asan_test.cc revision 609dc28bb32bdba7533c191bcb88f358d0f42187
1//===-- asan_test.cc ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) or defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_config.h"
28#include "asan_test_utils.h"
29
30#ifndef __APPLE__
31#include <malloc.h>
32#endif  // __APPLE__
33
34#ifdef __APPLE__
35static bool APPLE = true;
36#else
37static bool APPLE = false;
38#endif
39
40#if ASAN_HAS_EXCEPTIONS
41# define ASAN_THROW(x) throw (x)
42#else
43# define ASAN_THROW(x)
44#endif
45
46#include <sys/mman.h>
47
48typedef uint8_t   U1;
49typedef uint16_t  U2;
50typedef uint32_t  U4;
51typedef uint64_t  U8;
52
53static const char *progname;
54static const int kPageSize = 4096;
55
56// Simple stand-alone pseudorandom number generator.
57// Current algorithm is ANSI C linear congruential PRNG.
58static inline uint32_t my_rand(uint32_t* state) {
59  return (*state = *state * 1103515245 + 12345) >> 16;
60}
61
62static uint32_t global_seed = 0;
63
64const size_t kLargeMalloc = 1 << 24;
65
66template<class T>
67__attribute__((noinline))
68void asan_write(T *a) {
69  *a = 0;
70}
71
72__attribute__((noinline))
73void asan_write_sized_aligned(uint8_t *p, size_t size) {
74  EXPECT_EQ(0, ((uintptr_t)p % size));
75  if      (size == 1) asan_write((uint8_t*)p);
76  else if (size == 2) asan_write((uint16_t*)p);
77  else if (size == 4) asan_write((uint32_t*)p);
78  else if (size == 8) asan_write((uint64_t*)p);
79}
80
81__attribute__((noinline)) void *malloc_fff(size_t size) {
82  void *res = malloc/**/(size); break_optimization(0); return res;}
83__attribute__((noinline)) void *malloc_eee(size_t size) {
84  void *res = malloc_fff(size); break_optimization(0); return res;}
85__attribute__((noinline)) void *malloc_ddd(size_t size) {
86  void *res = malloc_eee(size); break_optimization(0); return res;}
87__attribute__((noinline)) void *malloc_ccc(size_t size) {
88  void *res = malloc_ddd(size); break_optimization(0); return res;}
89__attribute__((noinline)) void *malloc_bbb(size_t size) {
90  void *res = malloc_ccc(size); break_optimization(0); return res;}
91__attribute__((noinline)) void *malloc_aaa(size_t size) {
92  void *res = malloc_bbb(size); break_optimization(0); return res;}
93
94#ifndef __APPLE__
95__attribute__((noinline)) void *memalign_fff(size_t alignment, size_t size) {
96  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
97__attribute__((noinline)) void *memalign_eee(size_t alignment, size_t size) {
98  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
99__attribute__((noinline)) void *memalign_ddd(size_t alignment, size_t size) {
100  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
101__attribute__((noinline)) void *memalign_ccc(size_t alignment, size_t size) {
102  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
103__attribute__((noinline)) void *memalign_bbb(size_t alignment, size_t size) {
104  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
105__attribute__((noinline)) void *memalign_aaa(size_t alignment, size_t size) {
106  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
107#endif  // __APPLE__
108
109
110__attribute__((noinline))
111  void free_ccc(void *p) { free(p); break_optimization(0);}
112__attribute__((noinline))
113  void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
114__attribute__((noinline))
115  void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
116
117template<class T>
118__attribute__((noinline))
119void oob_test(int size, int off) {
120  char *p = (char*)malloc_aaa(size);
121  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
122  //        sizeof(T), p, p + size, off);
123  asan_write((T*)(p + off));
124  free_aaa(p);
125}
126
127
128template<class T>
129__attribute__((noinline))
130void uaf_test(int size, int off) {
131  char *p = (char *)malloc_aaa(size);
132  free_aaa(p);
133  for (int i = 1; i < 100; i++)
134    free_aaa(malloc_aaa(i));
135  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
136          (long)sizeof(T), p, off);
137  asan_write((T*)(p + off));
138}
139
140TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
141#if defined(__has_feature) && __has_feature(address_sanitizer)
142  bool asan = 1;
143#else
144  bool asan = 0;
145#endif
146  EXPECT_EQ(true, asan);
147}
148
149TEST(AddressSanitizer, SimpleDeathTest) {
150  EXPECT_DEATH(exit(1), "");
151}
152
153TEST(AddressSanitizer, VariousMallocsTest) {
154  // fprintf(stderr, "malloc:\n");
155  int *a = (int*)malloc(100 * sizeof(int));
156  a[50] = 0;
157  free(a);
158
159  // fprintf(stderr, "realloc:\n");
160  int *r = (int*)malloc(10);
161  r = (int*)realloc(r, 2000 * sizeof(int));
162  r[1000] = 0;
163  free(r);
164
165  // fprintf(stderr, "operator new []\n");
166  int *b = new int[100];
167  b[50] = 0;
168  delete [] b;
169
170  // fprintf(stderr, "operator new\n");
171  int *c = new int;
172  *c = 0;
173  delete c;
174
175#ifndef __APPLE__
176  // fprintf(stderr, "posix_memalign\n");
177  int *pm;
178  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
179  EXPECT_EQ(0, pm_res);
180  free(pm);
181
182  int *ma = (int*)memalign(kPageSize, kPageSize);
183  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
184  ma[123] = 0;
185  free(ma);
186#endif  // __APPLE__
187}
188
189TEST(AddressSanitizer, CallocTest) {
190  int *a = (int*)calloc(100, sizeof(int));
191  EXPECT_EQ(0, a[10]);
192  free(a);
193}
194
195TEST(AddressSanitizer, VallocTest) {
196  void *a = valloc(100);
197  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
198  free(a);
199}
200
201#ifndef __APPLE__
202TEST(AddressSanitizer, PvallocTest) {
203  char *a = (char*)pvalloc(kPageSize + 100);
204  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
205  a[kPageSize + 101] = 1;  // we should not report an error here.
206  free(a);
207
208  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
209  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
210  a[101] = 1;  // we should not report an error here.
211  free(a);
212}
213#endif  // __APPLE__
214
215void NoOpSignalHandler(int unused) {
216  fprintf(stderr, "NoOpSignalHandler (should not happen). Aborting\n");
217  abort();
218}
219
220void NoOpSigaction(int, siginfo_t *siginfo, void *context) {
221  fprintf(stderr, "NoOpSigaction (should not happen). Aborting\n");
222  abort();
223}
224
225TEST(AddressSanitizer, SignalTest) {
226  signal(SIGSEGV, NoOpSignalHandler);
227  signal(SIGILL, NoOpSignalHandler);
228  // If asan did not intercept sigaction NoOpSigaction will fire.
229  char *x = Ident((char*)malloc(5));
230  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
231  free(Ident(x));
232}
233
234TEST(AddressSanitizer, SigactionTest) {
235  {
236    struct sigaction sigact;
237    memset(&sigact, 0, sizeof(sigact));
238    sigact.sa_sigaction = NoOpSigaction;;
239    sigact.sa_flags = SA_SIGINFO;
240    sigaction(SIGSEGV, &sigact, 0);
241  }
242
243  {
244    struct sigaction sigact;
245    memset(&sigact, 0, sizeof(sigact));
246    sigact.sa_sigaction = NoOpSigaction;;
247    sigact.sa_flags = SA_SIGINFO;
248    sigaction(SIGILL, &sigact, 0);
249  }
250
251  // If asan did not intercept sigaction NoOpSigaction will fire.
252  char *x = Ident((char*)malloc(5));
253  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
254  free(Ident(x));
255}
256
257void *TSDWorker(void *test_key) {
258  if (test_key) {
259    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
260  }
261  return NULL;
262}
263
264void TSDDestructor(void *tsd) {
265  // Spawning a thread will check that the current thread id is not -1.
266  pthread_t th;
267  pthread_create(&th, NULL, TSDWorker, NULL);
268  pthread_join(th, NULL);
269}
270
271// This tests triggers the thread-specific data destruction fiasco which occurs
272// if we don't manage the TSD destructors ourselves. We create a new pthread
273// key with a non-NULL destructor which is likely to be put after the destructor
274// of AsanThread in the list of destructors.
275// In this case the TSD for AsanThread will be destroyed before TSDDestructor
276// is called for the child thread, and a CHECK will fail when we call
277// pthread_create() to spawn the grandchild.
278TEST(AddressSanitizer, DISABLED_TSDTest) {
279  pthread_t th;
280  pthread_key_t test_key;
281  pthread_key_create(&test_key, TSDDestructor);
282  pthread_create(&th, NULL, TSDWorker, &test_key);
283  pthread_join(th, NULL);
284  pthread_key_delete(test_key);
285}
286
287template<class T>
288void OOBTest() {
289  char expected_str[100];
290  for (int size = sizeof(T); size < 20; size += 5) {
291    for (int i = -5; i < 0; i++) {
292      const char *str =
293          "is located.*%d byte.*to the left";
294      sprintf(expected_str, str, abs(i));
295      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
296    }
297
298    for (int i = 0; i < size - sizeof(T) + 1; i++)
299      oob_test<T>(size, i);
300
301    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
302      const char *str =
303          "is located.*%d byte.*to the right";
304      int off = i >= size ? (i - size) : 0;
305      // we don't catch unaligned partially OOB accesses.
306      if (i % sizeof(T)) continue;
307      sprintf(expected_str, str, off);
308      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
309    }
310  }
311
312  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
313          "is located.*1 byte.*to the left");
314  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
315          "is located.*0 byte.*to the right");
316}
317
318// TODO(glider): the following tests are EXTREMELY slow on Darwin:
319//   AddressSanitizer.OOB_char (125503 ms)
320//   AddressSanitizer.OOB_int (126890 ms)
321//   AddressSanitizer.OOBRightTest (315605 ms)
322//   AddressSanitizer.SimpleStackTest (366559 ms)
323
324TEST(AddressSanitizer, OOB_char) {
325  OOBTest<U1>();
326}
327
328TEST(AddressSanitizer, OOB_int) {
329  OOBTest<U4>();
330}
331
332TEST(AddressSanitizer, OOBRightTest) {
333  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
334    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
335      for (size_t offset = 0; offset <= 8; offset += access_size) {
336        void *p = malloc(alloc_size);
337        // allocated: [p, p + alloc_size)
338        // accessed:  [p + offset, p + offset + access_size)
339        uint8_t *addr = (uint8_t*)p + offset;
340        if (offset + access_size <= alloc_size) {
341          asan_write_sized_aligned(addr, access_size);
342        } else {
343          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
344          const char *str =
345              "is located.%d *byte.*to the right";
346          char expected_str[100];
347          sprintf(expected_str, str, outside_bytes);
348          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
349                       expected_str);
350        }
351        free(p);
352      }
353    }
354  }
355}
356
357TEST(AddressSanitizer, UAF_char) {
358  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
359  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
360  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
361  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
362  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
363  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
364}
365
366#if ASAN_HAS_BLACKLIST
367TEST(AddressSanitizer, IgnoreTest) {
368  int *x = Ident(new int);
369  delete Ident(x);
370  *x = 0;
371}
372#endif  // ASAN_HAS_BLACKLIST
373
374struct StructWithBitField {
375  int bf1:1;
376  int bf2:1;
377  int bf3:1;
378  int bf4:29;
379};
380
381TEST(AddressSanitizer, BitFieldPositiveTest) {
382  StructWithBitField *x = new StructWithBitField;
383  delete Ident(x);
384  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
385  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
386  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
387  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
388};
389
390struct StructWithBitFields_8_24 {
391  int a:8;
392  int b:24;
393};
394
395TEST(AddressSanitizer, BitFieldNegativeTest) {
396  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
397  x->a = 0;
398  x->b = 0;
399  delete Ident(x);
400}
401
402TEST(AddressSanitizer, OutOfMemoryTest) {
403  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
404  EXPECT_EQ(0, realloc(0, size));
405  EXPECT_EQ(0, realloc(0, ~Ident(0)));
406  EXPECT_EQ(0, malloc(size));
407  EXPECT_EQ(0, malloc(~Ident(0)));
408  EXPECT_EQ(0, calloc(1, size));
409  EXPECT_EQ(0, calloc(1, ~Ident(0)));
410}
411
412#if ASAN_NEEDS_SEGV
413TEST(AddressSanitizer, WildAddressTest) {
414  char *c = (char*)0x123;
415  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
416}
417#endif
418
419static void MallocStress(size_t n) {
420  uint32_t seed = my_rand(&global_seed);
421  for (size_t iter = 0; iter < 10; iter++) {
422    vector<void *> vec;
423    for (size_t i = 0; i < n; i++) {
424      if ((i % 3) == 0) {
425        if (vec.empty()) continue;
426        size_t idx = my_rand(&seed) % vec.size();
427        void *ptr = vec[idx];
428        vec[idx] = vec.back();
429        vec.pop_back();
430        free_aaa(ptr);
431      } else {
432        size_t size = my_rand(&seed) % 1000 + 1;
433#ifndef __APPLE__
434        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
435        char *ptr = (char*)memalign_aaa(alignment, size);
436#else
437        char *ptr = (char*) malloc_aaa(size);
438#endif
439        vec.push_back(ptr);
440        ptr[0] = 0;
441        ptr[size-1] = 0;
442        ptr[size/2] = 0;
443      }
444    }
445    for (size_t i = 0; i < vec.size(); i++)
446      free_aaa(vec[i]);
447  }
448}
449
450TEST(AddressSanitizer, MallocStressTest) {
451  MallocStress(200000);
452}
453
454static void TestLargeMalloc(size_t size) {
455  char buff[1024];
456  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
457  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
458}
459
460TEST(AddressSanitizer, LargeMallocTest) {
461  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
462    TestLargeMalloc(i);
463  }
464}
465
466TEST(AddressSanitizer, HugeMallocTest) {
467#ifdef __APPLE__
468  // It was empirically found out that 1215 megabytes is the maximum amount of
469  // memory available to the process under AddressSanitizer on Darwin.
470  // (the libSystem malloc() allows allocating up to 2300 megabytes without
471  // ASan).
472  size_t n_megs = __WORDSIZE == 32 ? 1200 : 4100;
473#else
474  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
475#endif
476  TestLargeMalloc(n_megs << 20);
477}
478
479TEST(AddressSanitizer, ThreadedMallocStressTest) {
480  const int kNumThreads = 4;
481  pthread_t t[kNumThreads];
482  for (int i = 0; i < kNumThreads; i++) {
483    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)100000);
484  }
485  for (int i = 0; i < kNumThreads; i++) {
486    pthread_join(t[i], 0);
487  }
488}
489
490void *ManyThreadsWorker(void *a) {
491  for (int iter = 0; iter < 100; iter++) {
492    for (size_t size = 100; size < 2000; size *= 2) {
493      free(Ident(malloc(size)));
494    }
495  }
496  return 0;
497}
498
499TEST(AddressSanitizer, ManyThreadsTest) {
500  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
501  pthread_t t[kNumThreads];
502  for (size_t i = 0; i < kNumThreads; i++) {
503    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
504  }
505  for (size_t i = 0; i < kNumThreads; i++) {
506    pthread_join(t[i], 0);
507  }
508}
509
510TEST(AddressSanitizer, ReallocTest) {
511  const int kMinElem = 5;
512  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
513  ptr[3] = 3;
514  for (int i = 0; i < 10000; i++) {
515    ptr = (int*)realloc(ptr,
516        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
517    EXPECT_EQ(3, ptr[3]);
518  }
519}
520
521void WrongFree() {
522  int *x = (int*)malloc(100 * sizeof(int));
523  // Use the allocated memory, otherwise Clang will optimize it out.
524  Ident(x);
525  free(x + 1);
526}
527
528TEST(AddressSanitizer, WrongFreeTest) {
529  EXPECT_DEATH(WrongFree(),
530               "ERROR: AddressSanitizer attempting free.*not malloc");
531}
532
533void DoubleFree() {
534  int *x = (int*)malloc(100 * sizeof(int));
535  fprintf(stderr, "DoubleFree: x=%p\n", x);
536  free(x);
537  free(x);
538  fprintf(stderr, "should have failed in the second free(%p)\n", x);
539  abort();
540}
541
542TEST(AddressSanitizer, DoubleFreeTest) {
543  EXPECT_DEATH(DoubleFree(), "ERROR: AddressSanitizer attempting double-free");
544}
545
546template<int kSize>
547__attribute__((noinline))
548void SizedStackTest() {
549  char a[kSize];
550  char  *A = Ident((char*)&a);
551  for (size_t i = 0; i < kSize; i++)
552    A[i] = i;
553  EXPECT_DEATH(A[-1] = 0, "");
554  EXPECT_DEATH(A[-20] = 0, "");
555  EXPECT_DEATH(A[-31] = 0, "");
556  EXPECT_DEATH(A[kSize] = 0, "");
557  EXPECT_DEATH(A[kSize + 1] = 0, "");
558  EXPECT_DEATH(A[kSize + 10] = 0, "");
559  EXPECT_DEATH(A[kSize + 31] = 0, "");
560}
561
562TEST(AddressSanitizer, SimpleStackTest) {
563  SizedStackTest<1>();
564  SizedStackTest<2>();
565  SizedStackTest<3>();
566  SizedStackTest<4>();
567  SizedStackTest<5>();
568  SizedStackTest<6>();
569  SizedStackTest<7>();
570  SizedStackTest<16>();
571  SizedStackTest<25>();
572  SizedStackTest<34>();
573  SizedStackTest<43>();
574  SizedStackTest<51>();
575  SizedStackTest<62>();
576  SizedStackTest<64>();
577  SizedStackTest<128>();
578}
579
580TEST(AddressSanitizer, ManyStackObjectsTest) {
581  char XXX[10];
582  char YYY[20];
583  char ZZZ[30];
584  Ident(XXX);
585  Ident(YYY);
586  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
587}
588
589__attribute__((noinline))
590static void Frame0(int frame, char *a, char *b, char *c) {
591  char d[4] = {0};
592  char *D = Ident(d);
593  switch (frame) {
594    case 3: a[5]++; break;
595    case 2: b[5]++; break;
596    case 1: c[5]++; break;
597    case 0: D[5]++; break;
598  }
599}
600__attribute__((noinline)) static void Frame1(int frame, char *a, char *b) {
601  char c[4] = {0}; Frame0(frame, a, b, c);
602  break_optimization(0);
603}
604__attribute__((noinline)) static void Frame2(int frame, char *a) {
605  char b[4] = {0}; Frame1(frame, a, b);
606  break_optimization(0);
607}
608__attribute__((noinline)) static void Frame3(int frame) {
609  char a[4] = {0}; Frame2(frame, a);
610  break_optimization(0);
611}
612
613TEST(AddressSanitizer, GuiltyStackFrame0Test) {
614  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
615}
616TEST(AddressSanitizer, GuiltyStackFrame1Test) {
617  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
618}
619TEST(AddressSanitizer, GuiltyStackFrame2Test) {
620  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
621}
622TEST(AddressSanitizer, GuiltyStackFrame3Test) {
623  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
624}
625
626__attribute__((noinline))
627void LongJmpFunc1(jmp_buf buf) {
628  // create three red zones for these two stack objects.
629  int a;
630  int b;
631
632  int *A = Ident(&a);
633  int *B = Ident(&b);
634  *A = *B;
635  longjmp(buf, 1);
636}
637
638__attribute__((noinline))
639void UnderscopeLongJmpFunc1(jmp_buf buf) {
640  // create three red zones for these two stack objects.
641  int a;
642  int b;
643
644  int *A = Ident(&a);
645  int *B = Ident(&b);
646  *A = *B;
647  _longjmp(buf, 1);
648}
649
650__attribute__((noinline))
651void SigLongJmpFunc1(sigjmp_buf buf) {
652  // create three red zones for these two stack objects.
653  int a;
654  int b;
655
656  int *A = Ident(&a);
657  int *B = Ident(&b);
658  *A = *B;
659  siglongjmp(buf, 1);
660}
661
662
663__attribute__((noinline))
664void TouchStackFunc() {
665  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
666  int *A = Ident(a);
667  for (int i = 0; i < 100; i++)
668    A[i] = i*i;
669}
670
671// Test that we handle longjmp and do not report fals positives on stack.
672TEST(AddressSanitizer, LongJmpTest) {
673  static jmp_buf buf;
674  if (!setjmp(buf)) {
675    LongJmpFunc1(buf);
676  } else {
677    TouchStackFunc();
678  }
679}
680
681TEST(AddressSanitizer, UnderscopeLongJmpTest) {
682  static jmp_buf buf;
683  if (!_setjmp(buf)) {
684    UnderscopeLongJmpFunc1(buf);
685  } else {
686    TouchStackFunc();
687  }
688}
689
690TEST(AddressSanitizer, SigLongJmpTest) {
691  static sigjmp_buf buf;
692  if (!sigsetjmp(buf, 1)) {
693    SigLongJmpFunc1(buf);
694  } else {
695    TouchStackFunc();
696  }
697}
698
699#ifdef __EXCEPTIONS
700__attribute__((noinline))
701void ThrowFunc() {
702  // create three red zones for these two stack objects.
703  int a;
704  int b;
705
706  int *A = Ident(&a);
707  int *B = Ident(&b);
708  *A = *B;
709  ASAN_THROW(1);
710}
711
712TEST(AddressSanitizer, CxxExceptionTest) {
713  if (ASAN_UAR) return;
714  // TODO(kcc): this test crashes on 32-bit for some reason...
715  if (__WORDSIZE == 32) return;
716  try {
717    ThrowFunc();
718  } catch(...) {}
719  TouchStackFunc();
720}
721#endif
722
723void *ThreadStackReuseFunc1(void *unused) {
724  // create three red zones for these two stack objects.
725  int a;
726  int b;
727
728  int *A = Ident(&a);
729  int *B = Ident(&b);
730  *A = *B;
731  pthread_exit(0);
732  return 0;
733}
734
735void *ThreadStackReuseFunc2(void *unused) {
736  TouchStackFunc();
737  return 0;
738}
739
740TEST(AddressSanitizer, ThreadStackReuseTest) {
741  pthread_t t;
742  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
743  pthread_join(t, 0);
744  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
745  pthread_join(t, 0);
746}
747
748#if defined(__i386__) or defined(__x86_64__)
749TEST(AddressSanitizer, Store128Test) {
750  char *a = Ident((char*)malloc(Ident(12)));
751  char *p = a;
752  if (((uintptr_t)a % 16) != 0)
753    p = a + 8;
754  assert(((uintptr_t)p % 16) == 0);
755  __m128i value_wide = _mm_set1_epi16(0x1234);
756  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
757               "AddressSanitizer heap-buffer-overflow");
758  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
759               "WRITE of size 16");
760  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
761               "located 0 bytes to the right of 12-byte");
762  free(a);
763}
764#endif
765
766static string RightOOBErrorMessage(int oob_distance) {
767  assert(oob_distance >= 0);
768  char expected_str[100];
769  sprintf(expected_str, "located %d bytes to the right", oob_distance);
770  return string(expected_str);
771}
772
773static string LeftOOBErrorMessage(int oob_distance) {
774  assert(oob_distance > 0);
775  char expected_str[100];
776  sprintf(expected_str, "located %d bytes to the left", oob_distance);
777  return string(expected_str);
778}
779
780template<class T>
781void MemSetOOBTestTemplate(size_t length) {
782  if (length == 0) return;
783  size_t size = Ident(sizeof(T) * length);
784  T *array = Ident((T*)malloc(size));
785  int element = Ident(42);
786  int zero = Ident(0);
787  // memset interval inside array
788  memset(array, element, size);
789  memset(array, element, size - 1);
790  memset(array + length - 1, element, sizeof(T));
791  memset(array, element, 1);
792
793  // memset 0 bytes
794  memset(array - 10, element, zero);
795  memset(array - 1, element, zero);
796  memset(array, element, zero);
797  memset(array + length, 0, zero);
798  memset(array + length + 1, 0, zero);
799
800  // try to memset bytes to the right of array
801  EXPECT_DEATH(memset(array, 0, size + 1),
802               RightOOBErrorMessage(0));
803  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
804               RightOOBErrorMessage(4));
805  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
806               RightOOBErrorMessage(2 * sizeof(T) - 1));
807  // whole interval is to the right
808  EXPECT_DEATH(memset(array + length + 1, 0, 10),
809               RightOOBErrorMessage(sizeof(T)));
810
811  // try to memset bytes to the left of array
812  EXPECT_DEATH(memset((char*)array - 1, element, size),
813               LeftOOBErrorMessage(1));
814  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
815               LeftOOBErrorMessage(5));
816  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
817               LeftOOBErrorMessage(5 * sizeof(T)));
818  // whole interval is to the left
819  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
820               LeftOOBErrorMessage(2 * sizeof(T)));
821
822  // try to memset bytes both to the left & to the right
823  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
824               LeftOOBErrorMessage(2));
825
826  free(array);
827}
828
829TEST(AddressSanitizer, MemSetOOBTest) {
830  MemSetOOBTestTemplate<char>(100);
831  MemSetOOBTestTemplate<int>(5);
832  MemSetOOBTestTemplate<double>(256);
833  // We can test arrays of structres/classes here, but what for?
834}
835
836// Same test for memcpy and memmove functions
837template <class T, class M>
838void MemTransferOOBTestTemplate(size_t length) {
839  if (length == 0) return;
840  size_t size = Ident(sizeof(T) * length);
841  T *src = Ident((T*)malloc(size));
842  T *dest = Ident((T*)malloc(size));
843  int zero = Ident(0);
844
845  // valid transfer of bytes between arrays
846  M::transfer(dest, src, size);
847  M::transfer(dest + 1, src, size - sizeof(T));
848  M::transfer(dest, src + length - 1, sizeof(T));
849  M::transfer(dest, src, 1);
850
851  // transfer zero bytes
852  M::transfer(dest - 1, src, 0);
853  M::transfer(dest + length, src, zero);
854  M::transfer(dest, src - 1, zero);
855  M::transfer(dest, src, zero);
856
857  // try to change mem to the right of dest
858  EXPECT_DEATH(M::transfer(dest + 1, src, size),
859               RightOOBErrorMessage(sizeof(T) - 1));
860  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
861               RightOOBErrorMessage(3));
862
863  // try to change mem to the left of dest
864  EXPECT_DEATH(M::transfer(dest - 2, src, size),
865               LeftOOBErrorMessage(2 * sizeof(T)));
866  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
867               LeftOOBErrorMessage(3));
868
869  // try to access mem to the right of src
870  EXPECT_DEATH(M::transfer(dest, src + 2, size),
871               RightOOBErrorMessage(2 * sizeof(T) - 1));
872  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
873               RightOOBErrorMessage(2));
874
875  // try to access mem to the left of src
876  EXPECT_DEATH(M::transfer(dest, src - 1, size),
877               LeftOOBErrorMessage(sizeof(T)));
878  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
879               LeftOOBErrorMessage(6));
880
881  // Generally we don't need to test cases where both accessing src and writing
882  // to dest address to poisoned memory.
883
884  T *big_src = Ident((T*)malloc(size * 2));
885  T *big_dest = Ident((T*)malloc(size * 2));
886  // try to change mem to both sides of dest
887  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
888               LeftOOBErrorMessage(sizeof(T)));
889  // try to access mem to both sides of src
890  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
891               LeftOOBErrorMessage(2 * sizeof(T)));
892
893  free(src);
894  free(dest);
895  free(big_src);
896  free(big_dest);
897}
898
899class MemCpyWrapper {
900 public:
901  static void* transfer(void *to, const void *from, size_t size) {
902    return memcpy(to, from, size);
903  }
904};
905TEST(AddressSanitizer, MemCpyOOBTest) {
906  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
907  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
908}
909
910class MemMoveWrapper {
911 public:
912  static void* transfer(void *to, const void *from, size_t size) {
913    return memmove(to, from, size);
914  }
915};
916TEST(AddressSanitizer, MemMoveOOBTest) {
917  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
918  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
919}
920
921// Tests for string functions
922
923// Used for string functions tests
924static char global_string[] = "global";
925static size_t global_string_length = 6;
926
927// Input to a test is a zero-terminated string str with given length
928// Accesses to the bytes to the left and to the right of str
929// are presumed to produce OOB errors
930void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
931  // Normal strlen calls
932  EXPECT_EQ(strlen(str), length);
933  if (length > 0) {
934    EXPECT_EQ(strlen(str + 1), length - 1);
935    EXPECT_EQ(strlen(str + length), 0);
936  }
937  // Arg of strlen is not malloced, OOB access
938  if (!is_global) {
939    // We don't insert RedZones to the left of global variables
940    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
941    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
942  }
943  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
944  // Overwrite terminator
945  str[length] = 'a';
946  // String is not zero-terminated, strlen will lead to OOB access
947  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
948  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
949  // Restore terminator
950  str[length] = 0;
951}
952TEST(AddressSanitizer, StrLenOOBTest) {
953  // Check heap-allocated string
954  size_t length = Ident(10);
955  char *heap_string = Ident((char*)malloc(length + 1));
956  char stack_string[10 + 1];
957  for (int i = 0; i < length; i++) {
958    heap_string[i] = 'a';
959    stack_string[i] = 'b';
960  }
961  heap_string[length] = 0;
962  stack_string[length] = 0;
963  StrLenOOBTestTemplate(heap_string, length, false);
964  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
965  //      make test for stack_string work. Or move it to output tests.
966  // StrLenOOBTestTemplate(stack_string, length, false);
967  StrLenOOBTestTemplate(global_string, global_string_length, true);
968  free(heap_string);
969}
970
971static inline char* MallocAndMemsetString(size_t size) {
972  char *s = Ident((char*)malloc(size));
973  memset(s, 'z', size);
974  return s;
975}
976
977#ifndef __APPLE__
978TEST(AddressSanitizer, StrNLenOOBTest) {
979  size_t size = Ident(123);
980  char *str = MallocAndMemsetString(size);
981  // Normal strnlen calls.
982  Ident(strnlen(str - 1, 0));
983  Ident(strnlen(str, size));
984  Ident(strnlen(str + size - 1, 1));
985  str[size - 1] = '\0';
986  Ident(strnlen(str, 2 * size));
987  // Argument points to not allocated memory.
988  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
989  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
990  // Overwrite the terminating '\0' and hit unallocated memory.
991  str[size - 1] = 'z';
992  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
993  free(str);
994}
995#endif
996
997TEST(AddressSanitizer, StrDupOOBTest) {
998  size_t size = Ident(42);
999  char *str = MallocAndMemsetString(size);
1000  char *new_str;
1001  // Normal strdup calls.
1002  str[size - 1] = '\0';
1003  new_str = strdup(str);
1004  free(new_str);
1005  new_str = strdup(str + size - 1);
1006  free(new_str);
1007  // Argument points to not allocated memory.
1008  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1009  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1010  // Overwrite the terminating '\0' and hit unallocated memory.
1011  str[size - 1] = 'z';
1012  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1013  free(str);
1014}
1015
1016TEST(AddressSanitizer, StrCpyOOBTest) {
1017  size_t to_size = Ident(30);
1018  size_t from_size = Ident(6);  // less than to_size
1019  char *to = Ident((char*)malloc(to_size));
1020  char *from = Ident((char*)malloc(from_size));
1021  // Normal strcpy calls.
1022  strcpy(from, "hello");
1023  strcpy(to, from);
1024  strcpy(to + to_size - from_size, from);
1025  // Length of "from" is too small.
1026  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1027  // "to" or "from" points to not allocated memory.
1028  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1029  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1030  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1031  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1032  // Overwrite the terminating '\0' character and hit unallocated memory.
1033  from[from_size - 1] = '!';
1034  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1035  free(to);
1036  free(from);
1037}
1038
1039TEST(AddressSanitizer, StrNCpyOOBTest) {
1040  size_t to_size = Ident(20);
1041  size_t from_size = Ident(6);  // less than to_size
1042  char *to = Ident((char*)malloc(to_size));
1043  // From is a zero-terminated string "hello\0" of length 6
1044  char *from = Ident((char*)malloc(from_size));
1045  strcpy(from, "hello");
1046  // copy 0 bytes
1047  strncpy(to, from, 0);
1048  strncpy(to - 1, from - 1, 0);
1049  // normal strncpy calls
1050  strncpy(to, from, from_size);
1051  strncpy(to, from, to_size);
1052  strncpy(to, from + from_size - 1, to_size);
1053  strncpy(to + to_size - 1, from, 1);
1054  // One of {to, from} points to not allocated memory
1055  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1056               LeftOOBErrorMessage(1));
1057  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1058               LeftOOBErrorMessage(1));
1059  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1060               RightOOBErrorMessage(0));
1061  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1062               RightOOBErrorMessage(0));
1063  // Length of "to" is too small
1064  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1065               RightOOBErrorMessage(0));
1066  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1067               RightOOBErrorMessage(0));
1068  // Overwrite terminator in from
1069  from[from_size - 1] = '!';
1070  // normal strncpy call
1071  strncpy(to, from, from_size);
1072  // Length of "from" is too small
1073  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1074               RightOOBErrorMessage(0));
1075  free(to);
1076  free(from);
1077}
1078
1079typedef char*(*PointerToStrChr)(const char*, int);
1080void RunStrChrTest(PointerToStrChr StrChr) {
1081  size_t size = Ident(100);
1082  char *str = MallocAndMemsetString(size);
1083  str[10] = 'q';
1084  str[11] = '\0';
1085  EXPECT_EQ(str, StrChr(str, 'z'));
1086  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1087  EXPECT_EQ(NULL, StrChr(str, 'a'));
1088  // StrChr argument points to not allocated memory.
1089  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1090  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1091  // Overwrite the terminator and hit not allocated memory.
1092  str[11] = 'z';
1093  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1094  free(str);
1095}
1096TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1097  RunStrChrTest(&strchr);
1098  RunStrChrTest(&index);
1099}
1100
1101TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1102  // strcmp
1103  EXPECT_EQ(0, strcmp("", ""));
1104  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1105  EXPECT_GT(0, strcmp("ab", "ac"));
1106  EXPECT_GT(0, strcmp("abc", "abcd"));
1107  EXPECT_LT(0, strcmp("acc", "abc"));
1108  EXPECT_LT(0, strcmp("abcd", "abc"));
1109
1110  // strncmp
1111  EXPECT_EQ(0, strncmp("a", "b", 0));
1112  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1113  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1114  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1115  EXPECT_GT(0, strncmp("a", "b", 5));
1116  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1117  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1118  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1119  EXPECT_LT(0, strncmp("zyx", "", 2));
1120
1121  // strcasecmp
1122  EXPECT_EQ(0, strcasecmp("", ""));
1123  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1124  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1125  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1126  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1127  EXPECT_LT(0, strcasecmp("acc", "abc"));
1128  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1129
1130  // strncasecmp
1131  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1132  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1133  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1134  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1135  EXPECT_GT(0, strncasecmp("a", "B", 5));
1136  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1137  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1138  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1139  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1140
1141  // memcmp
1142  EXPECT_EQ(0, memcmp("a", "b", 0));
1143  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1144  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1145  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1146  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1147  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1148}
1149
1150typedef int(*PointerToStrCmp)(const char*, const char*);
1151void RunStrCmpTest(PointerToStrCmp StrCmp) {
1152  size_t size = Ident(100);
1153  char *s1 = MallocAndMemsetString(size);
1154  char *s2 = MallocAndMemsetString(size);
1155  s1[size - 1] = '\0';
1156  s2[size - 1] = '\0';
1157  // Normal StrCmp calls
1158  Ident(StrCmp(s1, s2));
1159  Ident(StrCmp(s1, s2 + size - 1));
1160  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1161  s1[size - 1] = 'z';
1162  s2[size - 1] = 'x';
1163  Ident(StrCmp(s1, s2));
1164  // One of arguments points to not allocated memory.
1165  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1166  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1167  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1168  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1169  // Hit unallocated memory and die.
1170  s2[size - 1] = 'z';
1171  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1172  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1173  free(s1);
1174  free(s2);
1175}
1176
1177TEST(AddressSanitizer, StrCmpOOBTest) {
1178  RunStrCmpTest(&strcmp);
1179}
1180
1181TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1182  RunStrCmpTest(&strcasecmp);
1183}
1184
1185typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1186void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1187  size_t size = Ident(100);
1188  char *s1 = MallocAndMemsetString(size);
1189  char *s2 = MallocAndMemsetString(size);
1190  s1[size - 1] = '\0';
1191  s2[size - 1] = '\0';
1192  // Normal StrNCmp calls
1193  Ident(StrNCmp(s1, s2, size + 2));
1194  s1[size - 1] = 'z';
1195  s2[size - 1] = 'x';
1196  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1197  s2[size - 1] = 'z';
1198  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1199  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1200  // One of arguments points to not allocated memory.
1201  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1202  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1203  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1204  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1205  // Hit unallocated memory and die.
1206  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1207  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1208  free(s1);
1209  free(s2);
1210}
1211
1212TEST(AddressSanitizer, StrNCmpOOBTest) {
1213  RunStrNCmpTest(&strncmp);
1214}
1215
1216TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1217  RunStrNCmpTest(&strncasecmp);
1218}
1219
1220TEST(AddressSanitizer, MemCmpOOBTest) {
1221  size_t size = Ident(100);
1222  char *s1 = MallocAndMemsetString(size);
1223  char *s2 = MallocAndMemsetString(size);
1224  // Normal memcmp calls.
1225  Ident(memcmp(s1, s2, size));
1226  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1227  Ident(memcmp(s1 - 1, s2 - 1, 0));
1228  // One of arguments points to not allocated memory.
1229  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1230  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1231  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1232  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1233  // Hit unallocated memory and die.
1234  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1235  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1236  // Zero bytes are not terminators and don't prevent from OOB.
1237  s1[size - 1] = '\0';
1238  s2[size - 1] = '\0';
1239  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1240  free(s1);
1241  free(s2);
1242}
1243
1244TEST(AddressSanitizer, StrCatOOBTest) {
1245  size_t to_size = Ident(100);
1246  char *to = MallocAndMemsetString(to_size);
1247  to[0] = '\0';
1248  size_t from_size = Ident(20);
1249  char *from = MallocAndMemsetString(from_size);
1250  from[from_size - 1] = '\0';
1251  // Normal strcat calls.
1252  strcat(to, from);
1253  strcat(to, from);
1254  strcat(to + from_size, from + from_size - 2);
1255  // Catenate empty string is not always an error.
1256  strcat(to - 1, from + from_size - 1);
1257  // One of arguments points to not allocated memory.
1258  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1259  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1260  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1261  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1262
1263  // "from" is not zero-terminated.
1264  from[from_size - 1] = 'z';
1265  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1266  from[from_size - 1] = '\0';
1267  // "to" is not zero-terminated.
1268  memset(to, 'z', to_size);
1269  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1270  // "to" is too short to fit "from".
1271  to[to_size - from_size + 1] = '\0';
1272  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1273  // length of "to" is just enough.
1274  strcat(to, from + 1);
1275}
1276
1277static string OverlapErrorMessage(const string &func) {
1278  return func + "-param-overlap";
1279}
1280
1281TEST(AddressSanitizer, StrArgsOverlapTest) {
1282  size_t size = Ident(100);
1283  char *str = Ident((char*)malloc(size));
1284
1285  // Check "memcpy". Use Ident() to avoid inlining.
1286  memset(str, 'z', size);
1287  Ident(memcpy)(str + 1, str + 11, 10);
1288  Ident(memcpy)(str, str, 0);
1289  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1290  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1291  EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1292               OverlapErrorMessage("memcpy"));
1293
1294  // Check "strcpy".
1295  memset(str, 'z', size);
1296  str[9] = '\0';
1297  strcpy(str + 10, str);
1298  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1299  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1300  strcpy(str, str + 5);
1301
1302  // Check "strncpy".
1303  memset(str, 'z', size);
1304  strncpy(str, str + 10, 10);
1305  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1306  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1307  str[10] = '\0';
1308  strncpy(str + 11, str, 20);
1309  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1310
1311  // Check "strcat".
1312  memset(str, 'z', size);
1313  str[10] = '\0';
1314  str[20] = '\0';
1315  strcat(str, str + 10);
1316  strcat(str, str + 11);
1317  str[10] = '\0';
1318  strcat(str + 11, str);
1319  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1320  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1321  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1322
1323  free(str);
1324}
1325
1326// At the moment we instrument memcpy/memove/memset calls at compile time so we
1327// can't handle OOB error if these functions are called by pointer, see disabled
1328// MemIntrinsicCallByPointerTest below
1329typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1330typedef void*(*PointerToMemSet)(void*, int, size_t);
1331
1332void CallMemSetByPointer(PointerToMemSet MemSet) {
1333  size_t size = Ident(100);
1334  char *array = Ident((char*)malloc(size));
1335  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1336  free(array);
1337}
1338
1339void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1340  size_t size = Ident(100);
1341  char *src = Ident((char*)malloc(size));
1342  char *dst = Ident((char*)malloc(size));
1343  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1344  free(src);
1345  free(dst);
1346}
1347
1348TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1349  CallMemSetByPointer(&memset);
1350  CallMemTransferByPointer(&memcpy);
1351  CallMemTransferByPointer(&memmove);
1352}
1353
1354// This test case fails
1355// Clang optimizes memcpy/memset calls which lead to unaligned access
1356TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1357  int size = Ident(4096);
1358  char *s = Ident((char*)malloc(size));
1359  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1360  free(s);
1361}
1362
1363// TODO(samsonov): Add a test with malloc(0)
1364// TODO(samsonov): Add tests for str* and mem* functions.
1365
1366__attribute__((noinline))
1367static int LargeFunction(bool do_bad_access) {
1368  int *x = new int[100];
1369  x[0]++;
1370  x[1]++;
1371  x[2]++;
1372  x[3]++;
1373  x[4]++;
1374  x[5]++;
1375  x[6]++;
1376  x[7]++;
1377  x[8]++;
1378  x[9]++;
1379
1380  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1381
1382  x[10]++;
1383  x[11]++;
1384  x[12]++;
1385  x[13]++;
1386  x[14]++;
1387  x[15]++;
1388  x[16]++;
1389  x[17]++;
1390  x[18]++;
1391  x[19]++;
1392
1393  delete x;
1394  return res;
1395}
1396
1397// Test the we have correct debug info for the failing instruction.
1398// This test requires the in-process symbolizer to be enabled by default.
1399TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1400  int failing_line = LargeFunction(false);
1401  char expected_warning[128];
1402  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1403  EXPECT_DEATH(LargeFunction(true), expected_warning);
1404}
1405
1406// Check that we unwind and symbolize correctly.
1407TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1408  int *a = (int*)malloc_aaa(sizeof(int));
1409  *a = 1;
1410  free_aaa(a);
1411  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1412               "malloc_fff.*malloc_eee.*malloc_ddd");
1413}
1414
1415void *ThreadedTestAlloc(void *a) {
1416  int **p = (int**)a;
1417  *p = new int;
1418  return 0;
1419}
1420
1421void *ThreadedTestFree(void *a) {
1422  int **p = (int**)a;
1423  delete *p;
1424  return 0;
1425}
1426
1427void *ThreadedTestUse(void *a) {
1428  int **p = (int**)a;
1429  **p = 1;
1430  return 0;
1431}
1432
1433void ThreadedTestSpawn() {
1434  pthread_t t;
1435  int *x;
1436  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1437  pthread_join(t, 0);
1438  pthread_create(&t, 0, ThreadedTestFree, &x);
1439  pthread_join(t, 0);
1440  pthread_create(&t, 0, ThreadedTestUse, &x);
1441  pthread_join(t, 0);
1442}
1443
1444TEST(AddressSanitizer, ThreadedTest) {
1445  EXPECT_DEATH(ThreadedTestSpawn(),
1446               ASAN_PCRE_DOTALL
1447               "Thread T.*created"
1448               ".*Thread T.*created"
1449               ".*Thread T.*created");
1450}
1451
1452#if ASAN_NEEDS_SEGV
1453TEST(AddressSanitizer, ShadowGapTest) {
1454#if __WORDSIZE == 32
1455  char *addr = (char*)0x22000000;
1456#else
1457  char *addr = (char*)0x0000100000080000;
1458#endif
1459  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1460}
1461#endif  // ASAN_NEEDS_SEGV
1462
1463extern "C" {
1464__attribute__((noinline))
1465static void UseThenFreeThenUse() {
1466  char *x = Ident((char*)malloc(8));
1467  *x = 1;
1468  free_aaa(x);
1469  *x = 2;
1470}
1471}
1472
1473TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1474  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1475}
1476
1477TEST(AddressSanitizer, StrDupTest) {
1478  free(strdup(Ident("123")));
1479}
1480
1481// Currently we create and poison redzone at right of global variables.
1482char glob5[5];
1483static char static110[110];
1484const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1485static const char StaticConstGlob[3] = {9, 8, 7};
1486extern int GlobalsTest(int x);
1487
1488TEST(AddressSanitizer, GlobalTest) {
1489  static char func_static15[15];
1490
1491  static char fs1[10];
1492  static char fs2[10];
1493  static char fs3[10];
1494
1495  glob5[Ident(0)] = 0;
1496  glob5[Ident(1)] = 0;
1497  glob5[Ident(2)] = 0;
1498  glob5[Ident(3)] = 0;
1499  glob5[Ident(4)] = 0;
1500
1501  EXPECT_DEATH(glob5[Ident(5)] = 0,
1502               "0 bytes to the right of global variable.*glob5.* size 5");
1503  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1504               "6 bytes to the right of global variable.*glob5.* size 5");
1505  Ident(static110);  // avoid optimizations
1506  static110[Ident(0)] = 0;
1507  static110[Ident(109)] = 0;
1508  EXPECT_DEATH(static110[Ident(110)] = 0,
1509               "0 bytes to the right of global variable");
1510  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1511               "7 bytes to the right of global variable");
1512
1513  Ident(func_static15);  // avoid optimizations
1514  func_static15[Ident(0)] = 0;
1515  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1516               "0 bytes to the right of global variable");
1517  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1518               "9 bytes to the right of global variable");
1519
1520  Ident(fs1);
1521  Ident(fs2);
1522  Ident(fs3);
1523
1524  // We don't create left redzones, so this is not 100% guaranteed to fail.
1525  // But most likely will.
1526  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1527
1528  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1529               "is located 1 bytes to the right of .*ConstGlob");
1530  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1531               "is located 2 bytes to the right of .*StaticConstGlob");
1532
1533  // call stuff from another file.
1534  GlobalsTest(0);
1535}
1536
1537TEST(AddressSanitizer, GlobalStringConstTest) {
1538  static const char *zoo = "FOOBAR123";
1539  const char *p = Ident(zoo);
1540  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1541}
1542
1543TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1544  static char zoo[10];
1545  const char *p = Ident(zoo);
1546  // The file name should be present in the report.
1547  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1548}
1549
1550int *ReturnsPointerToALocalObject() {
1551  int a = 0;
1552  return Ident(&a);
1553}
1554
1555#if ASAN_UAR == 1
1556TEST(AddressSanitizer, LocalReferenceReturnTest) {
1557  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1558  int *p = f();
1559  // Call 'f' a few more times, 'p' should still be poisoned.
1560  for (int i = 0; i < 32; i++)
1561    f();
1562  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1563  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1564}
1565#endif
1566
1567template <int kSize>
1568__attribute__((noinline))
1569static void FuncWithStack() {
1570  char x[kSize];
1571  Ident(x)[0] = 0;
1572  Ident(x)[kSize-1] = 0;
1573}
1574
1575static void LotsOfStackReuse() {
1576  int LargeStack[10000];
1577  Ident(LargeStack)[0] = 0;
1578  for (int i = 0; i < 10000; i++) {
1579    FuncWithStack<128 * 1>();
1580    FuncWithStack<128 * 2>();
1581    FuncWithStack<128 * 4>();
1582    FuncWithStack<128 * 8>();
1583    FuncWithStack<128 * 16>();
1584    FuncWithStack<128 * 32>();
1585    FuncWithStack<128 * 64>();
1586    FuncWithStack<128 * 128>();
1587    FuncWithStack<128 * 256>();
1588    FuncWithStack<128 * 512>();
1589    Ident(LargeStack)[0] = 0;
1590  }
1591}
1592
1593TEST(AddressSanitizer, StressStackReuseTest) {
1594  LotsOfStackReuse();
1595}
1596
1597TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1598  const int kNumThreads = 20;
1599  pthread_t t[kNumThreads];
1600  for (int i = 0; i < kNumThreads; i++) {
1601    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1602  }
1603  for (int i = 0; i < kNumThreads; i++) {
1604    pthread_join(t[i], 0);
1605  }
1606}
1607
1608#ifdef __EXCEPTIONS
1609__attribute__((noinline))
1610static void StackReuseAndException() {
1611  int large_stack[1000];
1612  Ident(large_stack);
1613  ASAN_THROW(1);
1614}
1615
1616// TODO(kcc): support exceptions with use-after-return.
1617TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1618  for (int i = 0; i < 10000; i++) {
1619    try {
1620    StackReuseAndException();
1621    } catch(...) {
1622    }
1623  }
1624}
1625#endif
1626
1627TEST(AddressSanitizer, MlockTest) {
1628  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1629  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1630  EXPECT_EQ(0, munlockall());
1631  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1632}
1633
1634// ------------------ demo tests; run each one-by-one -------------
1635// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1636TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1637  ThreadedTestSpawn();
1638}
1639
1640void *SimpleBugOnSTack(void *x = 0) {
1641  char a[20];
1642  Ident(a)[20] = 0;
1643  return 0;
1644}
1645
1646TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1647  SimpleBugOnSTack();
1648}
1649
1650TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1651  pthread_t t;
1652  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1653  pthread_join(t, 0);
1654}
1655
1656TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1657  uaf_test<U1>(10, 0);
1658}
1659TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1660  uaf_test<U1>(10, -2);
1661}
1662TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1663  uaf_test<U1>(10, 10);
1664}
1665
1666TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1667  uaf_test<U1>(kLargeMalloc, 0);
1668}
1669
1670TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1671  oob_test<U1>(10, -1);
1672}
1673
1674TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1675  oob_test<U1>(kLargeMalloc, -1);
1676}
1677
1678TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1679  oob_test<U1>(10, 10);
1680}
1681
1682TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1683  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1684}
1685
1686TEST(AddressSanitizer, DISABLED_DemoOOM) {
1687  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1688  printf("%p\n", malloc(size));
1689}
1690
1691TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1692  DoubleFree();
1693}
1694
1695TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1696  int *a = 0;
1697  Ident(a)[10] = 0;
1698}
1699
1700TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1701  static char a[100];
1702  static char b[100];
1703  static char c[100];
1704  Ident(a);
1705  Ident(b);
1706  Ident(c);
1707  Ident(a)[5] = 0;
1708  Ident(b)[105] = 0;
1709  Ident(a)[5] = 0;
1710}
1711
1712TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1713  const size_t kAllocSize = (1 << 28) - 1024;
1714  size_t total_size = 0;
1715  while (true) {
1716    char *x = (char*)malloc(kAllocSize);
1717    memset(x, 0, kAllocSize);
1718    total_size += kAllocSize;
1719    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1720  }
1721}
1722
1723#ifdef __APPLE__
1724#include "asan_mac_test.h"
1725// TODO(glider): figure out whether we still need these tests. Is it correct
1726// to intercept CFAllocator?
1727TEST(AddressSanitizerMac, DISABLED_CFAllocatorDefaultDoubleFree) {
1728  EXPECT_DEATH(
1729      CFAllocatorDefaultDoubleFree(),
1730      "attempting double-free");
1731}
1732
1733TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1734  EXPECT_DEATH(
1735      CFAllocatorSystemDefaultDoubleFree(),
1736      "attempting double-free");
1737}
1738
1739TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocDoubleFree) {
1740  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1741}
1742
1743TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1744  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1745}
1746
1747TEST(AddressSanitizerMac, GCDDispatchAsync) {
1748  // Make sure the whole ASan report is printed, i.e. that we don't die
1749  // on a CHECK.
1750  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1751}
1752
1753TEST(AddressSanitizerMac, GCDDispatchSync) {
1754  // Make sure the whole ASan report is printed, i.e. that we don't die
1755  // on a CHECK.
1756  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1757}
1758
1759
1760TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1761  // Make sure the whole ASan report is printed, i.e. that we don't die
1762  // on a CHECK.
1763  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1764}
1765
1766TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1767  // Make sure the whole ASan report is printed, i.e. that we don't die
1768  // on a CHECK.
1769  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1770}
1771
1772TEST(AddressSanitizerMac, GCDDispatchAfter) {
1773  // Make sure the whole ASan report is printed, i.e. that we don't die
1774  // on a CHECK.
1775  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1776}
1777
1778TEST(AddressSanitizerMac, GCDSourceEvent) {
1779  // Make sure the whole ASan report is printed, i.e. that we don't die
1780  // on a CHECK.
1781  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1782}
1783
1784TEST(AddressSanitizerMac, GCDSourceCancel) {
1785  // Make sure the whole ASan report is printed, i.e. that we don't die
1786  // on a CHECK.
1787  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
1788}
1789
1790TEST(AddressSanitizerMac, GCDGroupAsync) {
1791  // Make sure the whole ASan report is printed, i.e. that we don't die
1792  // on a CHECK.
1793  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
1794}
1795
1796void *MallocIntrospectionLockWorker(void *_) {
1797  const int kNumPointers = 100;
1798  int i;
1799  void *pointers[kNumPointers];
1800  for (i = 0; i < kNumPointers; i++) {
1801    pointers[i] = malloc(i + 1);
1802  }
1803  for (i = 0; i < kNumPointers; i++) {
1804    free(pointers[i]);
1805  }
1806
1807  return NULL;
1808}
1809
1810void *MallocIntrospectionLockForker(void *_) {
1811  pid_t result = fork();
1812  if (result == -1) {
1813    perror("fork");
1814  }
1815  assert(result != -1);
1816  if (result == 0) {
1817    // Call malloc in the child process to make sure we won't deadlock.
1818    void *ptr = malloc(42);
1819    free(ptr);
1820    exit(0);
1821  } else {
1822    // Return in the parent process.
1823    return NULL;
1824  }
1825}
1826
1827TEST(AddressSanitizerMac, MallocIntrospectionLock) {
1828  // Incorrect implementation of force_lock and force_unlock in our malloc zone
1829  // will cause forked processes to deadlock.
1830  // TODO(glider): need to detect that none of the child processes deadlocked.
1831  const int kNumWorkers = 5, kNumIterations = 100;
1832  int i, iter;
1833  for (iter = 0; iter < kNumIterations; iter++) {
1834    pthread_t workers[kNumWorkers], forker;
1835    for (i = 0; i < kNumWorkers; i++) {
1836      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
1837    }
1838    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
1839    for (i = 0; i < kNumWorkers; i++) {
1840      pthread_join(workers[i], 0);
1841    }
1842    pthread_join(forker, 0);
1843  }
1844}
1845
1846void *TSDAllocWorker(void *test_key) {
1847  if (test_key) {
1848    void *mem = malloc(10);
1849    pthread_setspecific(*(pthread_key_t*)test_key, mem);
1850  }
1851  return NULL;
1852}
1853
1854TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
1855  pthread_t th;
1856  pthread_key_t test_key;
1857  pthread_key_create(&test_key, CallFreeOnWorkqueue);
1858  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
1859  pthread_join(th, NULL);
1860  pthread_key_delete(test_key);
1861}
1862#endif  // __APPLE__
1863
1864int main(int argc, char **argv) {
1865  progname = argv[0];
1866  testing::GTEST_FLAG(death_test_style) = "threadsafe";
1867  testing::InitGoogleTest(&argc, argv);
1868  return RUN_ALL_TESTS();
1869}
1870