asan_test.cc revision 13ebae606b526399771e9cca1d6a9d24458ad0f1
1//===-- asan_test.cc ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <pthread.h>
18#include <stdint.h>
19#include <setjmp.h>
20#include <assert.h>
21
22#if defined(__i386__) or defined(__x86_64__)
23#include <emmintrin.h>
24#endif
25
26#include "asan_test_config.h"
27#include "asan_test_utils.h"
28
29#ifndef __APPLE__
30#include <malloc.h>
31#endif  // __APPLE__
32
33#ifdef __APPLE__
34static bool APPLE = true;
35#else
36static bool APPLE = false;
37#endif
38
39#if ASAN_HAS_EXCEPTIONS
40# define ASAN_THROW(x) throw (x)
41#else
42# define ASAN_THROW(x)
43#endif
44
45#include <sys/mman.h>
46
47typedef uint8_t   U1;
48typedef uint16_t  U2;
49typedef uint32_t  U4;
50typedef uint64_t  U8;
51
52static const char *progname;
53static const int kPageSize = 4096;
54
55// Simple stand-alone pseudorandom number generator.
56// Current algorithm is ANSI C linear congruential PRNG.
57static inline uint32_t my_rand(uint32_t* state) {
58  return (*state = *state * 1103515245 + 12345) >> 16;
59}
60
61static uint32_t global_seed = 0;
62
63class ObjdumpOfMyself {
64 public:
65  explicit ObjdumpOfMyself(const string &binary) {
66    is_correct = true;
67    string objdump_name = APPLE ? "gobjdump" : "objdump";
68    string prog = objdump_name + " -d " + binary;
69    // TODO(glider): popen() succeeds even if the file does not exist.
70    FILE *pipe = popen(prog.c_str(), "r");
71    string objdump;
72    if (pipe) {
73      const int kBuffSize = 4096;
74      char buff[kBuffSize+1];
75      int read_bytes;
76      while ((read_bytes = fread(buff, 1, kBuffSize, pipe)) > 0) {
77        buff[read_bytes] = 0;
78        objdump.append(buff);
79      }
80      pclose(pipe);
81    } else {
82      is_correct = false;
83    }
84    // cut the objdump into functions
85    string fn, next_fn;
86    size_t next_start;
87    for (size_t start = fn_start(objdump, 0, &fn);
88         start != string::npos;
89         start = next_start, fn = next_fn) {
90      next_start = fn_start(objdump, start, &next_fn);
91      // fprintf(stderr, "start: %d next_start = %d fn: %s\n",
92      //        (int)start, (int)next_start, fn.c_str());
93      // Mac OS adds the "_" prefix to function names.
94      if (fn.find(APPLE ? "_Disasm" : "Disasm") == string::npos) {
95        continue;
96      }
97      string fn_body = objdump.substr(start, next_start - start);
98      // fprintf(stderr, "%s:\n%s", fn.c_str(), fn_body.c_str());
99      functions_[fn] = fn_body;
100    }
101  }
102
103  string &GetFuncDisasm(const string &fn) {
104    return functions_[fn];
105  }
106
107  int CountInsnInFunc(const string &fn, const vector<string> &insns) {
108    // Mac OS adds the "_" prefix to function names.
109    string fn_ref = APPLE ? "_" + fn : fn;
110    const string &disasm = GetFuncDisasm(fn_ref);
111    if (disasm.empty()) return -1;
112    size_t counter = 0;
113    for (size_t i = 0; i < insns.size(); i++) {
114      size_t pos = 0;
115      while ((pos = disasm.find(insns[i], pos)) != string::npos) {
116        counter++;
117        pos++;
118      }
119    }
120    return counter;
121  }
122
123  bool IsCorrect() { return is_correct; }
124
125 private:
126  size_t fn_start(const string &objdump, size_t start_pos, string *fn) {
127    size_t pos = objdump.find(">:\n", start_pos);
128    if (pos == string::npos)
129      return string::npos;
130    size_t beg = pos;
131    while (beg > 0 && objdump[beg - 1] != '<')
132      beg--;
133    *fn = objdump.substr(beg, pos - beg);
134    return pos + 3;
135  }
136
137  map<string, string> functions_;
138  bool is_correct;
139};
140
141static ObjdumpOfMyself *objdump_of_myself() {
142  static ObjdumpOfMyself *o = new ObjdumpOfMyself(progname);
143  return o;
144}
145
146const size_t kLargeMalloc = 1 << 24;
147
148template<class T>
149__attribute__((noinline))
150void asan_write(T *a) {
151  *a = 0;
152}
153
154__attribute__((noinline))
155void asan_write_sized_aligned(uint8_t *p, size_t size) {
156  EXPECT_EQ(0, ((uintptr_t)p % size));
157  if      (size == 1) asan_write((uint8_t*)p);
158  else if (size == 2) asan_write((uint16_t*)p);
159  else if (size == 4) asan_write((uint32_t*)p);
160  else if (size == 8) asan_write((uint64_t*)p);
161}
162
163__attribute__((noinline)) void *malloc_fff(size_t size) {
164  void *res = malloc/**/(size); break_optimization(0); return res;}
165__attribute__((noinline)) void *malloc_eee(size_t size) {
166  void *res = malloc_fff(size); break_optimization(0); return res;}
167__attribute__((noinline)) void *malloc_ddd(size_t size) {
168  void *res = malloc_eee(size); break_optimization(0); return res;}
169__attribute__((noinline)) void *malloc_ccc(size_t size) {
170  void *res = malloc_ddd(size); break_optimization(0); return res;}
171__attribute__((noinline)) void *malloc_bbb(size_t size) {
172  void *res = malloc_ccc(size); break_optimization(0); return res;}
173__attribute__((noinline)) void *malloc_aaa(size_t size) {
174  void *res = malloc_bbb(size); break_optimization(0); return res;}
175
176#ifndef __APPLE__
177__attribute__((noinline)) void *memalign_fff(size_t alignment, size_t size) {
178  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
179__attribute__((noinline)) void *memalign_eee(size_t alignment, size_t size) {
180  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
181__attribute__((noinline)) void *memalign_ddd(size_t alignment, size_t size) {
182  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
183__attribute__((noinline)) void *memalign_ccc(size_t alignment, size_t size) {
184  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
185__attribute__((noinline)) void *memalign_bbb(size_t alignment, size_t size) {
186  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
187__attribute__((noinline)) void *memalign_aaa(size_t alignment, size_t size) {
188  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
189#endif  // __APPLE__
190
191
192__attribute__((noinline))
193  void free_ccc(void *p) { free(p); break_optimization(0);}
194__attribute__((noinline))
195  void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
196__attribute__((noinline))
197  void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
198
199template<class T>
200__attribute__((noinline))
201void oob_test(int size, int off) {
202  char *p = (char*)malloc_aaa(size);
203  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
204  //        sizeof(T), p, p + size, off);
205  asan_write((T*)(p + off));
206  free_aaa(p);
207}
208
209
210template<class T>
211__attribute__((noinline))
212void uaf_test(int size, int off) {
213  char *p = (char *)malloc_aaa(size);
214  free_aaa(p);
215  for (int i = 1; i < 100; i++)
216    free_aaa(malloc_aaa(i));
217  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
218          (long)sizeof(T), p, off);
219  asan_write((T*)(p + off));
220}
221
222TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
223#if defined(__has_feature) && __has_feature(address_sanitizer)
224  bool asan = 1;
225#else
226  bool asan = 0;
227#endif
228  EXPECT_EQ(true, asan);
229}
230
231TEST(AddressSanitizer, SimpleDeathTest) {
232  EXPECT_DEATH(exit(1), "");
233}
234
235TEST(AddressSanitizer, VariousMallocsTest) {
236  // fprintf(stderr, "malloc:\n");
237  int *a = (int*)malloc(100 * sizeof(int));
238  a[50] = 0;
239  free(a);
240
241  // fprintf(stderr, "realloc:\n");
242  int *r = (int*)malloc(10);
243  r = (int*)realloc(r, 2000 * sizeof(int));
244  r[1000] = 0;
245  free(r);
246
247  // fprintf(stderr, "operator new []\n");
248  int *b = new int[100];
249  b[50] = 0;
250  delete [] b;
251
252  // fprintf(stderr, "operator new\n");
253  int *c = new int;
254  *c = 0;
255  delete c;
256
257#ifndef __APPLE__
258  // cfree
259  cfree(Ident(malloc(1)));
260
261  // fprintf(stderr, "posix_memalign\n");
262  int *pm;
263  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
264  EXPECT_EQ(0, pm_res);
265  free(pm);
266
267  int *ma = (int*)memalign(kPageSize, kPageSize);
268  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
269  ma[123] = 0;
270  free(ma);
271#endif  // __APPLE__
272}
273
274TEST(AddressSanitizer, CallocTest) {
275  int *a = (int*)calloc(100, sizeof(int));
276  EXPECT_EQ(0, a[10]);
277  free(a);
278}
279
280TEST(AddressSanitizer, VallocTest) {
281  void *a = valloc(100);
282  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
283  free(a);
284}
285
286#ifndef __APPLE__
287TEST(AddressSanitizer, PvallocTest) {
288  char *a = (char*)pvalloc(kPageSize + 100);
289  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
290  a[kPageSize + 101] = 1;  // we should not report an error here.
291  free(a);
292
293  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
294  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
295  a[101] = 1;  // we should not report an error here.
296  free(a);
297}
298#endif  // __APPLE__
299
300void NoOpSignalHandler(int unused) {
301  fprintf(stderr, "NoOpSignalHandler (should not happen). Aborting\n");
302  abort();
303}
304
305void NoOpSigaction(int, siginfo_t *siginfo, void *context) {
306  fprintf(stderr, "NoOpSigaction (should not happen). Aborting\n");
307  abort();
308}
309
310TEST(AddressSanitizer, SignalTest) {
311  signal(SIGSEGV, NoOpSignalHandler);
312  signal(SIGILL, NoOpSignalHandler);
313  // If asan did not intercept sigaction NoOpSigaction will fire.
314  char *x = Ident((char*)malloc(5));
315  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
316  free(Ident(x));
317}
318
319TEST(AddressSanitizer, SigactionTest) {
320  {
321    struct sigaction sigact;
322    memset(&sigact, 0, sizeof(sigact));
323    sigact.sa_sigaction = NoOpSigaction;;
324    sigact.sa_flags = SA_SIGINFO;
325    sigaction(SIGSEGV, &sigact, 0);
326  }
327
328  {
329    struct sigaction sigact;
330    memset(&sigact, 0, sizeof(sigact));
331    sigact.sa_sigaction = NoOpSigaction;;
332    sigact.sa_flags = SA_SIGINFO;
333    sigaction(SIGILL, &sigact, 0);
334  }
335
336  // If asan did not intercept sigaction NoOpSigaction will fire.
337  char *x = Ident((char*)malloc(5));
338  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
339  free(Ident(x));
340}
341
342void *TSDWorker(void *test_key) {
343  if (test_key) {
344    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
345  }
346  return NULL;
347}
348
349void TSDDestructor(void *tsd) {
350  // Spawning a thread will check that the current thread id is not -1.
351  pthread_t th;
352  pthread_create(&th, NULL, TSDWorker, NULL);
353  pthread_join(th, NULL);
354}
355
356// This tests triggers the thread-specific data destruction fiasco which occurs
357// if we don't manage the TSD destructors ourselves. We create a new pthread
358// key with a non-NULL destructor which is likely to be put after the destructor
359// of AsanThread in the list of destructors.
360// In this case the TSD for AsanThread will be destroyed before TSDDestructor
361// is called for the child thread, and a CHECK will fail when we call
362// pthread_create() to spawn the grandchild.
363TEST(AddressSanitizer, DISABLED_TSDTest) {
364  pthread_t th;
365  pthread_key_t test_key;
366  pthread_key_create(&test_key, TSDDestructor);
367  pthread_create(&th, NULL, TSDWorker, &test_key);
368  pthread_join(th, NULL);
369  pthread_key_delete(test_key);
370}
371
372template<class T>
373void OOBTest() {
374  char expected_str[100];
375  for (int size = sizeof(T); size < 20; size += 5) {
376    for (int i = -5; i < 0; i++) {
377      const char *str =
378          "is located.*%d byte.*to the left";
379      sprintf(expected_str, str, abs(i));
380      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
381    }
382
383    for (int i = 0; i < size - sizeof(T) + 1; i++)
384      oob_test<T>(size, i);
385
386    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
387      const char *str =
388          "is located.*%d byte.*to the right";
389      int off = i >= size ? (i - size) : 0;
390      // we don't catch unaligned partially OOB accesses.
391      if (i % sizeof(T)) continue;
392      sprintf(expected_str, str, off);
393      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
394    }
395  }
396
397  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
398          "is located.*1 byte.*to the left");
399  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
400          "is located.*0 byte.*to the right");
401}
402
403// TODO(glider): the following tests are EXTREMELY slow on Darwin:
404//   AddressSanitizer.OOB_char (125503 ms)
405//   AddressSanitizer.OOB_int (126890 ms)
406//   AddressSanitizer.OOBRightTest (315605 ms)
407//   AddressSanitizer.SimpleStackTest (366559 ms)
408
409TEST(AddressSanitizer, OOB_char) {
410  OOBTest<U1>();
411}
412
413TEST(AddressSanitizer, OOB_int) {
414  OOBTest<U4>();
415}
416
417TEST(AddressSanitizer, OOBRightTest) {
418  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
419    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
420      for (size_t offset = 0; offset <= 8; offset += access_size) {
421        void *p = malloc(alloc_size);
422        // allocated: [p, p + alloc_size)
423        // accessed:  [p + offset, p + offset + access_size)
424        uint8_t *addr = (uint8_t*)p + offset;
425        if (offset + access_size <= alloc_size) {
426          asan_write_sized_aligned(addr, access_size);
427        } else {
428          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
429          const char *str =
430              "is located.%d *byte.*to the right";
431          char expected_str[100];
432          sprintf(expected_str, str, outside_bytes);
433          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
434                       expected_str);
435        }
436        free(p);
437      }
438    }
439  }
440}
441
442TEST(AddressSanitizer, UAF_char) {
443  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
444  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
445  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
446  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
447  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
448  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
449}
450
451#if ASAN_HAS_BLACKLIST
452TEST(AddressSanitizer, IgnoreTest) {
453  int *x = Ident(new int);
454  delete Ident(x);
455  *x = 0;
456}
457#endif  // ASAN_HAS_BLACKLIST
458
459struct StructWithBitField {
460  int bf1:1;
461  int bf2:1;
462  int bf3:1;
463  int bf4:29;
464};
465
466TEST(AddressSanitizer, BitFieldPositiveTest) {
467  StructWithBitField *x = new StructWithBitField;
468  delete Ident(x);
469  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
470  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
471  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
472  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
473};
474
475struct StructWithBitFields_8_24 {
476  int a:8;
477  int b:24;
478};
479
480TEST(AddressSanitizer, BitFieldNegativeTest) {
481  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
482  x->a = 0;
483  x->b = 0;
484  delete Ident(x);
485}
486
487TEST(AddressSanitizer, OutOfMemoryTest) {
488  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
489  EXPECT_EQ(0, realloc(0, size));
490  EXPECT_EQ(0, realloc(0, ~Ident(0)));
491  EXPECT_EQ(0, malloc(size));
492  EXPECT_EQ(0, malloc(~Ident(0)));
493  EXPECT_EQ(0, calloc(1, size));
494  EXPECT_EQ(0, calloc(1, ~Ident(0)));
495}
496
497#if ASAN_NEEDS_SEGV
498TEST(AddressSanitizer, WildAddressTest) {
499  char *c = (char*)0x123;
500  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
501}
502#endif
503
504static void MallocStress(size_t n) {
505  uint32_t seed = my_rand(&global_seed);
506  for (size_t iter = 0; iter < 10; iter++) {
507    vector<void *> vec;
508    for (size_t i = 0; i < n; i++) {
509      if ((i % 3) == 0) {
510        if (vec.empty()) continue;
511        size_t idx = my_rand(&seed) % vec.size();
512        void *ptr = vec[idx];
513        vec[idx] = vec.back();
514        vec.pop_back();
515        free_aaa(ptr);
516      } else {
517        size_t size = my_rand(&seed) % 1000 + 1;
518#ifndef __APPLE__
519        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
520        char *ptr = (char*)memalign_aaa(alignment, size);
521#else
522        char *ptr = (char*) malloc_aaa(size);
523#endif
524        vec.push_back(ptr);
525        ptr[0] = 0;
526        ptr[size-1] = 0;
527        ptr[size/2] = 0;
528      }
529    }
530    for (size_t i = 0; i < vec.size(); i++)
531      free_aaa(vec[i]);
532  }
533}
534
535TEST(AddressSanitizer, MallocStressTest) {
536  MallocStress(200000);
537}
538
539static void TestLargeMalloc(size_t size) {
540  char buff[1024];
541  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
542  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
543}
544
545TEST(AddressSanitizer, LargeMallocTest) {
546  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
547    TestLargeMalloc(i);
548  }
549}
550
551TEST(AddressSanitizer, HugeMallocTest) {
552#ifdef __APPLE__
553  // It was empirically found out that 1215 megabytes is the maximum amount of
554  // memory available to the process under AddressSanitizer on Darwin.
555  // (the libSystem malloc() allows allocating up to 2300 megabytes without
556  // ASan).
557  size_t n_megs = __WORDSIZE == 32 ? 1200 : 4100;
558#else
559  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
560#endif
561  TestLargeMalloc(n_megs << 20);
562}
563
564TEST(AddressSanitizer, ThreadedMallocStressTest) {
565  const int kNumThreads = 4;
566  pthread_t t[kNumThreads];
567  for (int i = 0; i < kNumThreads; i++) {
568    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)100000);
569  }
570  for (int i = 0; i < kNumThreads; i++) {
571    pthread_join(t[i], 0);
572  }
573}
574
575void *ManyThreadsWorker(void *a) {
576  for (int iter = 0; iter < 100; iter++) {
577    for (size_t size = 100; size < 2000; size *= 2) {
578      free(Ident(malloc(size)));
579    }
580  }
581  return 0;
582}
583
584TEST(AddressSanitizer, ManyThreadsTest) {
585  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
586  pthread_t t[kNumThreads];
587  for (size_t i = 0; i < kNumThreads; i++) {
588    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
589  }
590  for (size_t i = 0; i < kNumThreads; i++) {
591    pthread_join(t[i], 0);
592  }
593}
594
595TEST(AddressSanitizer, ReallocTest) {
596  const int kMinElem = 5;
597  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
598  ptr[3] = 3;
599  for (int i = 0; i < 10000; i++) {
600    ptr = (int*)realloc(ptr,
601        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
602    EXPECT_EQ(3, ptr[3]);
603  }
604}
605
606void WrongFree() {
607  int *x = (int*)malloc(100 * sizeof(int));
608  // Use the allocated memory, otherwise Clang will optimize it out.
609  Ident(x);
610  free(x + 1);
611}
612
613TEST(AddressSanitizer, WrongFreeTest) {
614  EXPECT_DEATH(WrongFree(),
615               "ERROR: AddressSanitizer attempting free.*not malloc");
616}
617
618void DoubleFree() {
619  int *x = (int*)malloc(100 * sizeof(int));
620  fprintf(stderr, "DoubleFree: x=%p\n", x);
621  free(x);
622  free(x);
623  fprintf(stderr, "should have failed in the second free(%p)\n", x);
624  abort();
625}
626
627TEST(AddressSanitizer, DoubleFreeTest) {
628  EXPECT_DEATH(DoubleFree(), "ERROR: AddressSanitizer attempting double-free");
629}
630
631template<int kSize>
632__attribute__((noinline))
633void SizedStackTest() {
634  char a[kSize];
635  char  *A = Ident((char*)&a);
636  for (size_t i = 0; i < kSize; i++)
637    A[i] = i;
638  EXPECT_DEATH(A[-1] = 0, "");
639  EXPECT_DEATH(A[-20] = 0, "");
640  EXPECT_DEATH(A[-31] = 0, "");
641  EXPECT_DEATH(A[kSize] = 0, "");
642  EXPECT_DEATH(A[kSize + 1] = 0, "");
643  EXPECT_DEATH(A[kSize + 10] = 0, "");
644  EXPECT_DEATH(A[kSize + 31] = 0, "");
645}
646
647TEST(AddressSanitizer, SimpleStackTest) {
648  SizedStackTest<1>();
649  SizedStackTest<2>();
650  SizedStackTest<3>();
651  SizedStackTest<4>();
652  SizedStackTest<5>();
653  SizedStackTest<6>();
654  SizedStackTest<7>();
655  SizedStackTest<16>();
656  SizedStackTest<25>();
657  SizedStackTest<34>();
658  SizedStackTest<43>();
659  SizedStackTest<51>();
660  SizedStackTest<62>();
661  SizedStackTest<64>();
662  SizedStackTest<128>();
663}
664
665TEST(AddressSanitizer, ManyStackObjectsTest) {
666  char XXX[10];
667  char YYY[20];
668  char ZZZ[30];
669  Ident(XXX);
670  Ident(YYY);
671  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
672}
673
674__attribute__((noinline))
675static void Frame0(int frame, char *a, char *b, char *c) {
676  char d[4] = {0};
677  char *D = Ident(d);
678  switch (frame) {
679    case 3: a[5]++; break;
680    case 2: b[5]++; break;
681    case 1: c[5]++; break;
682    case 0: D[5]++; break;
683  }
684}
685__attribute__((noinline)) static void Frame1(int frame, char *a, char *b) {
686  char c[4] = {0}; Frame0(frame, a, b, c);
687  break_optimization(0);
688}
689__attribute__((noinline)) static void Frame2(int frame, char *a) {
690  char b[4] = {0}; Frame1(frame, a, b);
691  break_optimization(0);
692}
693__attribute__((noinline)) static void Frame3(int frame) {
694  char a[4] = {0}; Frame2(frame, a);
695  break_optimization(0);
696}
697
698TEST(AddressSanitizer, GuiltyStackFrame0Test) {
699  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
700}
701TEST(AddressSanitizer, GuiltyStackFrame1Test) {
702  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
703}
704TEST(AddressSanitizer, GuiltyStackFrame2Test) {
705  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
706}
707TEST(AddressSanitizer, GuiltyStackFrame3Test) {
708  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
709}
710
711__attribute__((noinline))
712void LongJmpFunc1(jmp_buf buf) {
713  // create three red zones for these two stack objects.
714  int a;
715  int b;
716
717  int *A = Ident(&a);
718  int *B = Ident(&b);
719  *A = *B;
720  longjmp(buf, 1);
721}
722
723__attribute__((noinline))
724void UnderscopeLongJmpFunc1(jmp_buf buf) {
725  // create three red zones for these two stack objects.
726  int a;
727  int b;
728
729  int *A = Ident(&a);
730  int *B = Ident(&b);
731  *A = *B;
732  _longjmp(buf, 1);
733}
734
735__attribute__((noinline))
736void SigLongJmpFunc1(sigjmp_buf buf) {
737  // create three red zones for these two stack objects.
738  int a;
739  int b;
740
741  int *A = Ident(&a);
742  int *B = Ident(&b);
743  *A = *B;
744  siglongjmp(buf, 1);
745}
746
747
748__attribute__((noinline))
749void TouchStackFunc() {
750  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
751  int *A = Ident(a);
752  for (int i = 0; i < 100; i++)
753    A[i] = i*i;
754}
755
756// Test that we handle longjmp and do not report fals positives on stack.
757TEST(AddressSanitizer, LongJmpTest) {
758  static jmp_buf buf;
759  if (!setjmp(buf)) {
760    LongJmpFunc1(buf);
761  } else {
762    TouchStackFunc();
763  }
764}
765
766TEST(AddressSanitizer, UnderscopeLongJmpTest) {
767  static jmp_buf buf;
768  if (!_setjmp(buf)) {
769    UnderscopeLongJmpFunc1(buf);
770  } else {
771    TouchStackFunc();
772  }
773}
774
775TEST(AddressSanitizer, SigLongJmpTest) {
776  static sigjmp_buf buf;
777  if (!sigsetjmp(buf, 1)) {
778    SigLongJmpFunc1(buf);
779  } else {
780    TouchStackFunc();
781  }
782}
783
784#ifdef __EXCEPTIONS
785__attribute__((noinline))
786void ThrowFunc() {
787  // create three red zones for these two stack objects.
788  int a;
789  int b;
790
791  int *A = Ident(&a);
792  int *B = Ident(&b);
793  *A = *B;
794  ASAN_THROW(1);
795}
796
797TEST(AddressSanitizer, CxxExceptionTest) {
798  if (ASAN_UAR) return;
799  // TODO(kcc): this test crashes on 32-bit for some reason...
800  if (__WORDSIZE == 32) return;
801  try {
802    ThrowFunc();
803  } catch(...) {}
804  TouchStackFunc();
805}
806#endif
807
808void *ThreadStackReuseFunc1(void *unused) {
809  // create three red zones for these two stack objects.
810  int a;
811  int b;
812
813  int *A = Ident(&a);
814  int *B = Ident(&b);
815  *A = *B;
816  pthread_exit(0);
817  return 0;
818}
819
820void *ThreadStackReuseFunc2(void *unused) {
821  TouchStackFunc();
822  return 0;
823}
824
825TEST(AddressSanitizer, ThreadStackReuseTest) {
826  pthread_t t;
827  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
828  pthread_join(t, 0);
829  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
830  pthread_join(t, 0);
831}
832
833#if defined(__i386__) or defined(__x86_64__)
834TEST(AddressSanitizer, Store128Test) {
835  char *a = Ident((char*)malloc(Ident(12)));
836  char *p = a;
837  if (((uintptr_t)a % 16) != 0)
838    p = a + 8;
839  assert(((uintptr_t)p % 16) == 0);
840  __m128i value_wide = _mm_set1_epi16(0x1234);
841  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
842               "AddressSanitizer heap-buffer-overflow");
843  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
844               "WRITE of size 16");
845  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
846               "located 0 bytes to the right of 12-byte");
847  free(a);
848}
849#endif
850
851static string RightOOBErrorMessage(int oob_distance) {
852  assert(oob_distance >= 0);
853  char expected_str[100];
854  sprintf(expected_str, "located %d bytes to the right", oob_distance);
855  return string(expected_str);
856}
857
858static string LeftOOBErrorMessage(int oob_distance) {
859  assert(oob_distance > 0);
860  char expected_str[100];
861  sprintf(expected_str, "located %d bytes to the left", oob_distance);
862  return string(expected_str);
863}
864
865template<class T>
866void MemSetOOBTestTemplate(size_t length) {
867  if (length == 0) return;
868  size_t size = Ident(sizeof(T) * length);
869  T *array = Ident((T*)malloc(size));
870  int element = Ident(42);
871  int zero = Ident(0);
872  // memset interval inside array
873  memset(array, element, size);
874  memset(array, element, size - 1);
875  memset(array + length - 1, element, sizeof(T));
876  memset(array, element, 1);
877
878  // memset 0 bytes
879  memset(array - 10, element, zero);
880  memset(array - 1, element, zero);
881  memset(array, element, zero);
882  memset(array + length, 0, zero);
883  memset(array + length + 1, 0, zero);
884
885  // try to memset bytes to the right of array
886  EXPECT_DEATH(memset(array, 0, size + 1),
887               RightOOBErrorMessage(0));
888  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
889               RightOOBErrorMessage(4));
890  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
891               RightOOBErrorMessage(2 * sizeof(T) - 1));
892  // whole interval is to the right
893  EXPECT_DEATH(memset(array + length + 1, 0, 10),
894               RightOOBErrorMessage(sizeof(T)));
895
896  // try to memset bytes to the left of array
897  EXPECT_DEATH(memset((char*)array - 1, element, size),
898               LeftOOBErrorMessage(1));
899  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
900               LeftOOBErrorMessage(5));
901  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
902               LeftOOBErrorMessage(5 * sizeof(T)));
903  // whole interval is to the left
904  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
905               LeftOOBErrorMessage(2 * sizeof(T)));
906
907  // try to memset bytes both to the left & to the right
908  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
909               LeftOOBErrorMessage(2));
910
911  free(array);
912}
913
914TEST(AddressSanitizer, MemSetOOBTest) {
915  MemSetOOBTestTemplate<char>(100);
916  MemSetOOBTestTemplate<int>(5);
917  MemSetOOBTestTemplate<double>(256);
918  // We can test arrays of structres/classes here, but what for?
919}
920
921// Same test for memcpy and memmove functions
922template <class T, class M>
923void MemTransferOOBTestTemplate(size_t length) {
924  if (length == 0) return;
925  size_t size = Ident(sizeof(T) * length);
926  T *src = Ident((T*)malloc(size));
927  T *dest = Ident((T*)malloc(size));
928  int zero = Ident(0);
929
930  // valid transfer of bytes between arrays
931  M::transfer(dest, src, size);
932  M::transfer(dest + 1, src, size - sizeof(T));
933  M::transfer(dest, src + length - 1, sizeof(T));
934  M::transfer(dest, src, 1);
935
936  // transfer zero bytes
937  M::transfer(dest - 1, src, 0);
938  M::transfer(dest + length, src, zero);
939  M::transfer(dest, src - 1, zero);
940  M::transfer(dest, src, zero);
941
942  // try to change mem to the right of dest
943  EXPECT_DEATH(M::transfer(dest + 1, src, size),
944               RightOOBErrorMessage(sizeof(T) - 1));
945  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
946               RightOOBErrorMessage(3));
947
948  // try to change mem to the left of dest
949  EXPECT_DEATH(M::transfer(dest - 2, src, size),
950               LeftOOBErrorMessage(2 * sizeof(T)));
951  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
952               LeftOOBErrorMessage(3));
953
954  // try to access mem to the right of src
955  EXPECT_DEATH(M::transfer(dest, src + 2, size),
956               RightOOBErrorMessage(2 * sizeof(T) - 1));
957  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
958               RightOOBErrorMessage(2));
959
960  // try to access mem to the left of src
961  EXPECT_DEATH(M::transfer(dest, src - 1, size),
962               LeftOOBErrorMessage(sizeof(T)));
963  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
964               LeftOOBErrorMessage(6));
965
966  // Generally we don't need to test cases where both accessing src and writing
967  // to dest address to poisoned memory.
968
969  T *big_src = Ident((T*)malloc(size * 2));
970  T *big_dest = Ident((T*)malloc(size * 2));
971  // try to change mem to both sides of dest
972  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
973               LeftOOBErrorMessage(sizeof(T)));
974  // try to access mem to both sides of src
975  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
976               LeftOOBErrorMessage(2 * sizeof(T)));
977
978  free(src);
979  free(dest);
980  free(big_src);
981  free(big_dest);
982}
983
984class MemCpyWrapper {
985 public:
986  static void* transfer(void *to, const void *from, size_t size) {
987    return memcpy(to, from, size);
988  }
989};
990TEST(AddressSanitizer, MemCpyOOBTest) {
991  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
992  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
993}
994
995class MemMoveWrapper {
996 public:
997  static void* transfer(void *to, const void *from, size_t size) {
998    return memmove(to, from, size);
999  }
1000};
1001TEST(AddressSanitizer, MemMoveOOBTest) {
1002  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
1003  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
1004}
1005
1006// Tests for string functions
1007
1008// Used for string functions tests
1009static char global_string[] = "global";
1010static size_t global_string_length = 6;
1011
1012// Input to a test is a zero-terminated string str with given length
1013// Accesses to the bytes to the left and to the right of str
1014// are presumed to produce OOB errors
1015void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
1016  // Normal strlen calls
1017  EXPECT_EQ(strlen(str), length);
1018  if (length > 0) {
1019    EXPECT_EQ(strlen(str + 1), length - 1);
1020    EXPECT_EQ(strlen(str + length), 0);
1021  }
1022  // Arg of strlen is not malloced, OOB access
1023  if (!is_global) {
1024    // We don't insert RedZones to the left of global variables
1025    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
1026    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
1027  }
1028  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
1029  // Overwrite terminator
1030  str[length] = 'a';
1031  // String is not zero-terminated, strlen will lead to OOB access
1032  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
1033  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
1034  // Restore terminator
1035  str[length] = 0;
1036}
1037TEST(AddressSanitizer, StrLenOOBTest) {
1038  // Check heap-allocated string
1039  size_t length = Ident(10);
1040  char *heap_string = Ident((char*)malloc(length + 1));
1041  char stack_string[10 + 1];
1042  for (int i = 0; i < length; i++) {
1043    heap_string[i] = 'a';
1044    stack_string[i] = 'b';
1045  }
1046  heap_string[length] = 0;
1047  stack_string[length] = 0;
1048  StrLenOOBTestTemplate(heap_string, length, false);
1049  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
1050  //      make test for stack_string work. Or move it to output tests.
1051  // StrLenOOBTestTemplate(stack_string, length, false);
1052  StrLenOOBTestTemplate(global_string, global_string_length, true);
1053  free(heap_string);
1054}
1055
1056#ifndef __APPLE__
1057TEST(AddressSanitizer, StrNLenOOBTest) {
1058  size_t size = Ident(123);
1059  char *str = Ident((char*)malloc(size));
1060  memset(str, 'z', size);
1061  // Normal strnlen calls.
1062  Ident(strnlen(str - 1, 0));
1063  Ident(strnlen(str, size));
1064  Ident(strnlen(str + size - 1, 1));
1065  str[size - 1] = '\0';
1066  Ident(strnlen(str, 2 * size));
1067  // Argument points to not allocated memory.
1068  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1069  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1070  // Overwrite the terminating '\0' and hit unallocated memory.
1071  str[size - 1] = 'z';
1072  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1073  free(str);
1074}
1075#endif
1076
1077TEST(AddressSanitizer, StrDupOOBTest) {
1078  size_t size = Ident(42);
1079  char *str = Ident((char*)malloc(size));
1080  char *new_str;
1081  memset(str, 'z', size);
1082  // Normal strdup calls.
1083  str[size - 1] = '\0';
1084  new_str = strdup(str);
1085  free(new_str);
1086  new_str = strdup(str + size - 1);
1087  free(new_str);
1088  // Argument points to not allocated memory.
1089  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1090  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1091  // Overwrite the terminating '\0' and hit unallocated memory.
1092  str[size - 1] = 'z';
1093  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1094  free(str);
1095}
1096
1097TEST(AddressSanitizer, StrCpyOOBTest) {
1098  size_t to_size = Ident(30);
1099  size_t from_size = Ident(6);  // less than to_size
1100  char *to = Ident((char*)malloc(to_size));
1101  char *from = Ident((char*)malloc(from_size));
1102  // Normal strcpy calls.
1103  strcpy(from, "hello");
1104  strcpy(to, from);
1105  strcpy(to + to_size - from_size, from);
1106  // Length of "from" is too small.
1107  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1108  // "to" or "from" points to not allocated memory.
1109  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1110  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1111  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1112  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1113  // Overwrite the terminating '\0' character and hit unallocated memory.
1114  from[from_size - 1] = '!';
1115  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1116  free(to);
1117  free(from);
1118}
1119
1120TEST(AddressSanitizer, StrNCpyOOBTest) {
1121  size_t to_size = Ident(20);
1122  size_t from_size = Ident(6);  // less than to_size
1123  char *to = Ident((char*)malloc(to_size));
1124  // From is a zero-terminated string "hello\0" of length 6
1125  char *from = Ident((char*)malloc(from_size));
1126  strcpy(from, "hello");
1127  // copy 0 bytes
1128  strncpy(to, from, 0);
1129  strncpy(to - 1, from - 1, 0);
1130  // normal strncpy calls
1131  strncpy(to, from, from_size);
1132  strncpy(to, from, to_size);
1133  strncpy(to, from + from_size - 1, to_size);
1134  strncpy(to + to_size - 1, from, 1);
1135  // One of {to, from} points to not allocated memory
1136  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1137               LeftOOBErrorMessage(1));
1138  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1139               LeftOOBErrorMessage(1));
1140  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1141               RightOOBErrorMessage(0));
1142  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1143               RightOOBErrorMessage(0));
1144  // Length of "to" is too small
1145  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1146               RightOOBErrorMessage(0));
1147  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1148               RightOOBErrorMessage(0));
1149  // Overwrite terminator in from
1150  from[from_size - 1] = '!';
1151  // normal strncpy call
1152  strncpy(to, from, from_size);
1153  // Length of "from" is too small
1154  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1155               RightOOBErrorMessage(0));
1156  free(to);
1157  free(from);
1158}
1159
1160typedef char*(*PointerToStrChr)(const char*, int);
1161void RunStrChrTest(PointerToStrChr StrChr) {
1162  size_t size = Ident(100);
1163  char *str = Ident((char*)malloc(size));
1164  memset(str, 'z', size);
1165  str[10] = 'q';
1166  str[11] = '\0';
1167  EXPECT_EQ(str, StrChr(str, 'z'));
1168  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1169  EXPECT_EQ(NULL, StrChr(str, 'a'));
1170  // StrChr argument points to not allocated memory.
1171  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1172  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1173  // Overwrite the terminator and hit not allocated memory.
1174  str[11] = 'z';
1175  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1176  free(str);
1177}
1178TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1179  RunStrChrTest(&strchr);
1180  RunStrChrTest(&index);
1181}
1182
1183TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1184  // strcmp
1185  EXPECT_EQ(0, strcmp("", ""));
1186  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1187  EXPECT_EQ(-1, strcmp("ab", "ac"));
1188  EXPECT_EQ(-1, strcmp("abc", "abcd"));
1189  EXPECT_EQ(1, strcmp("acc", "abc"));
1190  EXPECT_EQ(1, strcmp("abcd", "abc"));
1191
1192  // strncmp
1193  EXPECT_EQ(0, strncmp("a", "b", 0));
1194  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1195  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1196  EXPECT_EQ(-1, strncmp("abcde", "abcfa", 4));
1197  EXPECT_EQ(-1, strncmp("a", "b", 5));
1198  EXPECT_EQ(-1, strncmp("bc", "bcde", 4));
1199  EXPECT_EQ(1, strncmp("xyz", "xyy", 10));
1200  EXPECT_EQ(1, strncmp("baa", "aaa", 1));
1201  EXPECT_EQ(1, strncmp("zyx", "", 2));
1202}
1203
1204static inline char* MallocAndMemsetString(size_t size) {
1205  char *s = Ident((char*)malloc(size));
1206  memset(s, 'z', size);
1207  return s;
1208}
1209
1210TEST(AddressSanitizer, StrCmpOOBTest) {
1211  size_t size = Ident(100);
1212  char *s1 = MallocAndMemsetString(size);
1213  char *s2 = MallocAndMemsetString(size);
1214  s1[size - 1] = '\0';
1215  s2[size - 1] = '\0';
1216  // Normal strcmp calls
1217  Ident(strcmp(s1, s2));
1218  Ident(strcmp(s1, s2 + size - 1));
1219  Ident(strcmp(s1 + size - 1, s2 + size - 1));
1220  s1[size - 1] = 'z';
1221  s2[size - 1] = 'x';
1222  Ident(strcmp(s1, s2));
1223  // One of arguments points to not allocated memory.
1224  EXPECT_DEATH(Ident(strcmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1225  EXPECT_DEATH(Ident(strcmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1226  EXPECT_DEATH(Ident(strcmp)(s1 + size, s2), RightOOBErrorMessage(0));
1227  EXPECT_DEATH(Ident(strcmp)(s1, s2 + size), RightOOBErrorMessage(0));
1228  // Hit unallocated memory and die.
1229  s2[size - 1] = 'z';
1230  EXPECT_DEATH(Ident(strcmp)(s1, s1), RightOOBErrorMessage(0));
1231  EXPECT_DEATH(Ident(strcmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1232  free(s1);
1233  free(s2);
1234}
1235
1236TEST(AddressSanitizer, StrNCmpOOBTest) {
1237  size_t size = Ident(100);
1238  char *s1 = MallocAndMemsetString(size);
1239  char *s2 = MallocAndMemsetString(size);
1240  s1[size - 1] = '\0';
1241  s2[size - 1] = '\0';
1242  // Normal strncmp calls
1243  Ident(strncmp(s1, s2, size + 2));
1244  s1[size - 1] = 'z';
1245  s2[size - 1] = 'x';
1246  Ident(strncmp(s1 + size - 2, s2 + size - 2, size));
1247  s2[size - 1] = 'z';
1248  Ident(strncmp(s1 - 1, s2 - 1, 0));
1249  Ident(strncmp(s1 + size - 1, s2 + size - 1, 1));
1250  // One of arguments points to not allocated memory.
1251  EXPECT_DEATH(Ident(strncmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1252  EXPECT_DEATH(Ident(strncmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1253  EXPECT_DEATH(Ident(strncmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1254  EXPECT_DEATH(Ident(strncmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1255  // Hit unallocated memory and die.
1256  EXPECT_DEATH(Ident(strncmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1257  EXPECT_DEATH(Ident(strncmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1258  free(s1);
1259  free(s2);
1260}
1261
1262static const char *kOverlapErrorMessage = "strcpy-param-overlap";
1263
1264TEST(AddressSanitizer, StrArgsOverlapTest) {
1265  size_t size = Ident(100);
1266  char *str = Ident((char*)malloc(size));
1267
1268#if 0
1269  // Check "memcpy". Use Ident() to avoid inlining.
1270  memset(str, 'z', size);
1271  Ident(memcpy)(str + 1, str + 11, 10);
1272  Ident(memcpy)(str, str, 0);
1273  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), kOverlapErrorMessage);
1274  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), kOverlapErrorMessage);
1275  EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1), kOverlapErrorMessage);
1276#endif
1277
1278  // Check "strcpy".
1279  memset(str, 'z', size);
1280  str[9] = '\0';
1281  strcpy(str + 10, str);
1282  EXPECT_DEATH(strcpy(str + 9, str), kOverlapErrorMessage);
1283  EXPECT_DEATH(strcpy(str, str + 4), kOverlapErrorMessage);
1284  strcpy(str, str + 5);
1285
1286  // Check "strncpy".
1287  memset(str, 'z', size);
1288  strncpy(str, str + 10, 10);
1289  EXPECT_DEATH(strncpy(str, str + 9, 10), kOverlapErrorMessage);
1290  EXPECT_DEATH(strncpy(str + 9, str, 10), kOverlapErrorMessage);
1291  str[10] = '\0';
1292  strncpy(str + 11, str, 20);
1293  EXPECT_DEATH(strncpy(str + 10, str, 20), kOverlapErrorMessage);
1294
1295  free(str);
1296}
1297
1298// At the moment we instrument memcpy/memove/memset calls at compile time so we
1299// can't handle OOB error if these functions are called by pointer, see disabled
1300// MemIntrinsicCallByPointerTest below
1301typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1302typedef void*(*PointerToMemSet)(void*, int, size_t);
1303
1304void CallMemSetByPointer(PointerToMemSet MemSet) {
1305  size_t size = Ident(100);
1306  char *array = Ident((char*)malloc(size));
1307  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1308  free(array);
1309}
1310
1311void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1312  size_t size = Ident(100);
1313  char *src = Ident((char*)malloc(size));
1314  char *dst = Ident((char*)malloc(size));
1315  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1316  free(src);
1317  free(dst);
1318}
1319
1320TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1321  CallMemSetByPointer(&memset);
1322  CallMemTransferByPointer(&memcpy);
1323  CallMemTransferByPointer(&memmove);
1324}
1325
1326// This test case fails
1327// Clang optimizes memcpy/memset calls which lead to unaligned access
1328TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1329  int size = Ident(4096);
1330  char *s = Ident((char*)malloc(size));
1331  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1332  free(s);
1333}
1334
1335// TODO(samsonov): Add a test with malloc(0)
1336// TODO(samsonov): Add tests for str* and mem* functions.
1337
1338__attribute__((noinline))
1339static int LargeFunction(bool do_bad_access) {
1340  int *x = new int[100];
1341  x[0]++;
1342  x[1]++;
1343  x[2]++;
1344  x[3]++;
1345  x[4]++;
1346  x[5]++;
1347  x[6]++;
1348  x[7]++;
1349  x[8]++;
1350  x[9]++;
1351
1352  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1353
1354  x[10]++;
1355  x[11]++;
1356  x[12]++;
1357  x[13]++;
1358  x[14]++;
1359  x[15]++;
1360  x[16]++;
1361  x[17]++;
1362  x[18]++;
1363  x[19]++;
1364
1365  delete x;
1366  return res;
1367}
1368
1369// Test the we have correct debug info for the failing instruction.
1370// This test requires the in-process symbolizer to be enabled by default.
1371TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1372  int failing_line = LargeFunction(false);
1373  char expected_warning[128];
1374  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1375  EXPECT_DEATH(LargeFunction(true), expected_warning);
1376}
1377
1378// Check that we unwind and symbolize correctly.
1379TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1380  int *a = (int*)malloc_aaa(sizeof(int));
1381  *a = 1;
1382  free_aaa(a);
1383  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1384               "malloc_fff.*malloc_eee.*malloc_ddd");
1385}
1386
1387void *ThreadedTestAlloc(void *a) {
1388  int **p = (int**)a;
1389  *p = new int;
1390  return 0;
1391}
1392
1393void *ThreadedTestFree(void *a) {
1394  int **p = (int**)a;
1395  delete *p;
1396  return 0;
1397}
1398
1399void *ThreadedTestUse(void *a) {
1400  int **p = (int**)a;
1401  **p = 1;
1402  return 0;
1403}
1404
1405void ThreadedTestSpawn() {
1406  pthread_t t;
1407  int *x;
1408  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1409  pthread_join(t, 0);
1410  pthread_create(&t, 0, ThreadedTestFree, &x);
1411  pthread_join(t, 0);
1412  pthread_create(&t, 0, ThreadedTestUse, &x);
1413  pthread_join(t, 0);
1414}
1415
1416TEST(AddressSanitizer, ThreadedTest) {
1417  EXPECT_DEATH(ThreadedTestSpawn(),
1418               ASAN_PCRE_DOTALL
1419               "Thread T.*created"
1420               ".*Thread T.*created"
1421               ".*Thread T.*created");
1422}
1423
1424#if ASAN_NEEDS_SEGV
1425TEST(AddressSanitizer, ShadowGapTest) {
1426#if __WORDSIZE == 32
1427  char *addr = (char*)0x22000000;
1428#else
1429  char *addr = (char*)0x0000100000080000;
1430#endif
1431  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1432}
1433#endif  // ASAN_NEEDS_SEGV
1434
1435extern "C" {
1436__attribute__((noinline))
1437static void UseThenFreeThenUse() {
1438  char *x = Ident((char*)malloc(8));
1439  *x = 1;
1440  free_aaa(x);
1441  *x = 2;
1442}
1443}
1444
1445TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1446  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1447}
1448
1449TEST(AddressSanitizer, StrDupTest) {
1450  free(strdup(Ident("123")));
1451}
1452
1453TEST(AddressSanitizer, ObjdumpTest) {
1454  ObjdumpOfMyself *o = objdump_of_myself();
1455  EXPECT_TRUE(o->IsCorrect());
1456}
1457
1458extern "C" {
1459__attribute__((noinline))
1460static void DisasmSimple() {
1461  Ident(0);
1462}
1463
1464__attribute__((noinline))
1465static void DisasmParamWrite(int *a) {
1466  *a = 1;
1467}
1468
1469__attribute__((noinline))
1470static void DisasmParamInc(int *a) {
1471  (*a)++;
1472}
1473
1474__attribute__((noinline))
1475static void DisasmParamReadIfWrite(int *a) {
1476  if (*a)
1477    *a = 1;
1478}
1479
1480__attribute__((noinline))
1481static int DisasmParamIfReadWrite(int *a, int cond) {
1482  int res = 0;
1483  if (cond)
1484    res = *a;
1485  *a = 0;
1486  return res;
1487}
1488
1489static int GLOBAL;
1490
1491__attribute__((noinline))
1492static void DisasmWriteGlob() {
1493  GLOBAL = 1;
1494}
1495}  // extern "C"
1496
1497TEST(AddressSanitizer, DisasmTest) {
1498  int a;
1499  DisasmSimple();
1500  DisasmParamWrite(&a);
1501  DisasmParamInc(&a);
1502  Ident(DisasmWriteGlob)();
1503  DisasmParamReadIfWrite(&a);
1504
1505  a = 7;
1506  EXPECT_EQ(7, DisasmParamIfReadWrite(&a, Ident(1)));
1507  EXPECT_EQ(0, a);
1508
1509  ObjdumpOfMyself *o = objdump_of_myself();
1510  vector<string> insns;
1511  insns.push_back("ud2");
1512  insns.push_back("__asan_report_");
1513  EXPECT_EQ(0, o->CountInsnInFunc("DisasmSimple", insns));
1514  EXPECT_EQ(1, o->CountInsnInFunc("DisasmParamWrite", insns));
1515  EXPECT_EQ(1, o->CountInsnInFunc("DisasmParamInc", insns));
1516  EXPECT_EQ(0, o->CountInsnInFunc("DisasmWriteGlob", insns));
1517
1518  // TODO(kcc): implement these (needs just one __asan_report).
1519  EXPECT_EQ(2, o->CountInsnInFunc("DisasmParamReadIfWrite", insns));
1520  EXPECT_EQ(2, o->CountInsnInFunc("DisasmParamIfReadWrite", insns));
1521}
1522
1523// Currently we create and poison redzone at right of global variables.
1524char glob5[5];
1525static char static110[110];
1526const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1527static const char StaticConstGlob[3] = {9, 8, 7};
1528extern int GlobalsTest(int x);
1529
1530TEST(AddressSanitizer, GlobalTest) {
1531  static char func_static15[15];
1532
1533  static char fs1[10];
1534  static char fs2[10];
1535  static char fs3[10];
1536
1537  glob5[Ident(0)] = 0;
1538  glob5[Ident(1)] = 0;
1539  glob5[Ident(2)] = 0;
1540  glob5[Ident(3)] = 0;
1541  glob5[Ident(4)] = 0;
1542
1543  EXPECT_DEATH(glob5[Ident(5)] = 0,
1544               "0 bytes to the right of global variable.*glob5.* size 5");
1545  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1546               "6 bytes to the right of global variable.*glob5.* size 5");
1547  Ident(static110);  // avoid optimizations
1548  static110[Ident(0)] = 0;
1549  static110[Ident(109)] = 0;
1550  EXPECT_DEATH(static110[Ident(110)] = 0,
1551               "0 bytes to the right of global variable");
1552  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1553               "7 bytes to the right of global variable");
1554
1555  Ident(func_static15);  // avoid optimizations
1556  func_static15[Ident(0)] = 0;
1557  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1558               "0 bytes to the right of global variable");
1559  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1560               "9 bytes to the right of global variable");
1561
1562  Ident(fs1);
1563  Ident(fs2);
1564  Ident(fs3);
1565
1566  // We don't create left redzones, so this is not 100% guaranteed to fail.
1567  // But most likely will.
1568  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1569
1570  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1571               "is located 1 bytes to the right of .*ConstGlob");
1572  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1573               "is located 2 bytes to the right of .*StaticConstGlob");
1574
1575  // call stuff from another file.
1576  GlobalsTest(0);
1577}
1578
1579TEST(AddressSanitizer, GlobalStringConstTest) {
1580  static const char *zoo = "FOOBAR123";
1581  const char *p = Ident(zoo);
1582  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1583}
1584
1585TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1586  static char zoo[10];
1587  const char *p = Ident(zoo);
1588  // The file name should be present in the report.
1589  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1590}
1591
1592int *ReturnsPointerToALocalObject() {
1593  int a = 0;
1594  return Ident(&a);
1595}
1596
1597#if ASAN_UAR == 1
1598TEST(AddressSanitizer, LocalReferenceReturnTest) {
1599  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1600  int *p = f();
1601  // Call 'f' a few more times, 'p' should still be poisoned.
1602  for (int i = 0; i < 32; i++)
1603    f();
1604  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1605  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1606}
1607#endif
1608
1609template <int kSize>
1610__attribute__((noinline))
1611static void FuncWithStack() {
1612  char x[kSize];
1613  Ident(x)[0] = 0;
1614  Ident(x)[kSize-1] = 0;
1615}
1616
1617static void LotsOfStackReuse() {
1618  int LargeStack[10000];
1619  Ident(LargeStack)[0] = 0;
1620  for (int i = 0; i < 10000; i++) {
1621    FuncWithStack<128 * 1>();
1622    FuncWithStack<128 * 2>();
1623    FuncWithStack<128 * 4>();
1624    FuncWithStack<128 * 8>();
1625    FuncWithStack<128 * 16>();
1626    FuncWithStack<128 * 32>();
1627    FuncWithStack<128 * 64>();
1628    FuncWithStack<128 * 128>();
1629    FuncWithStack<128 * 256>();
1630    FuncWithStack<128 * 512>();
1631    Ident(LargeStack)[0] = 0;
1632  }
1633}
1634
1635TEST(AddressSanitizer, StressStackReuseTest) {
1636  LotsOfStackReuse();
1637}
1638
1639TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1640  const int kNumThreads = 20;
1641  pthread_t t[kNumThreads];
1642  for (int i = 0; i < kNumThreads; i++) {
1643    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1644  }
1645  for (int i = 0; i < kNumThreads; i++) {
1646    pthread_join(t[i], 0);
1647  }
1648}
1649
1650#ifdef __EXCEPTIONS
1651__attribute__((noinline))
1652static void StackReuseAndException() {
1653  int large_stack[1000];
1654  Ident(large_stack);
1655  ASAN_THROW(1);
1656}
1657
1658// TODO(kcc): support exceptions with use-after-return.
1659TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1660  for (int i = 0; i < 10000; i++) {
1661    try {
1662    StackReuseAndException();
1663    } catch(...) {
1664    }
1665  }
1666}
1667#endif
1668
1669TEST(AddressSanitizer, MlockTest) {
1670  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1671  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1672  EXPECT_EQ(0, munlockall());
1673  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1674}
1675
1676// ------------------ demo tests; run each one-by-one -------------
1677// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1678TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1679  ThreadedTestSpawn();
1680}
1681
1682void *SimpleBugOnSTack(void *x = 0) {
1683  char a[20];
1684  Ident(a)[20] = 0;
1685  return 0;
1686}
1687
1688TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1689  SimpleBugOnSTack();
1690}
1691
1692TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1693  pthread_t t;
1694  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1695  pthread_join(t, 0);
1696}
1697
1698TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1699  uaf_test<U1>(10, 0);
1700}
1701TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1702  uaf_test<U1>(10, -2);
1703}
1704TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1705  uaf_test<U1>(10, 10);
1706}
1707
1708TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1709  uaf_test<U1>(kLargeMalloc, 0);
1710}
1711
1712TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1713  oob_test<U1>(10, -1);
1714}
1715
1716TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1717  oob_test<U1>(kLargeMalloc, -1);
1718}
1719
1720TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1721  oob_test<U1>(10, 10);
1722}
1723
1724TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1725  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1726}
1727
1728TEST(AddressSanitizer, DISABLED_DemoOOM) {
1729  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1730  printf("%p\n", malloc(size));
1731}
1732
1733TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1734  DoubleFree();
1735}
1736
1737TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1738  int *a = 0;
1739  Ident(a)[10] = 0;
1740}
1741
1742TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1743  static char a[100];
1744  static char b[100];
1745  static char c[100];
1746  Ident(a);
1747  Ident(b);
1748  Ident(c);
1749  Ident(a)[5] = 0;
1750  Ident(b)[105] = 0;
1751  Ident(a)[5] = 0;
1752}
1753
1754TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1755  const size_t kAllocSize = (1 << 28) - 1024;
1756  size_t total_size = 0;
1757  while (true) {
1758    char *x = (char*)malloc(kAllocSize);
1759    memset(x, 0, kAllocSize);
1760    total_size += kAllocSize;
1761    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1762  }
1763}
1764
1765#ifdef __APPLE__
1766#include "asan_mac_test.h"
1767// TODO(glider): figure out whether we still need these tests. Is it correct
1768// to intercept CFAllocator?
1769TEST(AddressSanitizerMac, DISABLED_CFAllocatorDefaultDoubleFree) {
1770  EXPECT_DEATH(
1771      CFAllocatorDefaultDoubleFree(),
1772      "attempting double-free");
1773}
1774
1775TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1776  EXPECT_DEATH(
1777      CFAllocatorSystemDefaultDoubleFree(),
1778      "attempting double-free");
1779}
1780
1781TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocDoubleFree) {
1782  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1783}
1784
1785TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1786  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1787}
1788
1789TEST(AddressSanitizerMac, GCDDispatchAsync) {
1790  // Make sure the whole ASan report is printed, i.e. that we don't die
1791  // on a CHECK.
1792  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1793}
1794
1795TEST(AddressSanitizerMac, GCDDispatchSync) {
1796  // Make sure the whole ASan report is printed, i.e. that we don't die
1797  // on a CHECK.
1798  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1799}
1800
1801
1802TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1803  // Make sure the whole ASan report is printed, i.e. that we don't die
1804  // on a CHECK.
1805  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1806}
1807
1808TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1809  // Make sure the whole ASan report is printed, i.e. that we don't die
1810  // on a CHECK.
1811  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1812}
1813
1814TEST(AddressSanitizerMac, GCDDispatchAfter) {
1815  // Make sure the whole ASan report is printed, i.e. that we don't die
1816  // on a CHECK.
1817  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1818}
1819
1820TEST(AddressSanitizerMac, GCDSourceEvent) {
1821  // Make sure the whole ASan report is printed, i.e. that we don't die
1822  // on a CHECK.
1823  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1824}
1825
1826TEST(AddressSanitizerMac, GCDSourceCancel) {
1827  // Make sure the whole ASan report is printed, i.e. that we don't die
1828  // on a CHECK.
1829  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
1830}
1831
1832TEST(AddressSanitizerMac, GCDGroupAsync) {
1833  // Make sure the whole ASan report is printed, i.e. that we don't die
1834  // on a CHECK.
1835  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
1836}
1837
1838void *MallocIntrospectionLockWorker(void *_) {
1839  const int kNumPointers = 100;
1840  int i;
1841  void *pointers[kNumPointers];
1842  for (i = 0; i < kNumPointers; i++) {
1843    pointers[i] = malloc(i + 1);
1844  }
1845  for (i = 0; i < kNumPointers; i++) {
1846    free(pointers[i]);
1847  }
1848
1849  return NULL;
1850}
1851
1852void *MallocIntrospectionLockForker(void *_) {
1853  pid_t result = fork();
1854  if (result == -1) {
1855    perror("fork");
1856  }
1857  assert(result != -1);
1858  if (result == 0) {
1859    // Call malloc in the child process to make sure we won't deadlock.
1860    void *ptr = malloc(42);
1861    free(ptr);
1862    exit(0);
1863  } else {
1864    // Return in the parent process.
1865    return NULL;
1866  }
1867}
1868
1869TEST(AddressSanitizerMac, MallocIntrospectionLock) {
1870  // Incorrect implementation of force_lock and force_unlock in our malloc zone
1871  // will cause forked processes to deadlock.
1872  // TODO(glider): need to detect that none of the child processes deadlocked.
1873  const int kNumWorkers = 5, kNumIterations = 100;
1874  int i, iter;
1875  for (iter = 0; iter < kNumIterations; iter++) {
1876    pthread_t workers[kNumWorkers], forker;
1877    for (i = 0; i < kNumWorkers; i++) {
1878      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
1879    }
1880    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
1881    for (i = 0; i < kNumWorkers; i++) {
1882      pthread_join(workers[i], 0);
1883    }
1884    pthread_join(forker, 0);
1885  }
1886}
1887
1888void *TSDAllocWorker(void *test_key) {
1889  if (test_key) {
1890    void *mem = malloc(10);
1891    pthread_setspecific(*(pthread_key_t*)test_key, mem);
1892  }
1893  return NULL;
1894}
1895
1896TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
1897  pthread_t th;
1898  pthread_key_t test_key;
1899  pthread_key_create(&test_key, CallFreeOnWorkqueue);
1900  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
1901  pthread_join(th, NULL);
1902  pthread_key_delete(test_key);
1903}
1904#endif  // __APPLE__
1905
1906int main(int argc, char **argv) {
1907  progname = argv[0];
1908  testing::GTEST_FLAG(death_test_style) = "threadsafe";
1909  testing::InitGoogleTest(&argc, argv);
1910  return RUN_ALL_TESTS();
1911}
1912