLongJmpFunc1(buf);
703  } else {
704    TouchStackFunc();
705  }
706}
707#endif  // not defined(__ANDROID__)
708
709TEST(AddressSanitizer, UnderscopeLongJmpTest) {
710  static jmp_buf buf;
711  if (!_setjmp(buf)) {
712    UnderscopeLongJmpFunc1(buf);
713  } else {
714    TouchStackFunc();
715  }
716}
717
718TEST(AddressSanitizer, SigLongJmpTest) {
719  static sigjmp_buf buf;
720  if (!sigsetjmp(buf, 1)) {
721    SigLongJmpFunc1(buf);
722  } else {
723    TouchStackFunc();
724  }
725}
726
727#ifdef __EXCEPTIONS
728NOINLINE void ThrowFunc() {
729  // create three red zones for these two stack objects.
730  int a;
731  int b;
732
733  int *A = Ident(&a);
734  int *B = Ident(&b);
735  *A = *B;
736  ASAN_THROW(1);
737}
738
739TEST(AddressSanitizer, CxxExceptionTest) {
740  if (ASAN_UAR) return;
741  // TODO(kcc): this test crashes on 32-bit for some reason...
742  if (SANITIZER_WORDSIZE == 32) return;
743  try {
744    ThrowFunc();
745  } catch(...) {}
746  TouchStackFunc();
747}
748#endif
749
750void *ThreadStackReuseFunc1(void *unused) {
751  // create three red zones for these two stack objects.
752  int a;
753  int b;
754
755  int *A = Ident(&a);
756  int *B = Ident(&b);
757  *A = *B;
758  pthread_exit(0);
759  return 0;
760}
761
762void *ThreadStackReuseFunc2(void *unused) {
763  TouchStackFunc();
764  return 0;
765}
766
767TEST(AddressSanitizer, ThreadStackReuseTest) {
768  pthread_t t;
769  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
770  PTHREAD_JOIN(t, 0);
771  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
772  PTHREAD_JOIN(t, 0);
773}
774
775#if defined(__i386__) || defined(__x86_64__)
776TEST(AddressSanitizer, Store128Test) {
777  char *a = Ident((char*)malloc(Ident(12)));
778  char *p = a;
779  if (((uintptr_t)a % 16) != 0)
780    p = a + 8;
781  assert(((uintptr_t)p % 16) == 0);
782  __m128i value_wide = _mm_set1_epi16(0x1234);
783  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
784               "AddressSanitizer: heap-buffer-overflow");
785  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
786               "WRITE of size 16");
787  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
788               "located 0 bytes to the right of 12-byte");
789  free(a);
790}
791#endif
792
793static string RightOOBErrorMessage(int oob_distance) {
794  assert(oob_distance >= 0);
795  char expected_str[100];
796  sprintf(expected_str, "located %d bytes to the right", oob_distance);
797  return string(expected_str);
798}
799
800static string LeftOOBErrorMessage(int oob_distance) {
801  assert(oob_distance > 0);
802  char expected_str[100];
803  sprintf(expected_str, "located %d bytes to the left", oob_distance);
804  return string(expected_str);
805}
806
807template<typename T>
808void MemSetOOBTestTemplate(size_t length) {
809  if (length == 0) return;
810  size_t size = Ident(sizeof(T) * length);
811  T *array = Ident((T*)malloc(size));
812  int element = Ident(42);
813  int zero = Ident(0);
814  // memset interval inside array
815  memset(array, element, size);
816  memset(array, element, size - 1);
817  memset(array + length - 1, element, sizeof(T));
818  memset(array, element, 1);
819
820  // memset 0 bytes
821  memset(array - 10, element, zero);
822  memset(array - 1, element, zero);
823  memset(array, element, zero);
824  memset(array + length, 0, zero);
825  memset(array + length + 1, 0, zero);
826
827  // try to memset bytes to the right of array
828  EXPECT_DEATH(memset(array, 0, size + 1),
829               RightOOBErrorMessage(0));
830  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
831               RightOOBErrorMessage(4));
832  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
833               RightOOBErrorMessage(2 * sizeof(T) - 1));
834  // whole interval is to the right
835  EXPECT_DEATH(memset(array + length + 1, 0, 10),
836               RightOOBErrorMessage(sizeof(T)));
837
838  // try to memset bytes to the left of array
839  EXPECT_DEATH(memset((char*)array - 1, element, size),
840               LeftOOBErrorMessage(1));
841  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
842               LeftOOBErrorMessage(5));
843  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
844               LeftOOBErrorMessage(5 * sizeof(T)));
845  // whole interval is to the left
846  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
847               LeftOOBErrorMessage(2 * sizeof(T)));
848
849  // try to memset bytes both to the left & to the right
850  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
851               LeftOOBErrorMessage(2));
852
853  free(array);
854}
855
856TEST(AddressSanitizer, MemSetOOBTest) {
857  MemSetOOBTestTemplate<char>(100);
858  MemSetOOBTestTemplate<int>(5);
859  MemSetOOBTestTemplate<double>(256);
860  // We can test arrays of structres/classes here, but what for?
861}
862
863// Same test for memcpy and memmove functions
864template <typename T, class M>
865void MemTransferOOBTestTemplate(size_t length) {
866  if (length == 0) return;
867  size_t size = Ident(sizeof(T) * length);
868  T *src = Ident((T*)malloc(size));
869  T *dest = Ident((T*)malloc(size));
870  int zero = Ident(0);
871
872  // valid transfer of bytes between arrays
873  M::transfer(dest, src, size);
874  M::transfer(dest + 1, src, size - sizeof(T));
875  M::transfer(dest, src + length - 1, sizeof(T));
876  M::transfer(dest, src, 1);
877
878  // transfer zero bytes
879  M::transfer(dest - 1, src, 0);
880  M::transfer(dest + length, src, zero);
881  M::transfer(dest, src - 1, zero);
882  M::transfer(dest, src, zero);
883
884  // try to change mem to the right of dest
885  EXPECT_DEATH(M::transfer(dest + 1, src, size),
886               RightOOBErrorMessage(sizeof(T) - 1));
887  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
888               RightOOBErrorMessage(3));
889
890  // try to change mem to the left of dest
891  EXPECT_DEATH(M::transfer(dest - 2, src, size),
892               LeftOOBErrorMessage(2 * sizeof(T)));
893  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
894               LeftOOBErrorMessage(3));
895
896  // try to access mem to the right of src
897  EXPECT_DEATH(M::transfer(dest, src + 2, size),
898               RightOOBErrorMessage(2 * sizeof(T) - 1));
899  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
900               RightOOBErrorMessage(2));
901
902  // try to access mem to the left of src
903  EXPECT_DEATH(M::transfer(dest, src - 1, size),
904               LeftOOBErrorMessage(sizeof(T)));
905  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
906               LeftOOBErrorMessage(6));
907
908  // Generally we don't need to test cases where both accessing src and writing
909  // to dest address to poisoned memory.
910
911  T *big_src = Ident((T*)malloc(size * 2));
912  T *big_dest = Ident((T*)malloc(size * 2));
913  // try to change mem to both sides of dest
914  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
915               LeftOOBErrorMessage(sizeof(T)));
916  // try to access mem to both sides of src
917  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
918               LeftOOBErrorMessage(2 * sizeof(T)));
919
920  free(src);
921  free(dest);
922  free(big_src);
923  free(big_dest);
924}
925
926class MemCpyWrapper {
927 public:
928  static void* transfer(void *to, const void *from, size_t size) {
929    return memcpy(to, from, size);
930  }
931};
932TEST(AddressSanitizer, MemCpyOOBTest) {
933  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
934  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
935}
936
937class MemMoveWrapper {
938 public:
939  static void* transfer(void *to, const void *from, size_t size) {
940    return memmove(to, from, size);
941  }
942};
943TEST(AddressSanitizer, MemMoveOOBTest) {
944  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
945  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
946}
947
948// Tests for string functions
949
950// Used for string functions tests
951static char global_string[] = "global";
952static size_t global_string_length = 6;
953
954// Input to a test is a zero-terminated string str with given length
955// Accesses to the bytes to the left and to the right of str
956// are presumed to produce OOB errors
957void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
958  // Normal strlen calls
959  EXPECT_EQ(strlen(str), length);
960  if (length > 0) {
961    EXPECT_EQ(length - 1, strlen(str + 1));
962    EXPECT_EQ(0U, strlen(str + length));
963  }
964  // Arg of strlen is not malloced, OOB access
965  if (!is_global) {
966    // We don't insert RedZones to the left of global variables
967    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
968    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
969  }
970  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
971  // Overwrite terminator
972  str[length] = 'a';
973  // String is not zero-terminated, strlen will lead to OOB access
974  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
975  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
976  // Restore terminator
977  str[length] = 0;
978}
979TEST(AddressSanitizer, StrLenOOBTest) {
980  // Check heap-allocated string
981  size_t length = Ident(10);
982  char *heap_string = Ident((char*)malloc(length + 1));
983  char stack_string[10 + 1];
984  break_optimization(&stack_string);
985  for (size_t i = 0; i < length; i++) {
986    heap_string[i] = 'a';
987    stack_string[i] = 'b';
988  }
989  heap_string[length] = 0;
990  stack_string[length] = 0;
991  StrLenOOBTestTemplate(heap_string, length, false);
992  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
993  //      make test for stack_string work. Or move it to output tests.
994  // StrLenOOBTestTemplate(stack_string, length, false);
995  StrLenOOBTestTemplate(global_string, global_string_length, true);
996  free(heap_string);
997}
998
999static inline char* MallocAndMemsetString(size_t size, char ch) {
1000  char *s = Ident((char*)malloc(size));
1001  memset(s, ch, size);
1002  return s;
1003}
1004static inline char* MallocAndMemsetString(size_t size) {
1005  return MallocAndMemsetString(size, 'z');
1006}
1007
1008#ifndef __APPLE__
1009TEST(AddressSanitizer, StrNLenOOBTest) {
1010  size_t size = Ident(123);
1011  char *str = MallocAndMemsetString(size);
1012  // Normal strnlen calls.
1013  Ident(strnlen(str - 1, 0));
1014  Ident(strnlen(str, size));
1015  Ident(strnlen(str + size - 1, 1));
1016  str[size - 1] = '\0';
1017  Ident(strnlen(str, 2 * size));
1018  // Argument points to not allocated memory.
1019  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1020  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1021  // Overwrite the terminating '\0' and hit unallocated memory.
1022  str[size - 1] = 'z';
1023  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1024  free(str);
1025}
1026#endif
1027
1028TEST(AddressSanitizer, StrDupOOBTest) {
1029  size_t size = Ident(42);
1030  char *str = MallocAndMemsetString(size);
1031  char *new_str;
1032  // Normal strdup calls.
1033  str[size - 1] = '\0';
1034  new_str = strdup(str);
1035  free(new_str);
1036  new_str = strdup(str + size - 1);
1037  free(new_str);
1038  // Argument points to not allocated memory.
1039  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1040  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1041  // Overwrite the terminating '\0' and hit unallocated memory.
1042  str[size - 1] = 'z';
1043  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1044  free(str);
1045}
1046
1047TEST(AddressSanitizer, StrCpyOOBTest) {
1048  size_t to_size = Ident(30);
1049  size_t from_size = Ident(6);  // less than to_size
1050  char *to = Ident((char*)malloc(to_size));
1051  char *from = Ident((char*)malloc(from_size));
1052  // Normal strcpy calls.
1053  strcpy(from, "hello");
1054  strcpy(to, from);
1055  strcpy(to + to_size - from_size, from);
1056  // Length of "from" is too small.
1057  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1058  // "to" or "from" points to not allocated memory.
1059  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1060  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1061  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1062  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1063  // Overwrite the terminating '\0' character and hit unallocated memory.
1064  from[from_size - 1] = '!';
1065  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1066  free(to);
1067  free(from);
1068}
1069
1070TEST(AddressSanitizer, StrNCpyOOBTest) {
1071  size_t to_size = Ident(20);
1072  size_t from_size = Ident(6);  // less than to_size
1073  char *to = Ident((char*)malloc(to_size));
1074  // From is a zero-terminated string "hello\0" of length 6
1075  char *from = Ident((char*)malloc(from_size));
1076  strcpy(from, "hello");
1077  // copy 0 bytes
1078  strncpy(to, from, 0);
1079  strncpy(to - 1, from - 1, 0);
1080  // normal strncpy calls
1081  strncpy(to, from, from_size);
1082  strncpy(to, from, to_size);
1083  strncpy(to, from + from_size - 1, to_size);
1084  strncpy(to + to_size - 1, from, 1);
1085  // One of {to, from} points to not allocated memory
1086  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1087               LeftOOBErrorMessage(1));
1088  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1089               LeftOOBErrorMessage(1));
1090  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1091               RightOOBErrorMessage(0));
1092  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1093               RightOOBErrorMessage(0));
1094  // Length of "to" is too small
1095  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1096               RightOOBErrorMessage(0));
1097  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1098               RightOOBErrorMessage(0));
1099  // Overwrite terminator in from
1100  from[from_size - 1] = '!';
1101  // normal strncpy call
1102  strncpy(to, from, from_size);
1103  // Length of "from" is too small
1104  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1105               RightOOBErrorMessage(0));
1106  free(to);
1107  free(from);
1108}
1109
1110// Users may have different definitions of "strchr" and "index", so provide
1111// function pointer typedefs and overload RunStrChrTest implementation.
1112// We can't use macro for RunStrChrTest body here, as this macro would
1113// confuse EXPECT_DEATH gtest macro.
1114typedef char*(*PointerToStrChr1)(const char*, int);
1115typedef char*(*PointerToStrChr2)(char*, int);
1116
1117USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1118  size_t size = Ident(100);
1119  char *str = MallocAndMemsetString(size);
1120  str[10] = 'q';
1121  str[11] = '\0';
1122  EXPECT_EQ(str, StrChr(str, 'z'));
1123  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1124  EXPECT_EQ(NULL, StrChr(str, 'a'));
1125  // StrChr argument points to not allocated memory.
1126  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1127  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1128  // Overwrite the terminator and hit not allocated memory.
1129  str[11] = 'z';
1130  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1131  free(str);
1132}
1133USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1134  size_t size = Ident(100);
1135  char *str = MallocAndMemsetString(size);
1136  str[10] = 'q';
1137  str[11] = '\0';
1138  EXPECT_EQ(str, StrChr(str, 'z'));
1139  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1140  EXPECT_EQ(NULL, StrChr(str, 'a'));
1141  // StrChr argument points to not allocated memory.
1142  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1143  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1144  // Overwrite the terminator and hit not allocated memory.
1145  str[11] = 'z';
1146  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1147  free(str);
1148}
1149
1150TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1151  RunStrChrTest(&strchr);
1152  RunStrChrTest(&index);
1153}
1154
1155TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1156  // strcmp
1157  EXPECT_EQ(0, strcmp("", ""));
1158  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1159  EXPECT_GT(0, strcmp("ab", "ac"));
1160  EXPECT_GT(0, strcmp("abc", "abcd"));
1161  EXPECT_LT(0, strcmp("acc", "abc"));
1162  EXPECT_LT(0, strcmp("abcd", "abc"));
1163
1164  // strncmp
1165  EXPECT_EQ(0, strncmp("a", "b", 0));
1166  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1167  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1168  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1169  EXPECT_GT(0, strncmp("a", "b", 5));
1170  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1171  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1172  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1173  EXPECT_LT(0, strncmp("zyx", "", 2));
1174
1175  // strcasecmp
1176  EXPECT_EQ(0, strcasecmp("", ""));
1177  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1178  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1179  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1180  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1181  EXPECT_LT(0, strcasecmp("acc", "abc"));
1182  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1183
1184  // strncasecmp
1185  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1186  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1187  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1188  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1189  EXPECT_GT(0, strncasecmp("a", "B", 5));
1190  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1191  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1192  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1193  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1194
1195  // memcmp
1196  EXPECT_EQ(0, memcmp("a", "b", 0));
1197  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1198  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1199  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1200  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1201  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1202}
1203
1204typedef int(*PointerToStrCmp)(const char*, const char*);
1205void RunStrCmpTest(PointerToStrCmp StrCmp) {
1206  size_t size = Ident(100);
1207  char *s1 = MallocAndMemsetString(size);
1208  char *s2 = MallocAndMemsetString(size);
1209  s1[size - 1] = '\0';
1210  s2[size - 1] = '\0';
1211  // Normal StrCmp calls
1212  Ident(StrCmp(s1, s2));
1213  Ident(StrCmp(s1, s2 + size - 1));
1214  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1215  s1[size - 1] = 'z';
1216  s2[size - 1] = 'x';
1217  Ident(StrCmp(s1, s2));
1218  // One of arguments points to not allocated memory.
1219  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1220  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1221  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1222  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1223  // Hit unallocated memory and die.
1224  s2[size - 1] = 'z';
1225  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1226  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1227  free(s1);
1228  free(s2);
1229}
1230
1231TEST(AddressSanitizer, StrCmpOOBTest) {
1232  RunStrCmpTest(&strcmp);
1233}
1234
1235TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1236  RunStrCmpTest(&strcasecmp);
1237}
1238
1239typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1240void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1241  size_t size = Ident(100);
1242  char *s1 = MallocAndMemsetString(size);
1243  char *s2 = MallocAndMemsetString(size);
1244  s1[size - 1] = '\0';
1245  s2[size - 1] = '\0';
1246  // Normal StrNCmp calls
1247  Ident(StrNCmp(s1, s2, size + 2));
1248  s1[size - 1] = 'z';
1249  s2[size - 1] = 'x';
1250  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1251  s2[size - 1] = 'z';
1252  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1253  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1254  // One of arguments points to not allocated memory.
1255  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1256  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1257  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1258  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1259  // Hit unallocated memory and die.
1260  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1261  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1262  free(s1);
1263  free(s2);
1264}
1265
1266TEST(AddressSanitizer, StrNCmpOOBTest) {
1267  RunStrNCmpTest(&strncmp);
1268}
1269
1270TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1271  RunStrNCmpTest(&strncasecmp);
1272}
1273
1274TEST(AddressSanitizer, MemCmpOOBTest) {
1275  size_t size = Ident(100);
1276  char *s1 = MallocAndMemsetString(size);
1277  char *s2 = MallocAndMemsetString(size);
1278  // Normal memcmp calls.
1279  Ident(memcmp(s1, s2, size));
1280  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1281  Ident(memcmp(s1 - 1, s2 - 1, 0));
1282  // One of arguments points to not allocated memory.
1283  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1284  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1285  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1286  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1287  // Hit unallocated memory and die.
1288  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1289  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1290  // Zero bytes are not terminators and don't prevent from OOB.
1291  s1[size - 1] = '\0';
1292  s2[size - 1] = '\0';
1293  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1294  free(s1);
1295  free(s2);
1296}
1297
1298TEST(AddressSanitizer, StrCatOOBTest) {
1299  size_t to_size = Ident(100);
1300  char *to = MallocAndMemsetString(to_size);
1301  to[0] = '\0';
1302  size_t from_size = Ident(20);
1303  char *from = MallocAndMemsetString(from_size);
1304  from[from_size - 1] = '\0';
1305  // Normal strcat calls.
1306  strcat(to, from);
1307  strcat(to, from);
1308  strcat(to + from_size, from + from_size - 2);
1309  // Passing an invalid pointer is an error even when concatenating an empty
1310  // string.
1311  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBErrorMessage(1));
1312  // One of arguments points to not allocated memory.
1313  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1314  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1315  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1316  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1317
1318  // "from" is not zero-terminated.
1319  from[from_size - 1] = 'z';
1320  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1321  from[from_size - 1] = '\0';
1322  // "to" is not zero-terminated.
1323  memset(to, 'z', to_size);
1324  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1325  // "to" is too short to fit "from".
1326  to[to_size - from_size + 1] = '\0';
1327  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1328  // length of "to" is just enough.
1329  strcat(to, from + 1);
1330
1331  free(to);
1332  free(from);
1333}
1334
1335TEST(AddressSanitizer, StrNCatOOBTest) {
1336  size_t to_size = Ident(100);
1337  char *to = MallocAndMemsetString(to_size);
1338  to[0] = '\0';
1339  size_t from_size = Ident(20);
1340  char *from = MallocAndMemsetString(from_size);
1341  // Normal strncat calls.
1342  strncat(to, from, 0);
1343  strncat(to, from, from_size);
1344  from[from_size - 1] = '\0';
1345  strncat(to, from, 2 * from_size);
1346  // Catenating empty string with an invalid string is still an error.
1347  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBErrorMessage(1));
1348  strncat(to, from + from_size - 1, 10);
1349  // One of arguments points to not allocated memory.
1350  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBErrorMessage(1));
1351  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBErrorMessage(1));
1352  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBErrorMessage(0));
1353  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBErrorMessage(0));
1354
1355  memset(from, 'z', from_size);
1356  memset(to, 'z', to_size);
1357  to[0] = '\0';
1358  // "from" is too short.
1359  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBErrorMessage(0));
1360  // "to" is not zero-terminated.
1361  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBErrorMessage(0));
1362  // "to" is too short to fit "from".
1363  to[0] = 'z';
1364  to[to_size - from_size + 1] = '\0';
1365  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBErrorMessage(0));
1366  // "to" is just enough.
1367  strncat(to, from, from_size - 2);
1368
1369  free(to);
1370  free(from);
1371}
1372
1373static string OverlapErrorMessage(const string &func) {
1374  return func + "-param-overlap";
1375}
1376
1377TEST(AddressSanitizer, StrArgsOverlapTest) {
1378  size_t size = Ident(100);
1379  char *str = Ident((char*)malloc(size));
1380
1381// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1382// memmove().
1383#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1384    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1385  // Check "memcpy". Use Ident() to avoid inlining.
1386  memset(str, 'z', size);
1387  Ident(memcpy)(str + 1, str + 11, 10);
1388  Ident(memcpy)(str, str, 0);
1389  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1390  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1391#endif
1392
1393  // We do not treat memcpy with to==from as a bug.
1394  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1395  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1396  //              OverlapErrorMessage("memcpy"));
1397
1398  // Check "strcpy".
1399  memset(str, 'z', size);
1400  str[9] = '\0';
1401  strcpy(str + 10, str);
1402  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1403  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1404  strcpy(str, str + 5);
1405
1406  // Check "strncpy".
1407  memset(str, 'z', size);
1408  strncpy(str, str + 10, 10);
1409  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1410  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1411  str[10] = '\0';
1412  strncpy(str + 11, str, 20);
1413  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1414
1415  // Check "strcat".
1416  memset(str, 'z', size);
1417  str[10] = '\0';
1418  str[20] = '\0';
1419  strcat(str, str + 10);
1420  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1421  str[10] = '\0';
1422  strcat(str + 11, str);
1423  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1424  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1425  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1426
1427  // Check "strncat".
1428  memset(str, 'z', size);
1429  str[10] = '\0';
1430  strncat(str, str + 10, 10);  // from is empty
1431  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1432  str[10] = '\0';
1433  str[20] = '\0';
1434  strncat(str + 5, str, 5);
1435  str[10] = '\0';
1436  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1437  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1438
1439  free(str);
1440}
1441
1442void CallAtoi(const char *nptr) {
1443  Ident(atoi(nptr));
1444}
1445void CallAtol(const char *nptr) {
1446  Ident(atol(nptr));
1447}
1448void CallAtoll(const char *nptr) {
1449  Ident(atoll(nptr));
1450}
1451typedef void(*PointerToCallAtoi)(const char*);
1452
1453void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1454  char *array = MallocAndMemsetString(10, '1');
1455  // Invalid pointer to the string.
1456  EXPECT_DEATH(Atoi(array + 11), RightOOBErrorMessage(1));
1457  EXPECT_DEATH(Atoi(array - 1), LeftOOBErrorMessage(1));
1458  // Die if a buffer doesn't have terminating NULL.
1459  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1460  // Make last symbol a terminating NULL or other non-digit.
1461  array[9] = '\0';
1462  Atoi(array);
1463  array[9] = 'a';
1464  Atoi(array);
1465  Atoi(array + 9);
1466  // Sometimes we need to detect overflow if no digits are found.
1467  memset(array, ' ', 10);
1468  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1469  array[9] = '-';
1470  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1471  EXPECT_DEATH(Atoi(array + 9), RightOOBErrorMessage(0));
1472  array[8] = '-';
1473  Atoi(array);
1474  delete array;
1475}
1476
1477TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1478  RunAtoiOOBTest(&CallAtoi);
1479  RunAtoiOOBTest(&CallAtol);
1480  RunAtoiOOBTest(&CallAtoll);
1481}
1482
1483void CallStrtol(const char *nptr, char **endptr, int base) {
1484  Ident(strtol(nptr, endptr, base));
1485}
1486void CallStrtoll(const char *nptr, char **endptr, int base) {
1487  Ident(strtoll(nptr, endptr, base));
1488}
1489typedef void(*PointerToCallStrtol)(const char*, char**, int);
1490
1491void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1492  char *array = MallocAndMemsetString(3);
1493  char *endptr = NULL;
1494  array[0] = '1';
1495  array[1] = '2';
1496  array[2] = '3';
1497  // Invalid pointer to the string.
1498  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBErrorMessage(0));
1499  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBErrorMessage(1));
1500  // Buffer overflow if there is no terminating null (depends on base).
1501  Strtol(array, &endptr, 3);
1502  EXPECT_EQ(array + 2, endptr);
1503  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1504  array[2] = 'z';
1505  Strtol(array, &endptr, 35);
1506  EXPECT_EQ(array + 2, endptr);
1507  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBErrorMessage(0));
1508  // Add terminating zero to get rid of overflow.
1509  array[2] = '\0';
1510  Strtol(array, NULL, 36);
1511  // Don't check for overflow if base is invalid.
1512  Strtol(array - 1, NULL, -1);
1513  Strtol(array + 3, NULL, 1);
1514  // Sometimes we need to detect overflow if no digits are found.
1515  array[0] = array[1] = array[2] = ' ';
1516  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1517  array[2] = '+';
1518  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1519  array[2] = '-';
1520  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1521  array[1] = '+';
1522  Strtol(array, NULL, 0);
1523  array[1] = array[2] = 'z';
1524  Strtol(array, &endptr, 0);
1525  EXPECT_EQ(array, endptr);
1526  Strtol(array + 2, NULL, 0);
1527  EXPECT_EQ(array, endptr);
1528  delete array;
1529}
1530
1531TEST(AddressSanitizer, StrtollOOBTest) {
1532  RunStrtolOOBTest(&CallStrtoll);
1533}
1534TEST(AddressSanitizer, StrtolOOBTest) {
1535  RunStrtolOOBTest(&CallStrtol);
1536}
1537
1538// At the moment we instrument memcpy/memove/memset calls at compile time so we
1539// can't handle OOB error if these functions are called by pointer, see disabled
1540// MemIntrinsicCallByPointerTest below
1541typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1542typedef void*(*PointerToMemSet)(void*, int, size_t);
1543
1544void CallMemSetByPointer(PointerToMemSet MemSet) {
1545  size_t size = Ident(100);
1546  char *array = Ident((char*)malloc(size));
1547  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1548  free(array);
1549}
1550
1551void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1552  size_t size = Ident(100);
1553  char *src = Ident((char*)malloc(size));
1554  char *dst = Ident((char*)malloc(size));
1555  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1556  free(src);
1557  free(dst);
1558}
1559
1560TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1561  CallMemSetByPointer(&memset);
1562  CallMemTransferByPointer(&memcpy);
1563  CallMemTransferByPointer(&memmove);
1564}
1565
1566// This test case fails
1567// Clang optimizes memcpy/memset calls which lead to unaligned access
1568TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1569  int size = Ident(4096);
1570  char *s = Ident((char*)malloc(size));
1571  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1572  free(s);
1573}
1574
1575// TODO(samsonov): Add a test with malloc(0)
1576// TODO(samsonov): Add tests for str* and mem* functions.
1577
1578NOINLINE static int LargeFunction(bool do_bad_access) {
1579  int *x = new int[100];
1580  x[0]++;
1581  x[1]++;
1582  x[2]++;
1583  x[3]++;
1584  x[4]++;
1585  x[5]++;
1586  x[6]++;
1587  x[7]++;
1588  x[8]++;
1589  x[9]++;
1590
1591  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1592
1593  x[10]++;
1594  x[11]++;
1595  x[12]++;
1596  x[13]++;
1597  x[14]++;
1598  x[15]++;
1599  x[16]++;
1600  x[17]++;
1601  x[18]++;
1602  x[19]++;
1603
1604  delete x;
1605  return res;
1606}
1607
1608// Test the we have correct debug info for the failing instruction.
1609// This test requires the in-process symbolizer to be enabled by default.
1610TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1611  int failing_line = LargeFunction(false);
1612  char expected_warning[128];
1613  sprintf(expected_warning, "LargeFunction.*asan_test.*:%d", failing_line);
1614  EXPECT_DEATH(LargeFunction(true), expected_warning);
1615}
1616
1617// Check that we unwind and symbolize correctly.
1618TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1619  int *a = (int*)malloc_aaa(sizeof(int));
1620  *a = 1;
1621  free_aaa(a);
1622  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1623               "malloc_fff.*malloc_eee.*malloc_ddd");
1624}
1625
1626static void TryToSetThreadName(const char *name) {
1627#ifdef __linux__
1628  prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0);
1629#endif
1630}
1631
1632void *ThreadedTestAlloc(void *a) {
1633  TryToSetThreadName("AllocThr");
1634  int **p = (int**)a;
1635  *p = new int;
1636  return 0;
1637}
1638
1639void *ThreadedTestFree(void *a) {
1640  TryToSetThreadName("FreeThr");
1641  int **p = (int**)a;
1642  delete *p;
1643  return 0;
1644}
1645
1646void *ThreadedTestUse(void *a) {
1647  TryToSetThreadName("UseThr");
1648  int **p = (int**)a;
1649  **p = 1;
1650  return 0;
1651}
1652
1653void ThreadedTestSpawn() {
1654  pthread_t t;
1655  int *x;
1656  PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
1657  PTHREAD_JOIN(t, 0);
1658  PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
1659  PTHREAD_JOIN(t, 0);
1660  PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
1661  PTHREAD_JOIN(t, 0);
1662}
1663
1664TEST(AddressSanitizer, ThreadedTest) {
1665  EXPECT_DEATH(ThreadedTestSpawn(),
1666               ASAN_PCRE_DOTALL
1667               "Thread T.*created"
1668               ".*Thread T.*created"
1669               ".*Thread T.*created");
1670}
1671
1672#ifdef __linux__
1673TEST(AddressSanitizer, ThreadNamesTest) {
1674  // ThreadedTestSpawn();
1675  EXPECT_DEATH(ThreadedTestSpawn(),
1676               ASAN_PCRE_DOTALL
1677               "WRITE .*thread T. .UseThr."
1678               ".*freed by thread T. .FreeThr. here:"
1679               ".*previously allocated by thread T. .AllocThr. here:"
1680               ".*Thread T. .UseThr. created by T. here:"
1681               ".*Thread T. .FreeThr. created by T. here:"
1682               ".*Thread T. .AllocThr. created by T. here:"
1683               "");
1684}
1685#endif
1686
1687#if ASAN_NEEDS_SEGV
1688TEST(AddressSanitizer, ShadowGapTest) {
1689#if SANITIZER_WORDSIZE == 32
1690  char *addr = (char*)0x22000000;
1691#else
1692  char *addr = (char*)0x0000100000080000;
1693#endif
1694  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1695}
1696#endif  // ASAN_NEEDS_SEGV
1697
1698extern "C" {
1699NOINLINE static void UseThenFreeThenUse() {
1700  char *x = Ident((char*)malloc(8));
1701  *x = 1;
1702  free_aaa(x);
1703  *x = 2;
1704}
1705}
1706
1707TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1708  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1709}
1710
1711TEST(AddressSanitizer, StrDupTest) {
1712  free(strdup(Ident("123")));
1713}
1714
1715// Currently we create and poison redzone at right of global variables.
1716char glob5[5];
1717static char static110[110];
1718const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1719static const char StaticConstGlob[3] = {9, 8, 7};
1720extern int GlobalsTest(int x);
1721
1722TEST(AddressSanitizer, GlobalTest) {
1723  static char func_static15[15];
1724
1725  static char fs1[10];
1726  static char fs2[10];
1727  static char fs3[10];
1728
1729  glob5[Ident(0)] = 0;
1730  glob5[Ident(1)] = 0;
1731  glob5[Ident(2)] = 0;
1732  glob5[Ident(3)] = 0;
1733  glob5[Ident(4)] = 0;
1734
1735  EXPECT_DEATH(glob5[Ident(5)] = 0,
1736               "0 bytes to the right of global variable.*glob5.* size 5");
1737  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1738               "6 bytes to the right of global variable.*glob5.* size 5");
1739  Ident(static110);  // avoid optimizations
1740  static110[Ident(0)] = 0;
1741  static110[Ident(109)] = 0;
1742  EXPECT_DEATH(static110[Ident(110)] = 0,
1743               "0 bytes to the right of global variable");
1744  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1745               "7 bytes to the right of global variable");
1746
1747  Ident(func_static15);  // avoid optimizations
1748  func_static15[Ident(0)] = 0;
1749  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1750               "0 bytes to the right of global variable");
1751  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1752               "9 bytes to the right of global variable");
1753
1754  Ident(fs1);
1755  Ident(fs2);
1756  Ident(fs3);
1757
1758  // We don't create left redzones, so this is not 100% guaranteed to fail.
1759  // But most likely will.
1760  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1761
1762  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1763               "is located 1 bytes to the right of .*ConstGlob");
1764  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1765               "is located 2 bytes to the right of .*StaticConstGlob");
1766
1767  // call stuff from another file.
1768  GlobalsTest(0);
1769}
1770
1771TEST(AddressSanitizer, GlobalStringConstTest) {
1772  static const char *zoo = "FOOBAR123";
1773  const char *p = Ident(zoo);
1774  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1775}
1776
1777TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1778  static char zoo[10];
1779  const char *p = Ident(zoo);
1780  // The file name should be present in the report.
1781  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.");
1782}
1783
1784int *ReturnsPointerToALocalObject() {
1785  int a = 0;
1786  return Ident(&a);
1787}
1788
1789#if ASAN_UAR == 1
1790TEST(AddressSanitizer, LocalReferenceReturnTest) {
1791  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1792  int *p = f();
1793  // Call 'f' a few more times, 'p' should still be poisoned.
1794  for (int i = 0; i < 32; i++)
1795    f();
1796  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1797  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1798}
1799#endif
1800
1801template <int kSize>
1802NOINLINE static void FuncWithStack() {
1803  char x[kSize];
1804  Ident(x)[0] = 0;
1805  Ident(x)[kSize-1] = 0;
1806}
1807
1808static void LotsOfStackReuse() {
1809  int LargeStack[10000];
1810  Ident(LargeStack)[0] = 0;
1811  for (int i = 0; i < 10000; i++) {
1812    FuncWithStack<128 * 1>();
1813    FuncWithStack<128 * 2>();
1814    FuncWithStack<128 * 4>();
1815    FuncWithStack<128 * 8>();
1816    FuncWithStack<128 * 16>();
1817    FuncWithStack<128 * 32>();
1818    FuncWithStack<128 * 64>();
1819    FuncWithStack<128 * 128>();
1820    FuncWithStack<128 * 256>();
1821    FuncWithStack<128 * 512>();
1822    Ident(LargeStack)[0] = 0;
1823  }
1824}
1825
1826TEST(AddressSanitizer, StressStackReuseTest) {
1827  LotsOfStackReuse();
1828}
1829
1830TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1831  const int kNumThreads = 20;
1832  pthread_t t[kNumThreads];
1833  for (int i = 0; i < kNumThreads; i++) {
1834    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1835  }
1836  for (int i = 0; i < kNumThreads; i++) {
1837    PTHREAD_JOIN(t[i], 0);
1838  }
1839}
1840
1841static void *PthreadExit(void *a) {
1842  pthread_exit(0);
1843  return 0;
1844}
1845
1846TEST(AddressSanitizer, PthreadExitTest) {
1847  pthread_t t;
1848  for (int i = 0; i < 1000; i++) {
1849    PTHREAD_CREATE(&t, 0, PthreadExit, 0);
1850    PTHREAD_JOIN(t, 0);
1851  }
1852}
1853
1854#ifdef __EXCEPTIONS
1855NOINLINE static void StackReuseAndException() {
1856  int large_stack[1000];
1857  Ident(large_stack);
1858  ASAN_THROW(1);
1859}
1860
1861// TODO(kcc): support exceptions with use-after-return.
1862TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1863  for (int i = 0; i < 10000; i++) {
1864    try {
1865    StackReuseAndException();
1866    } catch(...) {
1867    }
1868  }
1869}
1870#endif
1871
1872TEST(AddressSanitizer, MlockTest) {
1873  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1874  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1875  EXPECT_EQ(0, munlockall());
1876  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1877}
1878
1879struct LargeStruct {
1880  int foo[100];
1881};
1882
1883// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1884// Struct copy should not cause asan warning even if lhs == rhs.
1885TEST(AddressSanitizer, LargeStructCopyTest) {
1886  LargeStruct a;
1887  *Ident(&a) = *Ident(&a);
1888}
1889
1890ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
1891static void NoAddressSafety() {
1892  char *foo = new char[10];
1893  Ident(foo)[10] = 0;
1894  delete [] foo;
1895}
1896
1897TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1898  Ident(NoAddressSafety)();
1899}
1900
1901// ------------------ demo tests; run each one-by-one -------------
1902// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1903TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1904  ThreadedTestSpawn();
1905}
1906
1907void *SimpleBugOnSTack(void *x = 0) {
1908  char a[20];
1909  Ident(a)[20] = 0;
1910  return 0;
1911}
1912
1913TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1914  SimpleBugOnSTack();
1915}
1916
1917TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1918  pthread_t t;
1919  PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
1920  PTHREAD_JOIN(t, 0);
1921}
1922
1923TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1924  uaf_test<U1>(10, 0);
1925}
1926TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1927  uaf_test<U1>(10, -2);
1928}
1929TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1930  uaf_test<U1>(10, 10);
1931}
1932
1933TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1934  uaf_test<U1>(kLargeMalloc, 0);
1935}
1936
1937TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1938  oob_test<U1>(10, -1);
1939}
1940
1941TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1942  oob_test<U1>(kLargeMalloc, -1);
1943}
1944
1945TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1946  oob_test<U1>(10, 10);
1947}
1948
1949TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1950  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1951}
1952
1953TEST(AddressSanitizer, DISABLED_DemoOOM) {
1954  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1955  printf("%p\n", malloc(size));
1956}
1957
1958TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1959  DoubleFree();
1960}
1961
1962TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1963  int *a = 0;
1964  Ident(a)[10] = 0;
1965}
1966
1967TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1968  static char a[100];
1969  static char b[100];
1970  static char c[100];
1971  Ident(a);
1972  Ident(b);
1973  Ident(c);
1974  Ident(a)[5] = 0;
1975  Ident(b)[105] = 0;
1976  Ident(a)[5] = 0;
1977}
1978
1979TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1980  const size_t kAllocSize = (1 << 28) - 1024;
1981  size_t total_size = 0;
1982  while (true) {
1983    char *x = (char*)malloc(kAllocSize);
1984    memset(x, 0, kAllocSize);
1985    total_size += kAllocSize;
1986    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
1987  }
1988}
1989
1990// http://code.google.com/p/address-sanitizer/issues/detail?id=66
1991TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
1992  for (int i = 0; i < 1000000; i++) {
1993    delete [] (Ident(new char [8644]));
1994  }
1995  char *x = new char[8192];
1996  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
1997  delete [] Ident(x);
1998}
1999
2000#ifdef __APPLE__
2001#include "asan_mac_test.h"
2002TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
2003  EXPECT_DEATH(
2004      CFAllocatorDefaultDoubleFree(NULL),
2005      "attempting double-free");
2006}
2007
2008void CFAllocator_DoubleFreeOnPthread() {
2009  pthread_t child;
2010  PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
2011  PTHREAD_JOIN(child, NULL);  // Shouldn't be reached.
2012}
2013
2014TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
2015  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
2016}
2017
2018namespace {
2019
2020void *GLOB;
2021
2022void *CFAllocatorAllocateToGlob(void *unused) {
2023  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
2024  return NULL;
2025}
2026
2027void *CFAllocatorDeallocateFromGlob(void *unused) {
2028  char *p = (char*)GLOB;
2029  p[100] = 'A';  // ASan should report an error here.
2030  CFAllocatorDeallocate(NULL, GLOB);
2031  return NULL;
2032}
2033
2034void CFAllocator_PassMemoryToAnotherThread() {
2035  pthread_t th1, th2;
2036  PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2037  PTHREAD_JOIN(th1, NULL);
2038  PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2039  PTHREAD_JOIN(th2, NULL);
2040}
2041
2042TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2043  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2044               "heap-buffer-overflow");
2045}
2046
2047}  // namespace
2048
2049// TODO(glider): figure out whether we still need these tests. Is it correct
2050// to intercept the non-default CFAllocators?
2051TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2052  EXPECT_DEATH(
2053      CFAllocatorSystemDefaultDoubleFree(),
2054      "attempting double-free");
2055}
2056
2057// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2058TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2059  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2060}
2061
2062TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2063  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2064}
2065
2066TEST(AddressSanitizerMac, GCDDispatchAsync) {
2067  // Make sure the whole ASan report is printed, i.e. that we don't die
2068  // on a CHECK.
2069  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
2070}
2071
2072TEST(AddressSanitizerMac, GCDDispatchSync) {
2073  // Make sure the whole ASan report is printed, i.e. that we don't die
2074  // on a CHECK.
2075  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
2076}
2077
2078
2079TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2080  // Make sure the whole ASan report is printed, i.e. that we don't die
2081  // on a CHECK.
2082  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
2083}
2084
2085TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2086  // Make sure the whole ASan report is printed, i.e. that we don't die
2087  // on a CHECK.
2088  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
2089}
2090
2091TEST(AddressSanitizerMac, GCDDispatchAfter) {
2092  // Make sure the whole ASan report is printed, i.e. that we don't die
2093  // on a CHECK.
2094  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
2095}
2096
2097TEST(AddressSanitizerMac, GCDSourceEvent) {
2098  // Make sure the whole ASan report is printed, i.e. that we don't die
2099  // on a CHECK.
2100  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
2101}
2102
2103TEST(AddressSanitizerMac, GCDSourceCancel) {
2104  // Make sure the whole ASan report is printed, i.e. that we don't die
2105  // on a CHECK.
2106  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
2107}
2108
2109TEST(AddressSanitizerMac, GCDGroupAsync) {
2110  // Make sure the whole ASan report is printed, i.e. that we don't die
2111  // on a CHECK.
2112  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
2113}
2114
2115void *MallocIntrospectionLockWorker(void *_) {
2116  const int kNumPointers = 100;
2117  int i;
2118  void *pointers[kNumPointers];
2119  for (i = 0; i < kNumPointers; i++) {
2120    pointers[i] = malloc(i + 1);
2121  }
2122  for (i = 0; i < kNumPointers; i++) {
2123    free(pointers[i]);
2124  }
2125
2126  return NULL;
2127}
2128
2129void *MallocIntrospectionLockForker(void *_) {
2130  pid_t result = fork();
2131  if (result == -1) {
2132    perror("fork");
2133  }
2134  assert(result != -1);
2135  if (result == 0) {
2136    // Call malloc in the child process to make sure we won't deadlock.
2137    void *ptr = malloc(42);
2138    free(ptr);
2139    exit(0);
2140  } else {
2141    // Return in the parent process.
2142    return NULL;
2143  }
2144}
2145
2146TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2147  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2148  // will cause forked processes to deadlock.
2149  // TODO(glider): need to detect that none of the child processes deadlocked.
2150  const int kNumWorkers = 5, kNumIterations = 100;
2151  int i, iter;
2152  for (iter = 0; iter < kNumIterations; iter++) {
2153    pthread_t workers[kNumWorkers], forker;
2154    for (i = 0; i < kNumWorkers; i++) {
2155      PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2156    }
2157    PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
2158    for (i = 0; i < kNumWorkers; i++) {
2159      PTHREAD_JOIN(workers[i], 0);
2160    }
2161    PTHREAD_JOIN(forker, 0);
2162  }
2163}
2164
2165void *TSDAllocWorker(void *test_key) {
2166  if (test_key) {
2167    void *mem = malloc(10);
2168    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2169  }
2170  return NULL;
2171}
2172
2173TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2174  pthread_t th;
2175  pthread_key_t test_key;
2176  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2177  PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
2178  PTHREAD_JOIN(th, NULL);
2179  pthread_key_delete(test_key);
2180}
2181
2182// Test that CFStringCreateCopy does not copy constant strings.
2183TEST(AddressSanitizerMac, CFStringCreateCopy) {
2184  CFStringRef str = CFSTR("Hello world!\n");
2185  CFStringRef str2 = CFStringCreateCopy(0, str);
2186  EXPECT_EQ(str, str2);
2187}
2188
2189TEST(AddressSanitizerMac, NSObjectOOB) {
2190  // Make sure that our allocators are used for NSObjects.
2191  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2192}
2193
2194// Make sure that correct pointer is passed to free() when deallocating a
2195// NSURL object.
2196// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2197TEST(AddressSanitizerMac, NSURLDeallocation) {
2198  TestNSURLDeallocation();
2199}
2200
2201// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2202TEST(AddressSanitizerMac, Mstats) {
2203  malloc_statistics_t stats1, stats2;
2204  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2205  const int kMallocSize = 100000;
2206  void *alloc = Ident(malloc(kMallocSize));
2207  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2208  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2209  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2210  free(alloc);
2211  // Even the default OSX allocator may not change the stats after free().
2212}
2213#endif  // __APPLE__
2214
2215// Test that instrumentation of stack allocations takes into account
2216// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2217// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2218TEST(AddressSanitizer, LongDoubleNegativeTest) {
2219  long double a, b;
2220  static long double c;
2221  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2222  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2223}
2224