asan_test.cc revision b989143d0be56496e8d5fcf75969af35a058792a
1//===-- asan_test.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) || defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_utils.h"
28
29#ifndef __APPLE__
30#include <malloc.h>
31#else
32#include <malloc/malloc.h>
33#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
34#include <CoreFoundation/CFString.h>
35#endif  // __APPLE__
36
37#if ASAN_HAS_EXCEPTIONS
38# define ASAN_THROW(x) throw (x)
39#else
40# define ASAN_THROW(x)
41#endif
42
43#include <sys/mman.h>
44
45typedef uint8_t   U1;
46typedef uint16_t  U2;
47typedef uint32_t  U4;
48typedef uint64_t  U8;
49
50static const int kPageSize = 4096;
51
52// Simple stand-alone pseudorandom number generator.
53// Current algorithm is ANSI C linear congruential PRNG.
54static inline uint32_t my_rand(uint32_t* state) {
55  return (*state = *state * 1103515245 + 12345) >> 16;
56}
57
58static uint32_t global_seed = 0;
59
60const size_t kLargeMalloc = 1 << 24;
61
62template<typename T>
63NOINLINE void asan_write(T *a) {
64  *a = 0;
65}
66
67NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
68  EXPECT_EQ(0U, ((uintptr_t)p % size));
69  if      (size == 1) asan_write((uint8_t*)p);
70  else if (size == 2) asan_write((uint16_t*)p);
71  else if (size == 4) asan_write((uint32_t*)p);
72  else if (size == 8) asan_write((uint64_t*)p);
73}
74
75NOINLINE void *malloc_fff(size_t size) {
76  void *res = malloc/**/(size); break_optimization(0); return res;}
77NOINLINE void *malloc_eee(size_t size) {
78  void *res = malloc_fff(size); break_optimization(0); return res;}
79NOINLINE void *malloc_ddd(size_t size) {
80  void *res = malloc_eee(size); break_optimization(0); return res;}
81NOINLINE void *malloc_ccc(size_t size) {
82  void *res = malloc_ddd(size); break_optimization(0); return res;}
83NOINLINE void *malloc_bbb(size_t size) {
84  void *res = malloc_ccc(size); break_optimization(0); return res;}
85NOINLINE void *malloc_aaa(size_t size) {
86  void *res = malloc_bbb(size); break_optimization(0); return res;}
87
88#ifndef __APPLE__
89NOINLINE void *memalign_fff(size_t alignment, size_t size) {
90  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
91NOINLINE void *memalign_eee(size_t alignment, size_t size) {
92  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
93NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
94  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
95NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
96  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
97NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
98  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
99NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
100  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
101#endif  // __APPLE__
102
103
104NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
105NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
106NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
107
108template<typename T>
109NOINLINE void oob_test(int size, int off) {
110  char *p = (char*)malloc_aaa(size);
111  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
112  //        sizeof(T), p, p + size, off);
113  asan_write((T*)(p + off));
114  free_aaa(p);
115}
116
117
118template<typename T>
119NOINLINE void uaf_test(int size, int off) {
120  char *p = (char *)malloc_aaa(size);
121  free_aaa(p);
122  for (int i = 1; i < 100; i++)
123    free_aaa(malloc_aaa(i));
124  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
125          (long)sizeof(T), p, off);
126  asan_write((T*)(p + off));
127}
128
129TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
130#if defined(__has_feature) && __has_feature(address_sanitizer)
131  bool asan = 1;
132#else
133  bool asan = 0;
134#endif
135  EXPECT_EQ(true, asan);
136}
137
138TEST(AddressSanitizer, SimpleDeathTest) {
139  EXPECT_DEATH(exit(1), "");
140}
141
142TEST(AddressSanitizer, VariousMallocsTest) {
143  int *a = (int*)malloc(100 * sizeof(int));
144  a[50] = 0;
145  free(a);
146
147  int *r = (int*)malloc(10);
148  r = (int*)realloc(r, 2000 * sizeof(int));
149  r[1000] = 0;
150  free(r);
151
152  int *b = new int[100];
153  b[50] = 0;
154  delete [] b;
155
156  int *c = new int;
157  *c = 0;
158  delete c;
159
160#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
161  int *pm;
162  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
163  EXPECT_EQ(0, pm_res);
164  free(pm);
165#endif
166
167#if !defined(__APPLE__)
168  int *ma = (int*)memalign(kPageSize, kPageSize);
169  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
170  ma[123] = 0;
171  free(ma);
172#endif  // __APPLE__
173}
174
175TEST(AddressSanitizer, CallocTest) {
176  int *a = (int*)calloc(100, sizeof(int));
177  EXPECT_EQ(0, a[10]);
178  free(a);
179}
180
181TEST(AddressSanitizer, VallocTest) {
182  void *a = valloc(100);
183  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
184  free(a);
185}
186
187#ifndef __APPLE__
188TEST(AddressSanitizer, PvallocTest) {
189  char *a = (char*)pvalloc(kPageSize + 100);
190  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
191  a[kPageSize + 101] = 1;  // we should not report an error here.
192  free(a);
193
194  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
195  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
196  a[101] = 1;  // we should not report an error here.
197  free(a);
198}
199#endif  // __APPLE__
200
201void *TSDWorker(void *test_key) {
202  if (test_key) {
203    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
204  }
205  return NULL;
206}
207
208void TSDDestructor(void *tsd) {
209  // Spawning a thread will check that the current thread id is not -1.
210  pthread_t th;
211  pthread_create(&th, NULL, TSDWorker, NULL);
212  pthread_join(th, NULL);
213}
214
215// This tests triggers the thread-specific data destruction fiasco which occurs
216// if we don't manage the TSD destructors ourselves. We create a new pthread
217// key with a non-NULL destructor which is likely to be put after the destructor
218// of AsanThread in the list of destructors.
219// In this case the TSD for AsanThread will be destroyed before TSDDestructor
220// is called for the child thread, and a CHECK will fail when we call
221// pthread_create() to spawn the grandchild.
222TEST(AddressSanitizer, DISABLED_TSDTest) {
223  pthread_t th;
224  pthread_key_t test_key;
225  pthread_key_create(&test_key, TSDDestructor);
226  pthread_create(&th, NULL, TSDWorker, &test_key);
227  pthread_join(th, NULL);
228  pthread_key_delete(test_key);
229}
230
231template<typename T>
232void OOBTest() {
233  char expected_str[100];
234  for (int size = sizeof(T); size < 20; size += 5) {
235    for (int i = -5; i < 0; i++) {
236      const char *str =
237          "is located.*%d byte.*to the left";
238      sprintf(expected_str, str, abs(i));
239      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
240    }
241
242    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
243      oob_test<T>(size, i);
244
245    for (int i = size - sizeof(T) + 1; i <= (int)(size + 3 * sizeof(T)); i++) {
246      const char *str =
247          "is located.*%d byte.*to the right";
248      int off = i >= size ? (i - size) : 0;
249      // we don't catch unaligned partially OOB accesses.
250      if (i % sizeof(T)) continue;
251      sprintf(expected_str, str, off);
252      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
253    }
254  }
255
256  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
257          "is located.*1 byte.*to the left");
258  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
259          "is located.*0 byte.*to the right");
260}
261
262// TODO(glider): the following tests are EXTREMELY slow on Darwin:
263//   AddressSanitizer.OOB_char (125503 ms)
264//   AddressSanitizer.OOB_int (126890 ms)
265//   AddressSanitizer.OOBRightTest (315605 ms)
266//   AddressSanitizer.SimpleStackTest (366559 ms)
267
268TEST(AddressSanitizer, OOB_char) {
269  OOBTest<U1>();
270}
271
272TEST(AddressSanitizer, OOB_int) {
273  OOBTest<U4>();
274}
275
276TEST(AddressSanitizer, OOBRightTest) {
277  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
278    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
279      for (size_t offset = 0; offset <= 8; offset += access_size) {
280        void *p = malloc(alloc_size);
281        // allocated: [p, p + alloc_size)
282        // accessed:  [p + offset, p + offset + access_size)
283        uint8_t *addr = (uint8_t*)p + offset;
284        if (offset + access_size <= alloc_size) {
285          asan_write_sized_aligned(addr, access_size);
286        } else {
287          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
288          const char *str =
289              "is located.%d *byte.*to the right";
290          char expected_str[100];
291          sprintf(expected_str, str, outside_bytes);
292          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
293                       expected_str);
294        }
295        free(p);
296      }
297    }
298  }
299}
300
301TEST(AddressSanitizer, UAF_char) {
302  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
303  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
304  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
305  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
306  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
307  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
308}
309
310#if ASAN_HAS_BLACKLIST
311TEST(AddressSanitizer, IgnoreTest) {
312  int *x = Ident(new int);
313  delete Ident(x);
314  *x = 0;
315}
316#endif  // ASAN_HAS_BLACKLIST
317
318struct StructWithBitField {
319  int bf1:1;
320  int bf2:1;
321  int bf3:1;
322  int bf4:29;
323};
324
325TEST(AddressSanitizer, BitFieldPositiveTest) {
326  StructWithBitField *x = new StructWithBitField;
327  delete Ident(x);
328  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
329  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
330  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
331  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
332}
333
334struct StructWithBitFields_8_24 {
335  int a:8;
336  int b:24;
337};
338
339TEST(AddressSanitizer, BitFieldNegativeTest) {
340  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
341  x->a = 0;
342  x->b = 0;
343  delete Ident(x);
344}
345
346TEST(AddressSanitizer, OutOfMemoryTest) {
347  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
348  EXPECT_EQ(0, realloc(0, size));
349  EXPECT_EQ(0, realloc(0, ~Ident(0)));
350  EXPECT_EQ(0, malloc(size));
351  EXPECT_EQ(0, malloc(~Ident(0)));
352  EXPECT_EQ(0, calloc(1, size));
353  EXPECT_EQ(0, calloc(1, ~Ident(0)));
354}
355
356#if ASAN_NEEDS_SEGV
357namespace {
358
359const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
360const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
361
362TEST(AddressSanitizer, WildAddressTest) {
363  char *c = (char*)0x123;
364  EXPECT_DEATH(*c = 0, kUnknownCrash);
365}
366
367void my_sigaction_sighandler(int, siginfo_t*, void*) {
368  fprintf(stderr, kOverriddenHandler);
369  exit(1);
370}
371
372void my_signal_sighandler(int signum) {
373  fprintf(stderr, kOverriddenHandler);
374  exit(1);
375}
376
377TEST(AddressSanitizer, SignalTest) {
378  struct sigaction sigact;
379  memset(&sigact, 0, sizeof(sigact));
380  sigact.sa_sigaction = my_sigaction_sighandler;
381  sigact.sa_flags = SA_SIGINFO;
382  // ASan should silently ignore sigaction()...
383  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
384#ifdef __APPLE__
385  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
386#endif
387  char *c = (char*)0x123;
388  EXPECT_DEATH(*c = 0, kUnknownCrash);
389  // ... and signal().
390  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
391  EXPECT_DEATH(*c = 0, kUnknownCrash);
392}
393}  // namespace
394#endif
395
396static void MallocStress(size_t n) {
397  uint32_t seed = my_rand(&global_seed);
398  for (size_t iter = 0; iter < 10; iter++) {
399    vector<void *> vec;
400    for (size_t i = 0; i < n; i++) {
401      if ((i % 3) == 0) {
402        if (vec.empty()) continue;
403        size_t idx = my_rand(&seed) % vec.size();
404        void *ptr = vec[idx];
405        vec[idx] = vec.back();
406        vec.pop_back();
407        free_aaa(ptr);
408      } else {
409        size_t size = my_rand(&seed) % 1000 + 1;
410#ifndef __APPLE__
411        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
412        char *ptr = (char*)memalign_aaa(alignment, size);
413#else
414        char *ptr = (char*) malloc_aaa(size);
415#endif
416        vec.push_back(ptr);
417        ptr[0] = 0;
418        ptr[size-1] = 0;
419        ptr[size/2] = 0;
420      }
421    }
422    for (size_t i = 0; i < vec.size(); i++)
423      free_aaa(vec[i]);
424  }
425}
426
427TEST(AddressSanitizer, MallocStressTest) {
428  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
429}
430
431static void TestLargeMalloc(size_t size) {
432  char buff[1024];
433  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
434  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
435}
436
437TEST(AddressSanitizer, LargeMallocTest) {
438  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
439    TestLargeMalloc(i);
440  }
441}
442
443#if ASAN_LOW_MEMORY != 1
444TEST(AddressSanitizer, HugeMallocTest) {
445#ifdef __APPLE__
446  // It was empirically found out that 1215 megabytes is the maximum amount of
447  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
448  // 32-bit Mac 10.7 gives even less (< 1G).
449  // (the libSystem malloc() allows allocating up to 2300 megabytes without
450  // ASan).
451  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
452#else
453  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
454#endif
455  TestLargeMalloc(n_megs << 20);
456}
457#endif
458
459TEST(AddressSanitizer, ThreadedMallocStressTest) {
460  const int kNumThreads = 4;
461  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
462  pthread_t t[kNumThreads];
463  for (int i = 0; i < kNumThreads; i++) {
464    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress,
465        (void*)kNumIterations);
466  }
467  for (int i = 0; i < kNumThreads; i++) {
468    pthread_join(t[i], 0);
469  }
470}
471
472void *ManyThreadsWorker(void *a) {
473  for (int iter = 0; iter < 100; iter++) {
474    for (size_t size = 100; size < 2000; size *= 2) {
475      free(Ident(malloc(size)));
476    }
477  }
478  return 0;
479}
480
481TEST(AddressSanitizer, ManyThreadsTest) {
482  const size_t kNumThreads = SANITIZER_WORDSIZE == 32 ? 30 : 1000;
483  pthread_t t[kNumThreads];
484  for (size_t i = 0; i < kNumThreads; i++) {
485    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
486  }
487  for (size_t i = 0; i < kNumThreads; i++) {
488    pthread_join(t[i], 0);
489  }
490}
491
492TEST(AddressSanitizer, ReallocTest) {
493  const int kMinElem = 5;
494  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
495  ptr[3] = 3;
496  for (int i = 0; i < 10000; i++) {
497    ptr = (int*)realloc(ptr,
498        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
499    EXPECT_EQ(3, ptr[3]);
500  }
501}
502
503#ifndef __APPLE__
504static const char *kMallocUsableSizeErrorMsg =
505  "AddressSanitizer: attempting to call malloc_usable_size()";
506
507TEST(AddressSanitizer, MallocUsableSizeTest) {
508  const size_t kArraySize = 100;
509  char *array = Ident((char*)malloc(kArraySize));
510  int *int_ptr = Ident(new int);
511  EXPECT_EQ(0U, malloc_usable_size(NULL));
512  EXPECT_EQ(kArraySize, malloc_usable_size(array));
513  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
514  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
515  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
516               kMallocUsableSizeErrorMsg);
517  free(array);
518  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
519}
520#endif
521
522void WrongFree() {
523  int *x = (int*)malloc(100 * sizeof(int));
524  // Use the allocated memory, otherwise Clang will optimize it out.
525  Ident(x);
526  free(x + 1);
527}
528
529TEST(AddressSanitizer, WrongFreeTest) {
530  EXPECT_DEATH(WrongFree(),
531               "ERROR: AddressSanitizer: attempting free.*not malloc");
532}
533
534void DoubleFree() {
535  int *x = (int*)malloc(100 * sizeof(int));
536  fprintf(stderr, "DoubleFree: x=%p\n", x);
537  free(x);
538  free(x);
539  fprintf(stderr, "should have failed in the second free(%p)\n", x);
540  abort();
541}
542
543TEST(AddressSanitizer, DoubleFreeTest) {
544  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
545               "ERROR: AddressSanitizer: attempting double-free"
546               ".*is located 0 bytes inside of 400-byte region"
547               ".*freed by thread T0 here"
548               ".*previously allocated by thread T0 here");
549}
550
551template<int kSize>
552NOINLINE void SizedStackTest() {
553  char a[kSize];
554  char  *A = Ident((char*)&a);
555  for (size_t i = 0; i < kSize; i++)
556    A[i] = i;
557  EXPECT_DEATH(A[-1] = 0, "");
558  EXPECT_DEATH(A[-20] = 0, "");
559  EXPECT_DEATH(A[-31] = 0, "");
560  EXPECT_DEATH(A[kSize] = 0, "");
561  EXPECT_DEATH(A[kSize + 1] = 0, "");
562  EXPECT_DEATH(A[kSize + 10] = 0, "");
563  EXPECT_DEATH(A[kSize + 31] = 0, "");
564}
565
566TEST(AddressSanitizer, SimpleStackTest) {
567  SizedStackTest<1>();
568  SizedStackTest<2>();
569  SizedStackTest<3>();
570  SizedStackTest<4>();
571  SizedStackTest<5>();
572  SizedStackTest<6>();
573  SizedStackTest<7>();
574  SizedStackTest<16>();
575  SizedStackTest<25>();
576  SizedStackTest<34>();
577  SizedStackTest<43>();
578  SizedStackTest<51>();
579  SizedStackTest<62>();
580  SizedStackTest<64>();
581  SizedStackTest<128>();
582}
583
584TEST(AddressSanitizer, ManyStackObjectsTest) {
585  char XXX[10];
586  char YYY[20];
587  char ZZZ[30];
588  Ident(XXX);
589  Ident(YYY);
590  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
591}
592
593NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
594  char d[4] = {0};
595  char *D = Ident(d);
596  switch (frame) {
597    case 3: a[5]++; break;
598    case 2: b[5]++; break;
599    case 1: c[5]++; break;
600    case 0: D[5]++; break;
601  }
602}
603NOINLINE static void Frame1(int frame, char *a, char *b) {
604  char c[4] = {0}; Frame0(frame, a, b, c);
605  break_optimization(0);
606}
607NOINLINE static void Frame2(int frame, char *a) {
608  char b[4] = {0}; Frame1(frame, a, b);
609  break_optimization(0);
610}
611NOINLINE static void Frame3(int frame) {
612  char a[4] = {0}; Frame2(frame, a);
613  break_optimization(0);
614}
615
616TEST(AddressSanitizer, GuiltyStackFrame0Test) {
617  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
618}
619TEST(AddressSanitizer, GuiltyStackFrame1Test) {
620  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
621}
622TEST(AddressSanitizer, GuiltyStackFrame2Test) {
623  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
624}
625TEST(AddressSanitizer, GuiltyStackFrame3Test) {
626  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
627}
628
629NOINLINE void LongJmpFunc1(jmp_buf buf) {
630  // create three red zones for these two stack objects.
631  int a;
632  int b;
633
634  int *A = Ident(&a);
635  int *B = Ident(&b);
636  *A = *B;
637  longjmp(buf, 1);
638}
639
640NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
641  // create three red zones for these two stack objects.
642  int a;
643  int b;
644
645  int *A = Ident(&a);
646  int *B = Ident(&b);
647  *A = *B;
648  __builtin_longjmp((void**)buf, 1);
649}
650
651NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
652  // create three red zones for these two stack objects.
653  int a;
654  int b;
655
656  int *A = Ident(&a);
657  int *B = Ident(&b);
658  *A = *B;
659  _longjmp(buf, 1);
660}
661
662NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
663  // create three red zones for these two stack objects.
664  int a;
665  int b;
666
667  int *A = Ident(&a);
668  int *B = Ident(&b);
669  *A = *B;
670  siglongjmp(buf, 1);
671}
672
673
674NOINLINE void TouchStackFunc() {
675  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
676  int *A = Ident(a);
677  for (int i = 0; i < 100; i++)
678    A[i] = i*i;
679}
680
681// Test that we handle longjmp and do not report fals positives on stack.
682TEST(AddressSanitizer, LongJmpTest) {
683  static jmp_buf buf;
684  if (!setjmp(buf)) {
685    LongJmpFunc1(buf);
686  } else {
687    TouchStackFunc();
688  }
689}
690
691#if not defined(__ANDROID__)
692TEST(AddressSanitizer, BuiltinLongJmpTest) {
693  static jmp_buf buf;
694  if (!__builtin_setjmp((void**)buf)) {
695    BuiltinLongJmpFunc1(buf);
696  } else {
697    TouchStackFunc();
698  }
699}
700#endif  // not defined(__ANDROID__)
701
702TEST(AddressSanitizer, UnderscopeLongJmpTest) {
703  static jmp_buf buf;
704  if (!_setjmp(buf)) {
705    UnderscopeLongJmpFunc1(buf);
706  } else {
707    TouchStackFunc();
708  }
709}
710
711TEST(AddressSanitizer, SigLongJmpTest) {
712  static sigjmp_buf buf;
713  if (!sigsetjmp(buf, 1)) {
714    SigLongJmpFunc1(buf);
715  } else {
716    TouchStackFunc();
717  }
718}
719
720#ifdef __EXCEPTIONS
721NOINLINE void ThrowFunc() {
722  // create three red zones for these two stack objects.
723  int a;
724  int b;
725
726  int *A = Ident(&a);
727  int *B = Ident(&b);
728  *A = *B;
729  ASAN_THROW(1);
730}
731
732TEST(AddressSanitizer, CxxExceptionTest) {
733  if (ASAN_UAR) return;
734  // TODO(kcc): this test crashes on 32-bit for some reason...
735  if (SANITIZER_WORDSIZE == 32) return;
736  try {
737    ThrowFunc();
738  } catch(...) {}
739  TouchStackFunc();
740}
741#endif
742
743void *ThreadStackReuseFunc1(void *unused) {
744  // create three red zones for these two stack objects.
745  int a;
746  int b;
747
748  int *A = Ident(&a);
749  int *B = Ident(&b);
750  *A = *B;
751  pthread_exit(0);
752  return 0;
753}
754
755void *ThreadStackReuseFunc2(void *unused) {
756  TouchStackFunc();
757  return 0;
758}
759
760TEST(AddressSanitizer, ThreadStackReuseTest) {
761  pthread_t t;
762  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
763  pthread_join(t, 0);
764  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
765  pthread_join(t, 0);
766}
767
768#if defined(__i386__) || defined(__x86_64__)
769TEST(AddressSanitizer, Store128Test) {
770  char *a = Ident((char*)malloc(Ident(12)));
771  char *p = a;
772  if (((uintptr_t)a % 16) != 0)
773    p = a + 8;
774  assert(((uintptr_t)p % 16) == 0);
775  __m128i value_wide = _mm_set1_epi16(0x1234);
776  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
777               "AddressSanitizer: heap-buffer-overflow");
778  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
779               "WRITE of size 16");
780  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
781               "located 0 bytes to the right of 12-byte");
782  free(a);
783}
784#endif
785
786static string RightOOBErrorMessage(int oob_distance) {
787  assert(oob_distance >= 0);
788  char expected_str[100];
789  sprintf(expected_str, "located %d bytes to the right", oob_distance);
790  return string(expected_str);
791}
792
793static string LeftOOBErrorMessage(int oob_distance) {
794  assert(oob_distance > 0);
795  char expected_str[100];
796  sprintf(expected_str, "located %d bytes to the left", oob_distance);
797  return string(expected_str);
798}
799
800template<typename T>
801void MemSetOOBTestTemplate(size_t length) {
802  if (length == 0) return;
803  size_t size = Ident(sizeof(T) * length);
804  T *array = Ident((T*)malloc(size));
805  int element = Ident(42);
806  int zero = Ident(0);
807  // memset interval inside array
808  memset(array, element, size);
809  memset(array, element, size - 1);
810  memset(array + length - 1, element, sizeof(T));
811  memset(array, element, 1);
812
813  // memset 0 bytes
814  memset(array - 10, element, zero);
815  memset(array - 1, element, zero);
816  memset(array, element, zero);
817  memset(array + length, 0, zero);
818  memset(array + length + 1, 0, zero);
819
820  // try to memset bytes to the right of array
821  EXPECT_DEATH(memset(array, 0, size + 1),
822               RightOOBErrorMessage(0));
823  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
824               RightOOBErrorMessage(4));
825  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
826               RightOOBErrorMessage(2 * sizeof(T) - 1));
827  // whole interval is to the right
828  EXPECT_DEATH(memset(array + length + 1, 0, 10),
829               RightOOBErrorMessage(sizeof(T)));
830
831  // try to memset bytes to the left of array
832  EXPECT_DEATH(memset((char*)array - 1, element, size),
833               LeftOOBErrorMessage(1));
834  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
835               LeftOOBErrorMessage(5));
836  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
837               LeftOOBErrorMessage(5 * sizeof(T)));
838  // whole interval is to the left
839  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
840               LeftOOBErrorMessage(2 * sizeof(T)));
841
842  // try to memset bytes both to the left & to the right
843  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
844               LeftOOBErrorMessage(2));
845
846  free(array);
847}
848
849TEST(AddressSanitizer, MemSetOOBTest) {
850  MemSetOOBTestTemplate<char>(100);
851  MemSetOOBTestTemplate<int>(5);
852  MemSetOOBTestTemplate<double>(256);
853  // We can test arrays of structres/classes here, but what for?
854}
855
856// Same test for memcpy and memmove functions
857template <typename T, class M>
858void MemTransferOOBTestTemplate(size_t length) {
859  if (length == 0) return;
860  size_t size = Ident(sizeof(T) * length);
861  T *src = Ident((T*)malloc(size));
862  T *dest = Ident((T*)malloc(size));
863  int zero = Ident(0);
864
865  // valid transfer of bytes between arrays
866  M::transfer(dest, src, size);
867  M::transfer(dest + 1, src, size - sizeof(T));
868  M::transfer(dest, src + length - 1, sizeof(T));
869  M::transfer(dest, src, 1);
870
871  // transfer zero bytes
872  M::transfer(dest - 1, src, 0);
873  M::transfer(dest + length, src, zero);
874  M::transfer(dest, src - 1, zero);
875  M::transfer(dest, src, zero);
876
877  // try to change mem to the right of dest
878  EXPECT_DEATH(M::transfer(dest + 1, src, size),
879               RightOOBErrorMessage(sizeof(T) - 1));
880  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
881               RightOOBErrorMessage(3));
882
883  // try to change mem to the left of dest
884  EXPECT_DEATH(M::transfer(dest - 2, src, size),
885               LeftOOBErrorMessage(2 * sizeof(T)));
886  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
887               LeftOOBErrorMessage(3));
888
889  // try to access mem to the right of src
890  EXPECT_DEATH(M::transfer(dest, src + 2, size),
891               RightOOBErrorMessage(2 * sizeof(T) - 1));
892  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
893               RightOOBErrorMessage(2));
894
895  // try to access mem to the left of src
896  EXPECT_DEATH(M::transfer(dest, src - 1, size),
897               LeftOOBErrorMessage(sizeof(T)));
898  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
899               LeftOOBErrorMessage(6));
900
901  // Generally we don't need to test cases where both accessing src and writing
902  // to dest address to poisoned memory.
903
904  T *big_src = Ident((T*)malloc(size * 2));
905  T *big_dest = Ident((T*)malloc(size * 2));
906  // try to change mem to both sides of dest
907  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
908               LeftOOBErrorMessage(sizeof(T)));
909  // try to access mem to both sides of src
910  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
911               LeftOOBErrorMessage(2 * sizeof(T)));
912
913  free(src);
914  free(dest);
915  free(big_src);
916  free(big_dest);
917}
918
919class MemCpyWrapper {
920 public:
921  static void* transfer(void *to, const void *from, size_t size) {
922    return memcpy(to, from, size);
923  }
924};
925TEST(AddressSanitizer, MemCpyOOBTest) {
926  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
927  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
928}
929
930class MemMoveWrapper {
931 public:
932  static void* transfer(void *to, const void *from, size_t size) {
933    return memmove(to, from, size);
934  }
935};
936TEST(AddressSanitizer, MemMoveOOBTest) {
937  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
938  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
939}
940
941// Tests for string functions
942
943// Used for string functions tests
944static char global_string[] = "global";
945static size_t global_string_length = 6;
946
947// Input to a test is a zero-terminated string str with given length
948// Accesses to the bytes to the left and to the right of str
949// are presumed to produce OOB errors
950void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
951  // Normal strlen calls
952  EXPECT_EQ(strlen(str), length);
953  if (length > 0) {
954    EXPECT_EQ(length - 1, strlen(str + 1));
955    EXPECT_EQ(0U, strlen(str + length));
956  }
957  // Arg of strlen is not malloced, OOB access
958  if (!is_global) {
959    // We don't insert RedZones to the left of global variables
960    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
961    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
962  }
963  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
964  // Overwrite terminator
965  str[length] = 'a';
966  // String is not zero-terminated, strlen will lead to OOB access
967  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
968  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
969  // Restore terminator
970  str[length] = 0;
971}
972TEST(AddressSanitizer, StrLenOOBTest) {
973  // Check heap-allocated string
974  size_t length = Ident(10);
975  char *heap_string = Ident((char*)malloc(length + 1));
976  char stack_string[10 + 1];
977  for (size_t i = 0; i < length; i++) {
978    heap_string[i] = 'a';
979    stack_string[i] = 'b';
980  }
981  heap_string[length] = 0;
982  stack_string[length] = 0;
983  StrLenOOBTestTemplate(heap_string, length, false);
984  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
985  //      make test for stack_string work. Or move it to output tests.
986  // StrLenOOBTestTemplate(stack_string, length, false);
987  StrLenOOBTestTemplate(global_string, global_string_length, true);
988  free(heap_string);
989}
990
991static inline char* MallocAndMemsetString(size_t size, char ch) {
992  char *s = Ident((char*)malloc(size));
993  memset(s, ch, size);
994  return s;
995}
996static inline char* MallocAndMemsetString(size_t size) {
997  return MallocAndMemsetString(size, 'z');
998}
999
1000#ifndef __APPLE__
1001TEST(AddressSanitizer, StrNLenOOBTest) {
1002  size_t size = Ident(123);
1003  char *str = MallocAndMemsetString(size);
1004  // Normal strnlen calls.
1005  Ident(strnlen(str - 1, 0));
1006  Ident(strnlen(str, size));
1007  Ident(strnlen(str + size - 1, 1));
1008  str[size - 1] = '\0';
1009  Ident(strnlen(str, 2 * size));
1010  // Argument points to not allocated memory.
1011  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1012  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1013  // Overwrite the terminating '\0' and hit unallocated memory.
1014  str[size - 1] = 'z';
1015  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1016  free(str);
1017}
1018#endif
1019
1020TEST(AddressSanitizer, StrDupOOBTest) {
1021  size_t size = Ident(42);
1022  char *str = MallocAndMemsetString(size);
1023  char *new_str;
1024  // Normal strdup calls.
1025  str[size - 1] = '\0';
1026  new_str = strdup(str);
1027  free(new_str);
1028  new_str = strdup(str + size - 1);
1029  free(new_str);
1030  // Argument points to not allocated memory.
1031  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1032  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1033  // Overwrite the terminating '\0' and hit unallocated memory.
1034  str[size - 1] = 'z';
1035  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1036  free(str);
1037}
1038
1039TEST(AddressSanitizer, StrCpyOOBTest) {
1040  size_t to_size = Ident(30);
1041  size_t from_size = Ident(6);  // less than to_size
1042  char *to = Ident((char*)malloc(to_size));
1043  char *from = Ident((char*)malloc(from_size));
1044  // Normal strcpy calls.
1045  strcpy(from, "hello");
1046  strcpy(to, from);
1047  strcpy(to + to_size - from_size, from);
1048  // Length of "from" is too small.
1049  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1050  // "to" or "from" points to not allocated memory.
1051  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1052  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1053  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1054  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1055  // Overwrite the terminating '\0' character and hit unallocated memory.
1056  from[from_size - 1] = '!';
1057  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1058  free(to);
1059  free(from);
1060}
1061
1062TEST(AddressSanitizer, StrNCpyOOBTest) {
1063  size_t to_size = Ident(20);
1064  size_t from_size = Ident(6);  // less than to_size
1065  char *to = Ident((char*)malloc(to_size));
1066  // From is a zero-terminated string "hello\0" of length 6
1067  char *from = Ident((char*)malloc(from_size));
1068  strcpy(from, "hello");
1069  // copy 0 bytes
1070  strncpy(to, from, 0);
1071  strncpy(to - 1, from - 1, 0);
1072  // normal strncpy calls
1073  strncpy(to, from, from_size);
1074  strncpy(to, from, to_size);
1075  strncpy(to, from + from_size - 1, to_size);
1076  strncpy(to + to_size - 1, from, 1);
1077  // One of {to, from} points to not allocated memory
1078  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1079               LeftOOBErrorMessage(1));
1080  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1081               LeftOOBErrorMessage(1));
1082  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1083               RightOOBErrorMessage(0));
1084  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1085               RightOOBErrorMessage(0));
1086  // Length of "to" is too small
1087  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1088               RightOOBErrorMessage(0));
1089  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1090               RightOOBErrorMessage(0));
1091  // Overwrite terminator in from
1092  from[from_size - 1] = '!';
1093  // normal strncpy call
1094  strncpy(to, from, from_size);
1095  // Length of "from" is too small
1096  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1097               RightOOBErrorMessage(0));
1098  free(to);
1099  free(from);
1100}
1101
1102// Users may have different definitions of "strchr" and "index", so provide
1103// function pointer typedefs and overload RunStrChrTest implementation.
1104// We can't use macro for RunStrChrTest body here, as this macro would
1105// confuse EXPECT_DEATH gtest macro.
1106typedef char*(*PointerToStrChr1)(const char*, int);
1107typedef char*(*PointerToStrChr2)(char*, int);
1108
1109USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1110  size_t size = Ident(100);
1111  char *str = MallocAndMemsetString(size);
1112  str[10] = 'q';
1113  str[11] = '\0';
1114  EXPECT_EQ(str, StrChr(str, 'z'));
1115  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1116  EXPECT_EQ(NULL, StrChr(str, 'a'));
1117  // StrChr argument points to not allocated memory.
1118  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1119  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1120  // Overwrite the terminator and hit not allocated memory.
1121  str[11] = 'z';
1122  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1123  free(str);
1124}
1125USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1126  size_t size = Ident(100);
1127  char *str = MallocAndMemsetString(size);
1128  str[10] = 'q';
1129  str[11] = '\0';
1130  EXPECT_EQ(str, StrChr(str, 'z'));
1131  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1132  EXPECT_EQ(NULL, StrChr(str, 'a'));
1133  // StrChr argument points to not allocated memory.
1134  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1135  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1136  // Overwrite the terminator and hit not allocated memory.
1137  str[11] = 'z';
1138  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1139  free(str);
1140}
1141
1142TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1143  RunStrChrTest(&strchr);
1144  RunStrChrTest(&index);
1145}
1146
1147TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1148  // strcmp
1149  EXPECT_EQ(0, strcmp("", ""));
1150  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1151  EXPECT_GT(0, strcmp("ab", "ac"));
1152  EXPECT_GT(0, strcmp("abc", "abcd"));
1153  EXPECT_LT(0, strcmp("acc", "abc"));
1154  EXPECT_LT(0, strcmp("abcd", "abc"));
1155
1156  // strncmp
1157  EXPECT_EQ(0, strncmp("a", "b", 0));
1158  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1159  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1160  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1161  EXPECT_GT(0, strncmp("a", "b", 5));
1162  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1163  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1164  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1165  EXPECT_LT(0, strncmp("zyx", "", 2));
1166
1167  // strcasecmp
1168  EXPECT_EQ(0, strcasecmp("", ""));
1169  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1170  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1171  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1172  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1173  EXPECT_LT(0, strcasecmp("acc", "abc"));
1174  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1175
1176  // strncasecmp
1177  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1178  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1179  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1180  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1181  EXPECT_GT(0, strncasecmp("a", "B", 5));
1182  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1183  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1184  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1185  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1186
1187  // memcmp
1188  EXPECT_EQ(0, memcmp("a", "b", 0));
1189  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1190  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1191  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1192  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1193  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1194}
1195
1196typedef int(*PointerToStrCmp)(const char*, const char*);
1197void RunStrCmpTest(PointerToStrCmp StrCmp) {
1198  size_t size = Ident(100);
1199  char *s1 = MallocAndMemsetString(size);
1200  char *s2 = MallocAndMemsetString(size);
1201  s1[size - 1] = '\0';
1202  s2[size - 1] = '\0';
1203  // Normal StrCmp calls
1204  Ident(StrCmp(s1, s2));
1205  Ident(StrCmp(s1, s2 + size - 1));
1206  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1207  s1[size - 1] = 'z';
1208  s2[size - 1] = 'x';
1209  Ident(StrCmp(s1, s2));
1210  // One of arguments points to not allocated memory.
1211  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1212  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1213  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1214  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1215  // Hit unallocated memory and die.
1216  s2[size - 1] = 'z';
1217  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1218  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1219  free(s1);
1220  free(s2);
1221}
1222
1223TEST(AddressSanitizer, StrCmpOOBTest) {
1224  RunStrCmpTest(&strcmp);
1225}
1226
1227TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1228  RunStrCmpTest(&strcasecmp);
1229}
1230
1231typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1232void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1233  size_t size = Ident(100);
1234  char *s1 = MallocAndMemsetString(size);
1235  char *s2 = MallocAndMemsetString(size);
1236  s1[size - 1] = '\0';
1237  s2[size - 1] = '\0';
1238  // Normal StrNCmp calls
1239  Ident(StrNCmp(s1, s2, size + 2));
1240  s1[size - 1] = 'z';
1241  s2[size - 1] = 'x';
1242  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1243  s2[size - 1] = 'z';
1244  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1245  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1246  // One of arguments points to not allocated memory.
1247  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1248  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1249  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1250  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1251  // Hit unallocated memory and die.
1252  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1253  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1254  free(s1);
1255  free(s2);
1256}
1257
1258TEST(AddressSanitizer, StrNCmpOOBTest) {
1259  RunStrNCmpTest(&strncmp);
1260}
1261
1262TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1263  RunStrNCmpTest(&strncasecmp);
1264}
1265
1266TEST(AddressSanitizer, MemCmpOOBTest) {
1267  size_t size = Ident(100);
1268  char *s1 = MallocAndMemsetString(size);
1269  char *s2 = MallocAndMemsetString(size);
1270  // Normal memcmp calls.
1271  Ident(memcmp(s1, s2, size));
1272  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1273  Ident(memcmp(s1 - 1, s2 - 1, 0));
1274  // One of arguments points to not allocated memory.
1275  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1276  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1277  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1278  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1279  // Hit unallocated memory and die.
1280  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1281  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1282  // Zero bytes are not terminators and don't prevent from OOB.
1283  s1[size - 1] = '\0';
1284  s2[size - 1] = '\0';
1285  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1286  free(s1);
1287  free(s2);
1288}
1289
1290TEST(AddressSanitizer, StrCatOOBTest) {
1291  size_t to_size = Ident(100);
1292  char *to = MallocAndMemsetString(to_size);
1293  to[0] = '\0';
1294  size_t from_size = Ident(20);
1295  char *from = MallocAndMemsetString(from_size);
1296  from[from_size - 1] = '\0';
1297  // Normal strcat calls.
1298  strcat(to, from);
1299  strcat(to, from);
1300  strcat(to + from_size, from + from_size - 2);
1301  // Passing an invalid pointer is an error even when concatenating an empty
1302  // string.
1303  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBErrorMessage(1));
1304  // One of arguments points to not allocated memory.
1305  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1306  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1307  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1308  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1309
1310  // "from" is not zero-terminated.
1311  from[from_size - 1] = 'z';
1312  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1313  from[from_size - 1] = '\0';
1314  // "to" is not zero-terminated.
1315  memset(to, 'z', to_size);
1316  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1317  // "to" is too short to fit "from".
1318  to[to_size - from_size + 1] = '\0';
1319  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1320  // length of "to" is just enough.
1321  strcat(to, from + 1);
1322
1323  free(to);
1324  free(from);
1325}
1326
1327TEST(AddressSanitizer, StrNCatOOBTest) {
1328  size_t to_size = Ident(100);
1329  char *to = MallocAndMemsetString(to_size);
1330  to[0] = '\0';
1331  size_t from_size = Ident(20);
1332  char *from = MallocAndMemsetString(from_size);
1333  // Normal strncat calls.
1334  strncat(to, from, 0);
1335  strncat(to, from, from_size);
1336  from[from_size - 1] = '\0';
1337  strncat(to, from, 2 * from_size);
1338  // Catenating empty string with an invalid string is still an error.
1339  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBErrorMessage(1));
1340  strncat(to, from + from_size - 1, 10);
1341  // One of arguments points to not allocated memory.
1342  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBErrorMessage(1));
1343  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBErrorMessage(1));
1344  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBErrorMessage(0));
1345  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBErrorMessage(0));
1346
1347  memset(from, 'z', from_size);
1348  memset(to, 'z', to_size);
1349  to[0] = '\0';
1350  // "from" is too short.
1351  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBErrorMessage(0));
1352  // "to" is not zero-terminated.
1353  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBErrorMessage(0));
1354  // "to" is too short to fit "from".
1355  to[0] = 'z';
1356  to[to_size - from_size + 1] = '\0';
1357  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBErrorMessage(0));
1358  // "to" is just enough.
1359  strncat(to, from, from_size - 2);
1360
1361  free(to);
1362  free(from);
1363}
1364
1365static string OverlapErrorMessage(const string &func) {
1366  return func + "-param-overlap";
1367}
1368
1369TEST(AddressSanitizer, StrArgsOverlapTest) {
1370  size_t size = Ident(100);
1371  char *str = Ident((char*)malloc(size));
1372
1373// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1374// memmove().
1375#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1376    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1377  // Check "memcpy". Use Ident() to avoid inlining.
1378  memset(str, 'z', size);
1379  Ident(memcpy)(str + 1, str + 11, 10);
1380  Ident(memcpy)(str, str, 0);
1381  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1382  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1383#endif
1384
1385  // We do not treat memcpy with to==from as a bug.
1386  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1387  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1388  //              OverlapErrorMessage("memcpy"));
1389
1390  // Check "strcpy".
1391  memset(str, 'z', size);
1392  str[9] = '\0';
1393  strcpy(str + 10, str);
1394  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1395  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1396  strcpy(str, str + 5);
1397
1398  // Check "strncpy".
1399  memset(str, 'z', size);
1400  strncpy(str, str + 10, 10);
1401  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1402  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1403  str[10] = '\0';
1404  strncpy(str + 11, str, 20);
1405  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1406
1407  // Check "strcat".
1408  memset(str, 'z', size);
1409  str[10] = '\0';
1410  str[20] = '\0';
1411  strcat(str, str + 10);
1412  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1413  str[10] = '\0';
1414  strcat(str + 11, str);
1415  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1416  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1417  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1418
1419  // Check "strncat".
1420  memset(str, 'z', size);
1421  str[10] = '\0';
1422  strncat(str, str + 10, 10);  // from is empty
1423  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1424  str[10] = '\0';
1425  str[20] = '\0';
1426  strncat(str + 5, str, 5);
1427  str[10] = '\0';
1428  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1429  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1430
1431  free(str);
1432}
1433
1434void CallAtoi(const char *nptr) {
1435  Ident(atoi(nptr));
1436}
1437void CallAtol(const char *nptr) {
1438  Ident(atol(nptr));
1439}
1440void CallAtoll(const char *nptr) {
1441  Ident(atoll(nptr));
1442}
1443typedef void(*PointerToCallAtoi)(const char*);
1444
1445void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1446  char *array = MallocAndMemsetString(10, '1');
1447  // Invalid pointer to the string.
1448  EXPECT_DEATH(Atoi(array + 11), RightOOBErrorMessage(1));
1449  EXPECT_DEATH(Atoi(array - 1), LeftOOBErrorMessage(1));
1450  // Die if a buffer doesn't have terminating NULL.
1451  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1452  // Make last symbol a terminating NULL or other non-digit.
1453  array[9] = '\0';
1454  Atoi(array);
1455  array[9] = 'a';
1456  Atoi(array);
1457  Atoi(array + 9);
1458  // Sometimes we need to detect overflow if no digits are found.
1459  memset(array, ' ', 10);
1460  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1461  array[9] = '-';
1462  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1463  EXPECT_DEATH(Atoi(array + 9), RightOOBErrorMessage(0));
1464  array[8] = '-';
1465  Atoi(array);
1466  delete array;
1467}
1468
1469TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1470  RunAtoiOOBTest(&CallAtoi);
1471  RunAtoiOOBTest(&CallAtol);
1472  RunAtoiOOBTest(&CallAtoll);
1473}
1474
1475void CallStrtol(const char *nptr, char **endptr, int base) {
1476  Ident(strtol(nptr, endptr, base));
1477}
1478void CallStrtoll(const char *nptr, char **endptr, int base) {
1479  Ident(strtoll(nptr, endptr, base));
1480}
1481typedef void(*PointerToCallStrtol)(const char*, char**, int);
1482
1483void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1484  char *array = MallocAndMemsetString(3);
1485  char *endptr = NULL;
1486  array[0] = '1';
1487  array[1] = '2';
1488  array[2] = '3';
1489  // Invalid pointer to the string.
1490  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBErrorMessage(0));
1491  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBErrorMessage(1));
1492  // Buffer overflow if there is no terminating null (depends on base).
1493  Strtol(array, &endptr, 3);
1494  EXPECT_EQ(array + 2, endptr);
1495  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1496  array[2] = 'z';
1497  Strtol(array, &endptr, 35);
1498  EXPECT_EQ(array + 2, endptr);
1499  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBErrorMessage(0));
1500  // Add terminating zero to get rid of overflow.
1501  array[2] = '\0';
1502  Strtol(array, NULL, 36);
1503  // Don't check for overflow if base is invalid.
1504  Strtol(array - 1, NULL, -1);
1505  Strtol(array + 3, NULL, 1);
1506  // Sometimes we need to detect overflow if no digits are found.
1507  array[0] = array[1] = array[2] = ' ';
1508  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1509  array[2] = '+';
1510  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1511  array[2] = '-';
1512  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1513  array[1] = '+';
1514  Strtol(array, NULL, 0);
1515  array[1] = array[2] = 'z';
1516  Strtol(array, &endptr, 0);
1517  EXPECT_EQ(array, endptr);
1518  Strtol(array + 2, NULL, 0);
1519  EXPECT_EQ(array, endptr);
1520  delete array;
1521}
1522
1523TEST(AddressSanitizer, StrtollOOBTest) {
1524  RunStrtolOOBTest(&CallStrtoll);
1525}
1526TEST(AddressSanitizer, StrtolOOBTest) {
1527  RunStrtolOOBTest(&CallStrtol);
1528}
1529
1530// At the moment we instrument memcpy/memove/memset calls at compile time so we
1531// can't handle OOB error if these functions are called by pointer, see disabled
1532// MemIntrinsicCallByPointerTest below
1533typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1534typedef void*(*PointerToMemSet)(void*, int, size_t);
1535
1536void CallMemSetByPointer(PointerToMemSet MemSet) {
1537  size_t size = Ident(100);
1538  char *array = Ident((char*)malloc(size));
1539  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1540  free(array);
1541}
1542
1543void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1544  size_t size = Ident(100);
1545  char *src = Ident((char*)malloc(size));
1546  char *dst = Ident((char*)malloc(size));
1547  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1548  free(src);
1549  free(dst);
1550}
1551
1552TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1553  CallMemSetByPointer(&memset);
1554  CallMemTransferByPointer(&memcpy);
1555  CallMemTransferByPointer(&memmove);
1556}
1557
1558// This test case fails
1559// Clang optimizes memcpy/memset calls which lead to unaligned access
1560TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1561  int size = Ident(4096);
1562  char *s = Ident((char*)malloc(size));
1563  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1564  free(s);
1565}
1566
1567// TODO(samsonov): Add a test with malloc(0)
1568// TODO(samsonov): Add tests for str* and mem* functions.
1569
1570NOINLINE static int LargeFunction(bool do_bad_access) {
1571  int *x = new int[100];
1572  x[0]++;
1573  x[1]++;
1574  x[2]++;
1575  x[3]++;
1576  x[4]++;
1577  x[5]++;
1578  x[6]++;
1579  x[7]++;
1580  x[8]++;
1581  x[9]++;
1582
1583  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1584
1585  x[10]++;
1586  x[11]++;
1587  x[12]++;
1588  x[13]++;
1589  x[14]++;
1590  x[15]++;
1591  x[16]++;
1592  x[17]++;
1593  x[18]++;
1594  x[19]++;
1595
1596  delete x;
1597  return res;
1598}
1599
1600// Test the we have correct debug info for the failing instruction.
1601// This test requires the in-process symbolizer to be enabled by default.
1602TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1603  int failing_line = LargeFunction(false);
1604  char expected_warning[128];
1605  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1606  EXPECT_DEATH(LargeFunction(true), expected_warning);
1607}
1608
1609// Check that we unwind and symbolize correctly.
1610TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1611  int *a = (int*)malloc_aaa(sizeof(int));
1612  *a = 1;
1613  free_aaa(a);
1614  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1615               "malloc_fff.*malloc_eee.*malloc_ddd");
1616}
1617
1618void *ThreadedTestAlloc(void *a) {
1619  int **p = (int**)a;
1620  *p = new int;
1621  return 0;
1622}
1623
1624void *ThreadedTestFree(void *a) {
1625  int **p = (int**)a;
1626  delete *p;
1627  return 0;
1628}
1629
1630void *ThreadedTestUse(void *a) {
1631  int **p = (int**)a;
1632  **p = 1;
1633  return 0;
1634}
1635
1636void ThreadedTestSpawn() {
1637  pthread_t t;
1638  int *x;
1639  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1640  pthread_join(t, 0);
1641  pthread_create(&t, 0, ThreadedTestFree, &x);
1642  pthread_join(t, 0);
1643  pthread_create(&t, 0, ThreadedTestUse, &x);
1644  pthread_join(t, 0);
1645}
1646
1647TEST(AddressSanitizer, ThreadedTest) {
1648  EXPECT_DEATH(ThreadedTestSpawn(),
1649               ASAN_PCRE_DOTALL
1650               "Thread T.*created"
1651               ".*Thread T.*created"
1652               ".*Thread T.*created");
1653}
1654
1655#if ASAN_NEEDS_SEGV
1656TEST(AddressSanitizer, ShadowGapTest) {
1657#if SANITIZER_WORDSIZE == 32
1658  char *addr = (char*)0x22000000;
1659#else
1660  char *addr = (char*)0x0000100000080000;
1661#endif
1662  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1663}
1664#endif  // ASAN_NEEDS_SEGV
1665
1666extern "C" {
1667NOINLINE static void UseThenFreeThenUse() {
1668  char *x = Ident((char*)malloc(8));
1669  *x = 1;
1670  free_aaa(x);
1671  *x = 2;
1672}
1673}
1674
1675TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1676  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1677}
1678
1679TEST(AddressSanitizer, StrDupTest) {
1680  free(strdup(Ident("123")));
1681}
1682
1683// Currently we create and poison redzone at right of global variables.
1684char glob5[5];
1685static char static110[110];
1686const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1687static const char StaticConstGlob[3] = {9, 8, 7};
1688extern int GlobalsTest(int x);
1689
1690TEST(AddressSanitizer, GlobalTest) {
1691  static char func_static15[15];
1692
1693  static char fs1[10];
1694  static char fs2[10];
1695  static char fs3[10];
1696
1697  glob5[Ident(0)] = 0;
1698  glob5[Ident(1)] = 0;
1699  glob5[Ident(2)] = 0;
1700  glob5[Ident(3)] = 0;
1701  glob5[Ident(4)] = 0;
1702
1703  EXPECT_DEATH(glob5[Ident(5)] = 0,
1704               "0 bytes to the right of global variable.*glob5.* size 5");
1705  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1706               "6 bytes to the right of global variable.*glob5.* size 5");
1707  Ident(static110);  // avoid optimizations
1708  static110[Ident(0)] = 0;
1709  static110[Ident(109)] = 0;
1710  EXPECT_DEATH(static110[Ident(110)] = 0,
1711               "0 bytes to the right of global variable");
1712  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1713               "7 bytes to the right of global variable");
1714
1715  Ident(func_static15);  // avoid optimizations
1716  func_static15[Ident(0)] = 0;
1717  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1718               "0 bytes to the right of global variable");
1719  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1720               "9 bytes to the right of global variable");
1721
1722  Ident(fs1);
1723  Ident(fs2);
1724  Ident(fs3);
1725
1726  // We don't create left redzones, so this is not 100% guaranteed to fail.
1727  // But most likely will.
1728  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1729
1730  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1731               "is located 1 bytes to the right of .*ConstGlob");
1732  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1733               "is located 2 bytes to the right of .*StaticConstGlob");
1734
1735  // call stuff from another file.
1736  GlobalsTest(0);
1737}
1738
1739TEST(AddressSanitizer, GlobalStringConstTest) {
1740  static const char *zoo = "FOOBAR123";
1741  const char *p = Ident(zoo);
1742  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1743}
1744
1745TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1746  static char zoo[10];
1747  const char *p = Ident(zoo);
1748  // The file name should be present in the report.
1749  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1750}
1751
1752int *ReturnsPointerToALocalObject() {
1753  int a = 0;
1754  return Ident(&a);
1755}
1756
1757#if ASAN_UAR == 1
1758TEST(AddressSanitizer, LocalReferenceReturnTest) {
1759  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1760  int *p = f();
1761  // Call 'f' a few more times, 'p' should still be poisoned.
1762  for (int i = 0; i < 32; i++)
1763    f();
1764  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1765  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1766}
1767#endif
1768
1769template <int kSize>
1770NOINLINE static void FuncWithStack() {
1771  char x[kSize];
1772  Ident(x)[0] = 0;
1773  Ident(x)[kSize-1] = 0;
1774}
1775
1776static void LotsOfStackReuse() {
1777  int LargeStack[10000];
1778  Ident(LargeStack)[0] = 0;
1779  for (int i = 0; i < 10000; i++) {
1780    FuncWithStack<128 * 1>();
1781    FuncWithStack<128 * 2>();
1782    FuncWithStack<128 * 4>();
1783    FuncWithStack<128 * 8>();
1784    FuncWithStack<128 * 16>();
1785    FuncWithStack<128 * 32>();
1786    FuncWithStack<128 * 64>();
1787    FuncWithStack<128 * 128>();
1788    FuncWithStack<128 * 256>();
1789    FuncWithStack<128 * 512>();
1790    Ident(LargeStack)[0] = 0;
1791  }
1792}
1793
1794TEST(AddressSanitizer, StressStackReuseTest) {
1795  LotsOfStackReuse();
1796}
1797
1798TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1799  const int kNumThreads = 20;
1800  pthread_t t[kNumThreads];
1801  for (int i = 0; i < kNumThreads; i++) {
1802    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1803  }
1804  for (int i = 0; i < kNumThreads; i++) {
1805    pthread_join(t[i], 0);
1806  }
1807}
1808
1809static void *PthreadExit(void *a) {
1810  pthread_exit(0);
1811  return 0;
1812}
1813
1814TEST(AddressSanitizer, PthreadExitTest) {
1815  pthread_t t;
1816  for (int i = 0; i < 1000; i++) {
1817    pthread_create(&t, 0, PthreadExit, 0);
1818    pthread_join(t, 0);
1819  }
1820}
1821
1822#ifdef __EXCEPTIONS
1823NOINLINE static void StackReuseAndException() {
1824  int large_stack[1000];
1825  Ident(large_stack);
1826  ASAN_THROW(1);
1827}
1828
1829// TODO(kcc): support exceptions with use-after-return.
1830TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1831  for (int i = 0; i < 10000; i++) {
1832    try {
1833    StackReuseAndException();
1834    } catch(...) {
1835    }
1836  }
1837}
1838#endif
1839
1840TEST(AddressSanitizer, MlockTest) {
1841  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1842  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1843  EXPECT_EQ(0, munlockall());
1844  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1845}
1846
1847struct LargeStruct {
1848  int foo[100];
1849};
1850
1851// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1852// Struct copy should not cause asan warning even if lhs == rhs.
1853TEST(AddressSanitizer, LargeStructCopyTest) {
1854  LargeStruct a;
1855  *Ident(&a) = *Ident(&a);
1856}
1857
1858ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
1859static void NoAddressSafety() {
1860  char *foo = new char[10];
1861  Ident(foo)[10] = 0;
1862  delete [] foo;
1863}
1864
1865TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1866  Ident(NoAddressSafety)();
1867}
1868
1869// ------------------ demo tests; run each one-by-one -------------
1870// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1871TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1872  ThreadedTestSpawn();
1873}
1874
1875void *SimpleBugOnSTack(void *x = 0) {
1876  char a[20];
1877  Ident(a)[20] = 0;
1878  return 0;
1879}
1880
1881TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1882  SimpleBugOnSTack();
1883}
1884
1885TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1886  pthread_t t;
1887  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1888  pthread_join(t, 0);
1889}
1890
1891TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1892  uaf_test<U1>(10, 0);
1893}
1894TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1895  uaf_test<U1>(10, -2);
1896}
1897TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1898  uaf_test<U1>(10, 10);
1899}
1900
1901TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1902  uaf_test<U1>(kLargeMalloc, 0);
1903}
1904
1905TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1906  oob_test<U1>(10, -1);
1907}
1908
1909TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1910  oob_test<U1>(kLargeMalloc, -1);
1911}
1912
1913TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1914  oob_test<U1>(10, 10);
1915}
1916
1917TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1918  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1919}
1920
1921TEST(AddressSanitizer, DISABLED_DemoOOM) {
1922  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1923  printf("%p\n", malloc(size));
1924}
1925
1926TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1927  DoubleFree();
1928}
1929
1930TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1931  int *a = 0;
1932  Ident(a)[10] = 0;
1933}
1934
1935TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1936  static char a[100];
1937  static char b[100];
1938  static char c[100];
1939  Ident(a);
1940  Ident(b);
1941  Ident(c);
1942  Ident(a)[5] = 0;
1943  Ident(b)[105] = 0;
1944  Ident(a)[5] = 0;
1945}
1946
1947TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1948  const size_t kAllocSize = (1 << 28) - 1024;
1949  size_t total_size = 0;
1950  while (true) {
1951    char *x = (char*)malloc(kAllocSize);
1952    memset(x, 0, kAllocSize);
1953    total_size += kAllocSize;
1954    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
1955  }
1956}
1957
1958// http://code.google.com/p/address-sanitizer/issues/detail?id=66
1959TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
1960  for (int i = 0; i < 1000000; i++) {
1961    delete [] (Ident(new char [8644]));
1962  }
1963  char *x = new char[8192];
1964  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
1965  delete [] Ident(x);
1966}
1967
1968#ifdef __APPLE__
1969#include "asan_mac_test.h"
1970TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
1971  EXPECT_DEATH(
1972      CFAllocatorDefaultDoubleFree(NULL),
1973      "attempting double-free");
1974}
1975
1976void CFAllocator_DoubleFreeOnPthread() {
1977  pthread_t child;
1978  pthread_create(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
1979  pthread_join(child, NULL);  // Shouldn't be reached.
1980}
1981
1982TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
1983  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
1984}
1985
1986namespace {
1987
1988void *GLOB;
1989
1990void *CFAllocatorAllocateToGlob(void *unused) {
1991  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
1992  return NULL;
1993}
1994
1995void *CFAllocatorDeallocateFromGlob(void *unused) {
1996  char *p = (char*)GLOB;
1997  p[100] = 'A';  // ASan should report an error here.
1998  CFAllocatorDeallocate(NULL, GLOB);
1999  return NULL;
2000}
2001
2002void CFAllocator_PassMemoryToAnotherThread() {
2003  pthread_t th1, th2;
2004  pthread_create(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2005  pthread_join(th1, NULL);
2006  pthread_create(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2007  pthread_join(th2, NULL);
2008}
2009
2010TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2011  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2012               "heap-buffer-overflow");
2013}
2014
2015}  // namespace
2016
2017// TODO(glider): figure out whether we still need these tests. Is it correct
2018// to intercept the non-default CFAllocators?
2019TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2020  EXPECT_DEATH(
2021      CFAllocatorSystemDefaultDoubleFree(),
2022      "attempting double-free");
2023}
2024
2025// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2026TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2027  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2028}
2029
2030TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2031  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2032}
2033
2034TEST(AddressSanitizerMac, GCDDispatchAsync) {
2035  // Make sure the whole ASan report is printed, i.e. that we don't die
2036  // on a CHECK.
2037  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
2038}
2039
2040TEST(AddressSanitizerMac, GCDDispatchSync) {
2041  // Make sure the whole ASan report is printed, i.e. that we don't die
2042  // on a CHECK.
2043  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
2044}
2045
2046
2047TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2048  // Make sure the whole ASan report is printed, i.e. that we don't die
2049  // on a CHECK.
2050  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
2051}
2052
2053TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2054  // Make sure the whole ASan report is printed, i.e. that we don't die
2055  // on a CHECK.
2056  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
2057}
2058
2059TEST(AddressSanitizerMac, GCDDispatchAfter) {
2060  // Make sure the whole ASan report is printed, i.e. that we don't die
2061  // on a CHECK.
2062  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
2063}
2064
2065TEST(AddressSanitizerMac, GCDSourceEvent) {
2066  // Make sure the whole ASan report is printed, i.e. that we don't die
2067  // on a CHECK.
2068  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
2069}
2070
2071TEST(AddressSanitizerMac, GCDSourceCancel) {
2072  // Make sure the whole ASan report is printed, i.e. that we don't die
2073  // on a CHECK.
2074  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
2075}
2076
2077TEST(AddressSanitizerMac, GCDGroupAsync) {
2078  // Make sure the whole ASan report is printed, i.e. that we don't die
2079  // on a CHECK.
2080  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
2081}
2082
2083void *MallocIntrospectionLockWorker(void *_) {
2084  const int kNumPointers = 100;
2085  int i;
2086  void *pointers[kNumPointers];
2087  for (i = 0; i < kNumPointers; i++) {
2088    pointers[i] = malloc(i + 1);
2089  }
2090  for (i = 0; i < kNumPointers; i++) {
2091    free(pointers[i]);
2092  }
2093
2094  return NULL;
2095}
2096
2097void *MallocIntrospectionLockForker(void *_) {
2098  pid_t result = fork();
2099  if (result == -1) {
2100    perror("fork");
2101  }
2102  assert(result != -1);
2103  if (result == 0) {
2104    // Call malloc in the child process to make sure we won't deadlock.
2105    void *ptr = malloc(42);
2106    free(ptr);
2107    exit(0);
2108  } else {
2109    // Return in the parent process.
2110    return NULL;
2111  }
2112}
2113
2114TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2115  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2116  // will cause forked processes to deadlock.
2117  // TODO(glider): need to detect that none of the child processes deadlocked.
2118  const int kNumWorkers = 5, kNumIterations = 100;
2119  int i, iter;
2120  for (iter = 0; iter < kNumIterations; iter++) {
2121    pthread_t workers[kNumWorkers], forker;
2122    for (i = 0; i < kNumWorkers; i++) {
2123      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2124    }
2125    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
2126    for (i = 0; i < kNumWorkers; i++) {
2127      pthread_join(workers[i], 0);
2128    }
2129    pthread_join(forker, 0);
2130  }
2131}
2132
2133void *TSDAllocWorker(void *test_key) {
2134  if (test_key) {
2135    void *mem = malloc(10);
2136    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2137  }
2138  return NULL;
2139}
2140
2141TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2142  pthread_t th;
2143  pthread_key_t test_key;
2144  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2145  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
2146  pthread_join(th, NULL);
2147  pthread_key_delete(test_key);
2148}
2149
2150// Test that CFStringCreateCopy does not copy constant strings.
2151TEST(AddressSanitizerMac, CFStringCreateCopy) {
2152  CFStringRef str = CFSTR("Hello world!\n");
2153  CFStringRef str2 = CFStringCreateCopy(0, str);
2154  EXPECT_EQ(str, str2);
2155}
2156
2157TEST(AddressSanitizerMac, NSObjectOOB) {
2158  // Make sure that our allocators are used for NSObjects.
2159  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2160}
2161
2162// Make sure that correct pointer is passed to free() when deallocating a
2163// NSURL object.
2164// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2165TEST(AddressSanitizerMac, NSURLDeallocation) {
2166  TestNSURLDeallocation();
2167}
2168
2169// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2170TEST(AddressSanitizerMac, Mstats) {
2171  malloc_statistics_t stats1, stats2;
2172  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2173  const int kMallocSize = 100000;
2174  void *alloc = Ident(malloc(kMallocSize));
2175  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2176  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2177  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2178  free(alloc);
2179  // Even the default OSX allocator may not change the stats after free().
2180}
2181#endif  // __APPLE__
2182
2183// Test that instrumentation of stack allocations takes into account
2184// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2185// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2186TEST(AddressSanitizer, LongDoubleNegativeTest) {
2187  long double a, b;
2188  static long double c;
2189  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2190  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2191}
2192