asan_test.cc revision badab16503e025326a46a45da8faa6fd20e5fc3d
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===-- asan_test.cc ------------------------------------------------------===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
5c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
6868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)// License. See LICENSE.TXT for details.
72a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
9f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is a part of AddressSanitizer, an address sanity checker.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
12116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <stdio.h>
142a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include <signal.h>
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <stdlib.h>
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <string.h>
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <strings.h>
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <pthread.h>
195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <stdint.h>
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <setjmp.h>
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <assert.h>
222a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
237dbb3d5cf0c15f500944d211057644d6a2f37371Ben Murdoch#if defined(__i386__) || defined(__x86_64__)
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <emmintrin.h>
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#endif
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "asan_test_utils.h"
282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
292a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#ifndef __APPLE__
302a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include <malloc.h>
312a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#else
322a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include <malloc/malloc.h>
332a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <CoreFoundation/CFString.h>
355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#endif  // __APPLE__
365d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
37f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#if ASAN_HAS_EXCEPTIONS
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)# define ASAN_THROW(x) throw (x)
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#else
405821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)# define ASAN_THROW(x)
415821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#endif
425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <sys/mman.h>
445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
452a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)typedef uint8_t   U1;
462a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)typedef uint16_t  U2;
475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)typedef uint32_t  U4;
485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)typedef uint64_t  U8;
495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
503551c9c881056c480085172ff9840cab31610854Torne (Richard Coles)static const int kPageSize = 4096;
515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// Simple stand-alone pseudorandom number generator.
532a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// Current algorithm is ANSI C linear congruential PRNG.
545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static inline uint32_t my_rand(uint32_t* state) {
555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return (*state = *state * 1103515245 + 12345) >> 16;
565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static uint32_t global_seed = 0;
595821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)const size_t kLargeMalloc = 1 << 24;
615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)template<typename T>
635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void asan_write(T *a) {
645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  *a = 0;
655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
662a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  EXPECT_EQ(0U, ((uintptr_t)p % size));
695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if      (size == 1) asan_write((uint8_t*)p);
705821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  else if (size == 2) asan_write((uint16_t*)p);
715821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  else if (size == 4) asan_write((uint32_t*)p);
725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  else if (size == 8) asan_write((uint64_t*)p);
735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
745821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
755821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *malloc_fff(size_t size) {
765821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = malloc/**/(size); break_optimization(0); return res;}
775821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *malloc_eee(size_t size) {
785821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = malloc_fff(size); break_optimization(0); return res;}
795821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *malloc_ddd(size_t size) {
805821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = malloc_eee(size); break_optimization(0); return res;}
815821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *malloc_ccc(size_t size) {
82f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)  void *res = malloc_ddd(size); break_optimization(0); return res;}
83f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)NOINLINE void *malloc_bbb(size_t size) {
845821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = malloc_ccc(size); break_optimization(0); return res;}
855821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *malloc_aaa(size_t size) {
865821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = malloc_bbb(size); break_optimization(0); return res;}
875821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
885821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#ifndef __APPLE__
892a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)NOINLINE void *memalign_fff(size_t alignment, size_t size) {
905821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
915821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *memalign_eee(size_t alignment, size_t size) {
922a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
932a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
945821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
955821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
96cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
975821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
985821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
992a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
1002a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
1012a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#endif  // __APPLE__
1022a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1032a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1042a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
1052a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
1062a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
1075821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1085821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)template<typename T>
1095821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void oob_test(int size, int off) {
1105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  char *p = (char*)malloc_aaa(size);
1115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
1125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  //        sizeof(T), p, p + size, off);
1135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  asan_write((T*)(p + off));
1145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  free_aaa(p);
1155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
1165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1182a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)template<typename T>
1195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NOINLINE void uaf_test(int size, int off) {
1205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  char *p = (char *)malloc_aaa(size);
1215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  free_aaa(p);
1225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  for (int i = 1; i < 100; i++)
123    free_aaa(malloc_aaa(i));
124  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
125          (long)sizeof(T), p, off);
126  asan_write((T*)(p + off));
127}
128
129TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
130#if defined(__has_feature) && __has_feature(address_sanitizer)
131  bool asan = 1;
132#elif defined(__SANITIZE_ADDRESS__)
133  bool asan = 1;
134#else
135  bool asan = 0;
136#endif
137  EXPECT_EQ(true, asan);
138}
139
140TEST(AddressSanitizer, SimpleDeathTest) {
141  EXPECT_DEATH(exit(1), "");
142}
143
144TEST(AddressSanitizer, VariousMallocsTest) {
145  int *a = (int*)malloc(100 * sizeof(int));
146  a[50] = 0;
147  free(a);
148
149  int *r = (int*)malloc(10);
150  r = (int*)realloc(r, 2000 * sizeof(int));
151  r[1000] = 0;
152  free(r);
153
154  int *b = new int[100];
155  b[50] = 0;
156  delete [] b;
157
158  int *c = new int;
159  *c = 0;
160  delete c;
161
162#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
163  int *pm;
164  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
165  EXPECT_EQ(0, pm_res);
166  free(pm);
167#endif
168
169#if !defined(__APPLE__)
170  int *ma = (int*)memalign(kPageSize, kPageSize);
171  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
172  ma[123] = 0;
173  free(ma);
174#endif  // __APPLE__
175}
176
177TEST(AddressSanitizer, CallocTest) {
178  int *a = (int*)calloc(100, sizeof(int));
179  EXPECT_EQ(0, a[10]);
180  free(a);
181}
182
183TEST(AddressSanitizer, VallocTest) {
184  void *a = valloc(100);
185  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
186  free(a);
187}
188
189#ifndef __APPLE__
190TEST(AddressSanitizer, PvallocTest) {
191  char *a = (char*)pvalloc(kPageSize + 100);
192  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
193  a[kPageSize + 101] = 1;  // we should not report an error here.
194  free(a);
195
196  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
197  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
198  a[101] = 1;  // we should not report an error here.
199  free(a);
200}
201#endif  // __APPLE__
202
203void *TSDWorker(void *test_key) {
204  if (test_key) {
205    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
206  }
207  return NULL;
208}
209
210void TSDDestructor(void *tsd) {
211  // Spawning a thread will check that the current thread id is not -1.
212  pthread_t th;
213  pthread_create(&th, NULL, TSDWorker, NULL);
214  pthread_join(th, NULL);
215}
216
217// This tests triggers the thread-specific data destruction fiasco which occurs
218// if we don't manage the TSD destructors ourselves. We create a new pthread
219// key with a non-NULL destructor which is likely to be put after the destructor
220// of AsanThread in the list of destructors.
221// In this case the TSD for AsanThread will be destroyed before TSDDestructor
222// is called for the child thread, and a CHECK will fail when we call
223// pthread_create() to spawn the grandchild.
224TEST(AddressSanitizer, DISABLED_TSDTest) {
225  pthread_t th;
226  pthread_key_t test_key;
227  pthread_key_create(&test_key, TSDDestructor);
228  pthread_create(&th, NULL, TSDWorker, &test_key);
229  pthread_join(th, NULL);
230  pthread_key_delete(test_key);
231}
232
233template<typename T>
234void OOBTest() {
235  char expected_str[100];
236  for (int size = sizeof(T); size < 20; size += 5) {
237    for (int i = -5; i < 0; i++) {
238      const char *str =
239          "is located.*%d byte.*to the left";
240      sprintf(expected_str, str, abs(i));
241      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
242    }
243
244    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
245      oob_test<T>(size, i);
246
247    for (int i = size - sizeof(T) + 1; i <= (int)(size + 3 * sizeof(T)); i++) {
248      const char *str =
249          "is located.*%d byte.*to the right";
250      int off = i >= size ? (i - size) : 0;
251      // we don't catch unaligned partially OOB accesses.
252      if (i % sizeof(T)) continue;
253      sprintf(expected_str, str, off);
254      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
255    }
256  }
257
258  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
259          "is located.*1 byte.*to the left");
260  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
261          "is located.*0 byte.*to the right");
262}
263
264// TODO(glider): the following tests are EXTREMELY slow on Darwin:
265//   AddressSanitizer.OOB_char (125503 ms)
266//   AddressSanitizer.OOB_int (126890 ms)
267//   AddressSanitizer.OOBRightTest (315605 ms)
268//   AddressSanitizer.SimpleStackTest (366559 ms)
269
270TEST(AddressSanitizer, OOB_char) {
271  OOBTest<U1>();
272}
273
274TEST(AddressSanitizer, OOB_int) {
275  OOBTest<U4>();
276}
277
278TEST(AddressSanitizer, OOBRightTest) {
279  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
280    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
281      for (size_t offset = 0; offset <= 8; offset += access_size) {
282        void *p = malloc(alloc_size);
283        // allocated: [p, p + alloc_size)
284        // accessed:  [p + offset, p + offset + access_size)
285        uint8_t *addr = (uint8_t*)p + offset;
286        if (offset + access_size <= alloc_size) {
287          asan_write_sized_aligned(addr, access_size);
288        } else {
289          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
290          const char *str =
291              "is located.%d *byte.*to the right";
292          char expected_str[100];
293          sprintf(expected_str, str, outside_bytes);
294          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
295                       expected_str);
296        }
297        free(p);
298      }
299    }
300  }
301}
302
303TEST(AddressSanitizer, UAF_char) {
304  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
305  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
306  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
307  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
308  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
309  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
310}
311
312#if ASAN_HAS_BLACKLIST
313TEST(AddressSanitizer, IgnoreTest) {
314  int *x = Ident(new int);
315  delete Ident(x);
316  *x = 0;
317}
318#endif  // ASAN_HAS_BLACKLIST
319
320struct StructWithBitField {
321  int bf1:1;
322  int bf2:1;
323  int bf3:1;
324  int bf4:29;
325};
326
327TEST(AddressSanitizer, BitFieldPositiveTest) {
328  StructWithBitField *x = new StructWithBitField;
329  delete Ident(x);
330  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
331  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
332  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
333  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
334}
335
336struct StructWithBitFields_8_24 {
337  int a:8;
338  int b:24;
339};
340
341TEST(AddressSanitizer, BitFieldNegativeTest) {
342  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
343  x->a = 0;
344  x->b = 0;
345  delete Ident(x);
346}
347
348TEST(AddressSanitizer, OutOfMemoryTest) {
349  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
350  EXPECT_EQ(0, realloc(0, size));
351  EXPECT_EQ(0, realloc(0, ~Ident(0)));
352  EXPECT_EQ(0, malloc(size));
353  EXPECT_EQ(0, malloc(~Ident(0)));
354  EXPECT_EQ(0, calloc(1, size));
355  EXPECT_EQ(0, calloc(1, ~Ident(0)));
356}
357
358#if ASAN_NEEDS_SEGV
359namespace {
360
361const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
362const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
363
364TEST(AddressSanitizer, WildAddressTest) {
365  char *c = (char*)0x123;
366  EXPECT_DEATH(*c = 0, kUnknownCrash);
367}
368
369void my_sigaction_sighandler(int, siginfo_t*, void*) {
370  fprintf(stderr, kOverriddenHandler);
371  exit(1);
372}
373
374void my_signal_sighandler(int signum) {
375  fprintf(stderr, kOverriddenHandler);
376  exit(1);
377}
378
379TEST(AddressSanitizer, SignalTest) {
380  struct sigaction sigact;
381  memset(&sigact, 0, sizeof(sigact));
382  sigact.sa_sigaction = my_sigaction_sighandler;
383  sigact.sa_flags = SA_SIGINFO;
384  // ASan should silently ignore sigaction()...
385  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
386#ifdef __APPLE__
387  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
388#endif
389  char *c = (char*)0x123;
390  EXPECT_DEATH(*c = 0, kUnknownCrash);
391  // ... and signal().
392  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
393  EXPECT_DEATH(*c = 0, kUnknownCrash);
394}
395}  // namespace
396#endif
397
398static void MallocStress(size_t n) {
399  uint32_t seed = my_rand(&global_seed);
400  for (size_t iter = 0; iter < 10; iter++) {
401    vector<void *> vec;
402    for (size_t i = 0; i < n; i++) {
403      if ((i % 3) == 0) {
404        if (vec.empty()) continue;
405        size_t idx = my_rand(&seed) % vec.size();
406        void *ptr = vec[idx];
407        vec[idx] = vec.back();
408        vec.pop_back();
409        free_aaa(ptr);
410      } else {
411        size_t size = my_rand(&seed) % 1000 + 1;
412#ifndef __APPLE__
413        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
414        char *ptr = (char*)memalign_aaa(alignment, size);
415#else
416        char *ptr = (char*) malloc_aaa(size);
417#endif
418        vec.push_back(ptr);
419        ptr[0] = 0;
420        ptr[size-1] = 0;
421        ptr[size/2] = 0;
422      }
423    }
424    for (size_t i = 0; i < vec.size(); i++)
425      free_aaa(vec[i]);
426  }
427}
428
429TEST(AddressSanitizer, MallocStressTest) {
430  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
431}
432
433static void TestLargeMalloc(size_t size) {
434  char buff[1024];
435  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
436  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
437}
438
439TEST(AddressSanitizer, LargeMallocTest) {
440  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
441    TestLargeMalloc(i);
442  }
443}
444
445#if ASAN_LOW_MEMORY != 1
446TEST(AddressSanitizer, HugeMallocTest) {
447#ifdef __APPLE__
448  // It was empirically found out that 1215 megabytes is the maximum amount of
449  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
450  // 32-bit Mac 10.7 gives even less (< 1G).
451  // (the libSystem malloc() allows allocating up to 2300 megabytes without
452  // ASan).
453  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
454#else
455  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
456#endif
457  TestLargeMalloc(n_megs << 20);
458}
459#endif
460
461TEST(AddressSanitizer, ThreadedMallocStressTest) {
462  const int kNumThreads = 4;
463  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
464  pthread_t t[kNumThreads];
465  for (int i = 0; i < kNumThreads; i++) {
466    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress,
467        (void*)kNumIterations);
468  }
469  for (int i = 0; i < kNumThreads; i++) {
470    pthread_join(t[i], 0);
471  }
472}
473
474void *ManyThreadsWorker(void *a) {
475  for (int iter = 0; iter < 100; iter++) {
476    for (size_t size = 100; size < 2000; size *= 2) {
477      free(Ident(malloc(size)));
478    }
479  }
480  return 0;
481}
482
483TEST(AddressSanitizer, ManyThreadsTest) {
484  const size_t kNumThreads = SANITIZER_WORDSIZE == 32 ? 30 : 1000;
485  pthread_t t[kNumThreads];
486  for (size_t i = 0; i < kNumThreads; i++) {
487    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
488  }
489  for (size_t i = 0; i < kNumThreads; i++) {
490    pthread_join(t[i], 0);
491  }
492}
493
494TEST(AddressSanitizer, ReallocTest) {
495  const int kMinElem = 5;
496  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
497  ptr[3] = 3;
498  for (int i = 0; i < 10000; i++) {
499    ptr = (int*)realloc(ptr,
500        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
501    EXPECT_EQ(3, ptr[3]);
502  }
503}
504
505#ifndef __APPLE__
506static const char *kMallocUsableSizeErrorMsg =
507  "AddressSanitizer: attempting to call malloc_usable_size()";
508
509TEST(AddressSanitizer, MallocUsableSizeTest) {
510  const size_t kArraySize = 100;
511  char *array = Ident((char*)malloc(kArraySize));
512  int *int_ptr = Ident(new int);
513  EXPECT_EQ(0U, malloc_usable_size(NULL));
514  EXPECT_EQ(kArraySize, malloc_usable_size(array));
515  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
516  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
517  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
518               kMallocUsableSizeErrorMsg);
519  free(array);
520  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
521}
522#endif
523
524void WrongFree() {
525  int *x = (int*)malloc(100 * sizeof(int));
526  // Use the allocated memory, otherwise Clang will optimize it out.
527  Ident(x);
528  free(x + 1);
529}
530
531TEST(AddressSanitizer, WrongFreeTest) {
532  EXPECT_DEATH(WrongFree(),
533               "ERROR: AddressSanitizer: attempting free.*not malloc");
534}
535
536void DoubleFree() {
537  int *x = (int*)malloc(100 * sizeof(int));
538  fprintf(stderr, "DoubleFree: x=%p\n", x);
539  free(x);
540  free(x);
541  fprintf(stderr, "should have failed in the second free(%p)\n", x);
542  abort();
543}
544
545TEST(AddressSanitizer, DoubleFreeTest) {
546  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
547               "ERROR: AddressSanitizer: attempting double-free"
548               ".*is located 0 bytes inside of 400-byte region"
549               ".*freed by thread T0 here"
550               ".*previously allocated by thread T0 here");
551}
552
553template<int kSize>
554NOINLINE void SizedStackTest() {
555  char a[kSize];
556  char  *A = Ident((char*)&a);
557  for (size_t i = 0; i < kSize; i++)
558    A[i] = i;
559  EXPECT_DEATH(A[-1] = 0, "");
560  EXPECT_DEATH(A[-20] = 0, "");
561  EXPECT_DEATH(A[-31] = 0, "");
562  EXPECT_DEATH(A[kSize] = 0, "");
563  EXPECT_DEATH(A[kSize + 1] = 0, "");
564  EXPECT_DEATH(A[kSize + 10] = 0, "");
565  EXPECT_DEATH(A[kSize + 31] = 0, "");
566}
567
568TEST(AddressSanitizer, SimpleStackTest) {
569  SizedStackTest<1>();
570  SizedStackTest<2>();
571  SizedStackTest<3>();
572  SizedStackTest<4>();
573  SizedStackTest<5>();
574  SizedStackTest<6>();
575  SizedStackTest<7>();
576  SizedStackTest<16>();
577  SizedStackTest<25>();
578  SizedStackTest<34>();
579  SizedStackTest<43>();
580  SizedStackTest<51>();
581  SizedStackTest<62>();
582  SizedStackTest<64>();
583  SizedStackTest<128>();
584}
585
586TEST(AddressSanitizer, ManyStackObjectsTest) {
587  char XXX[10];
588  char YYY[20];
589  char ZZZ[30];
590  Ident(XXX);
591  Ident(YYY);
592  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
593}
594
595NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
596  char d[4] = {0};
597  char *D = Ident(d);
598  switch (frame) {
599    case 3: a[5]++; break;
600    case 2: b[5]++; break;
601    case 1: c[5]++; break;
602    case 0: D[5]++; break;
603  }
604}
605NOINLINE static void Frame1(int frame, char *a, char *b) {
606  char c[4] = {0}; Frame0(frame, a, b, c);
607  break_optimization(0);
608}
609NOINLINE static void Frame2(int frame, char *a) {
610  char b[4] = {0}; Frame1(frame, a, b);
611  break_optimization(0);
612}
613NOINLINE static void Frame3(int frame) {
614  char a[4] = {0}; Frame2(frame, a);
615  break_optimization(0);
616}
617
618TEST(AddressSanitizer, GuiltyStackFrame0Test) {
619  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
620}
621TEST(AddressSanitizer, GuiltyStackFrame1Test) {
622  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
623}
624TEST(AddressSanitizer, GuiltyStackFrame2Test) {
625  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
626}
627TEST(AddressSanitizer, GuiltyStackFrame3Test) {
628  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
629}
630
631NOINLINE void LongJmpFunc1(jmp_buf buf) {
632  // create three red zones for these two stack objects.
633  int a;
634  int b;
635
636  int *A = Ident(&a);
637  int *B = Ident(&b);
638  *A = *B;
639  longjmp(buf, 1);
640}
641
642NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
643  // create three red zones for these two stack objects.
644  int a;
645  int b;
646
647  int *A = Ident(&a);
648  int *B = Ident(&b);
649  *A = *B;
650  __builtin_longjmp((void**)buf, 1);
651}
652
653NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
654  // create three red zones for these two stack objects.
655  int a;
656  int b;
657
658  int *A = Ident(&a);
659  int *B = Ident(&b);
660  *A = *B;
661  _longjmp(buf, 1);
662}
663
664NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
665  // create three red zones for these two stack objects.
666  int a;
667  int b;
668
669  int *A = Ident(&a);
670  int *B = Ident(&b);
671  *A = *B;
672  siglongjmp(buf, 1);
673}
674
675
676NOINLINE void TouchStackFunc() {
677  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
678  int *A = Ident(a);
679  for (int i = 0; i < 100; i++)
680    A[i] = i*i;
681}
682
683// Test that we handle longjmp and do not report fals positives on stack.
684TEST(AddressSanitizer, LongJmpTest) {
685  static jmp_buf buf;
686  if (!setjmp(buf)) {
687    LongJmpFunc1(buf);
688  } else {
689    TouchStackFunc();
690  }
691}
692
693#if not defined(__ANDROID__)
694TEST(AddressSanitizer, BuiltinLongJmpTest) {
695  static jmp_buf buf;
696  if (!__builtin_setjmp((void**)buf)) {
697    BuiltinLongJmpFunc1(buf);
698  } else {
699    TouchStackFunc();
700  }
701}
702#endif  // not defined(__ANDROID__)
703
704TEST(AddressSanitizer, UnderscopeLongJmpTest) {
705  static jmp_buf buf;
706  if (!_setjmp(buf)) {
707    UnderscopeLongJmpFunc1(buf);
708  } else {
709    TouchStackFunc();
710  }
711}
712
713TEST(AddressSanitizer, SigLongJmpTest) {
714  static sigjmp_buf buf;
715  if (!sigsetjmp(buf, 1)) {
716    SigLongJmpFunc1(buf);
717  } else {
718    TouchStackFunc();
719  }
720}
721
722#ifdef __EXCEPTIONS
723NOINLINE void ThrowFunc() {
724  // create three red zones for these two stack objects.
725  int a;
726  int b;
727
728  int *A = Ident(&a);
729  int *B = Ident(&b);
730  *A = *B;
731  ASAN_THROW(1);
732}
733
734TEST(AddressSanitizer, CxxExceptionTest) {
735  if (ASAN_UAR) return;
736  // TODO(kcc): this test crashes on 32-bit for some reason...
737  if (SANITIZER_WORDSIZE == 32) return;
738  try {
739    ThrowFunc();
740  } catch(...) {}
741  TouchStackFunc();
742}
743#endif
744
745void *ThreadStackReuseFunc1(void *unused) {
746  // create three red zones for these two stack objects.
747  int a;
748  int b;
749
750  int *A = Ident(&a);
751  int *B = Ident(&b);
752  *A = *B;
753  pthread_exit(0);
754  return 0;
755}
756
757void *ThreadStackReuseFunc2(void *unused) {
758  TouchStackFunc();
759  return 0;
760}
761
762TEST(AddressSanitizer, ThreadStackReuseTest) {
763  pthread_t t;
764  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
765  pthread_join(t, 0);
766  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
767  pthread_join(t, 0);
768}
769
770#if defined(__i386__) || defined(__x86_64__)
771TEST(AddressSanitizer, Store128Test) {
772  char *a = Ident((char*)malloc(Ident(12)));
773  char *p = a;
774  if (((uintptr_t)a % 16) != 0)
775    p = a + 8;
776  assert(((uintptr_t)p % 16) == 0);
777  __m128i value_wide = _mm_set1_epi16(0x1234);
778  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
779               "AddressSanitizer: heap-buffer-overflow");
780  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
781               "WRITE of size 16");
782  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
783               "located 0 bytes to the right of 12-byte");
784  free(a);
785}
786#endif
787
788static string RightOOBErrorMessage(int oob_distance) {
789  assert(oob_distance >= 0);
790  char expected_str[100];
791  sprintf(expected_str, "located %d bytes to the right", oob_distance);
792  return string(expected_str);
793}
794
795static string LeftOOBErrorMessage(int oob_distance) {
796  assert(oob_distance > 0);
797  char expected_str[100];
798  sprintf(expected_str, "located %d bytes to the left", oob_distance);
799  return string(expected_str);
800}
801
802template<typename T>
803void MemSetOOBTestTemplate(size_t length) {
804  if (length == 0) return;
805  size_t size = Ident(sizeof(T) * length);
806  T *array = Ident((T*)malloc(size));
807  int element = Ident(42);
808  int zero = Ident(0);
809  // memset interval inside array
810  memset(array, element, size);
811  memset(array, element, size - 1);
812  memset(array + length - 1, element, sizeof(T));
813  memset(array, element, 1);
814
815  // memset 0 bytes
816  memset(array - 10, element, zero);
817  memset(array - 1, element, zero);
818  memset(array, element, zero);
819  memset(array + length, 0, zero);
820  memset(array + length + 1, 0, zero);
821
822  // try to memset bytes to the right of array
823  EXPECT_DEATH(memset(array, 0, size + 1),
824               RightOOBErrorMessage(0));
825  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
826               RightOOBErrorMessage(4));
827  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
828               RightOOBErrorMessage(2 * sizeof(T) - 1));
829  // whole interval is to the right
830  EXPECT_DEATH(memset(array + length + 1, 0, 10),
831               RightOOBErrorMessage(sizeof(T)));
832
833  // try to memset bytes to the left of array
834  EXPECT_DEATH(memset((char*)array - 1, element, size),
835               LeftOOBErrorMessage(1));
836  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
837               LeftOOBErrorMessage(5));
838  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
839               LeftOOBErrorMessage(5 * sizeof(T)));
840  // whole interval is to the left
841  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
842               LeftOOBErrorMessage(2 * sizeof(T)));
843
844  // try to memset bytes both to the left & to the right
845  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
846               LeftOOBErrorMessage(2));
847
848  free(array);
849}
850
851TEST(AddressSanitizer, MemSetOOBTest) {
852  MemSetOOBTestTemplate<char>(100);
853  MemSetOOBTestTemplate<int>(5);
854  MemSetOOBTestTemplate<double>(256);
855  // We can test arrays of structres/classes here, but what for?
856}
857
858// Same test for memcpy and memmove functions
859template <typename T, class M>
860void MemTransferOOBTestTemplate(size_t length) {
861  if (length == 0) return;
862  size_t size = Ident(sizeof(T) * length);
863  T *src = Ident((T*)malloc(size));
864  T *dest = Ident((T*)malloc(size));
865  int zero = Ident(0);
866
867  // valid transfer of bytes between arrays
868  M::transfer(dest, src, size);
869  M::transfer(dest + 1, src, size - sizeof(T));
870  M::transfer(dest, src + length - 1, sizeof(T));
871  M::transfer(dest, src, 1);
872
873  // transfer zero bytes
874  M::transfer(dest - 1, src, 0);
875  M::transfer(dest + length, src, zero);
876  M::transfer(dest, src - 1, zero);
877  M::transfer(dest, src, zero);
878
879  // try to change mem to the right of dest
880  EXPECT_DEATH(M::transfer(dest + 1, src, size),
881               RightOOBErrorMessage(sizeof(T) - 1));
882  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
883               RightOOBErrorMessage(3));
884
885  // try to change mem to the left of dest
886  EXPECT_DEATH(M::transfer(dest - 2, src, size),
887               LeftOOBErrorMessage(2 * sizeof(T)));
888  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
889               LeftOOBErrorMessage(3));
890
891  // try to access mem to the right of src
892  EXPECT_DEATH(M::transfer(dest, src + 2, size),
893               RightOOBErrorMessage(2 * sizeof(T) - 1));
894  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
895               RightOOBErrorMessage(2));
896
897  // try to access mem to the left of src
898  EXPECT_DEATH(M::transfer(dest, src - 1, size),
899               LeftOOBErrorMessage(sizeof(T)));
900  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
901               LeftOOBErrorMessage(6));
902
903  // Generally we don't need to test cases where both accessing src and writing
904  // to dest address to poisoned memory.
905
906  T *big_src = Ident((T*)malloc(size * 2));
907  T *big_dest = Ident((T*)malloc(size * 2));
908  // try to change mem to both sides of dest
909  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
910               LeftOOBErrorMessage(sizeof(T)));
911  // try to access mem to both sides of src
912  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
913               LeftOOBErrorMessage(2 * sizeof(T)));
914
915  free(src);
916  free(dest);
917  free(big_src);
918  free(big_dest);
919}
920
921class MemCpyWrapper {
922 public:
923  static void* transfer(void *to, const void *from, size_t size) {
924    return memcpy(to, from, size);
925  }
926};
927TEST(AddressSanitizer, MemCpyOOBTest) {
928  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
929  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
930}
931
932class MemMoveWrapper {
933 public:
934  static void* transfer(void *to, const void *from, size_t size) {
935    return memmove(to, from, size);
936  }
937};
938TEST(AddressSanitizer, MemMoveOOBTest) {
939  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
940  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
941}
942
943// Tests for string functions
944
945// Used for string functions tests
946static char global_string[] = "global";
947static size_t global_string_length = 6;
948
949// Input to a test is a zero-terminated string str with given length
950// Accesses to the bytes to the left and to the right of str
951// are presumed to produce OOB errors
952void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
953  // Normal strlen calls
954  EXPECT_EQ(strlen(str), length);
955  if (length > 0) {
956    EXPECT_EQ(length - 1, strlen(str + 1));
957    EXPECT_EQ(0U, strlen(str + length));
958  }
959  // Arg of strlen is not malloced, OOB access
960  if (!is_global) {
961    // We don't insert RedZones to the left of global variables
962    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
963    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
964  }
965  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
966  // Overwrite terminator
967  str[length] = 'a';
968  // String is not zero-terminated, strlen will lead to OOB access
969  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
970  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
971  // Restore terminator
972  str[length] = 0;
973}
974TEST(AddressSanitizer, StrLenOOBTest) {
975  // Check heap-allocated string
976  size_t length = Ident(10);
977  char *heap_string = Ident((char*)malloc(length + 1));
978  char stack_string[10 + 1];
979  break_optimization(&stack_string);
980  for (size_t i = 0; i < length; i++) {
981    heap_string[i] = 'a';
982    stack_string[i] = 'b';
983  }
984  heap_string[length] = 0;
985  stack_string[length] = 0;
986  StrLenOOBTestTemplate(heap_string, length, false);
987  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
988  //      make test for stack_string work. Or move it to output tests.
989  // StrLenOOBTestTemplate(stack_string, length, false);
990  StrLenOOBTestTemplate(global_string, global_string_length, true);
991  free(heap_string);
992}
993
994static inline char* MallocAndMemsetString(size_t size, char ch) {
995  char *s = Ident((char*)malloc(size));
996  memset(s, ch, size);
997  return s;
998}
999static inline char* MallocAndMemsetString(size_t size) {
1000  return MallocAndMemsetString(size, 'z');
1001}
1002
1003#ifndef __APPLE__
1004TEST(AddressSanitizer, StrNLenOOBTest) {
1005  size_t size = Ident(123);
1006  char *str = MallocAndMemsetString(size);
1007  // Normal strnlen calls.
1008  Ident(strnlen(str - 1, 0));
1009  Ident(strnlen(str, size));
1010  Ident(strnlen(str + size - 1, 1));
1011  str[size - 1] = '\0';
1012  Ident(strnlen(str, 2 * size));
1013  // Argument points to not allocated memory.
1014  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1015  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1016  // Overwrite the terminating '\0' and hit unallocated memory.
1017  str[size - 1] = 'z';
1018  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1019  free(str);
1020}
1021#endif
1022
1023TEST(AddressSanitizer, StrDupOOBTest) {
1024  size_t size = Ident(42);
1025  char *str = MallocAndMemsetString(size);
1026  char *new_str;
1027  // Normal strdup calls.
1028  str[size - 1] = '\0';
1029  new_str = strdup(str);
1030  free(new_str);
1031  new_str = strdup(str + size - 1);
1032  free(new_str);
1033  // Argument points to not allocated memory.
1034  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1035  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1036  // Overwrite the terminating '\0' and hit unallocated memory.
1037  str[size - 1] = 'z';
1038  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1039  free(str);
1040}
1041
1042TEST(AddressSanitizer, StrCpyOOBTest) {
1043  size_t to_size = Ident(30);
1044  size_t from_size = Ident(6);  // less than to_size
1045  char *to = Ident((char*)malloc(to_size));
1046  char *from = Ident((char*)malloc(from_size));
1047  // Normal strcpy calls.
1048  strcpy(from, "hello");
1049  strcpy(to, from);
1050  strcpy(to + to_size - from_size, from);
1051  // Length of "from" is too small.
1052  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1053  // "to" or "from" points to not allocated memory.
1054  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1055  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1056  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1057  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1058  // Overwrite the terminating '\0' character and hit unallocated memory.
1059  from[from_size - 1] = '!';
1060  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1061  free(to);
1062  free(from);
1063}
1064
1065TEST(AddressSanitizer, StrNCpyOOBTest) {
1066  size_t to_size = Ident(20);
1067  size_t from_size = Ident(6);  // less than to_size
1068  char *to = Ident((char*)malloc(to_size));
1069  // From is a zero-terminated string "hello\0" of length 6
1070  char *from = Ident((char*)malloc(from_size));
1071  strcpy(from, "hello");
1072  // copy 0 bytes
1073  strncpy(to, from, 0);
1074  strncpy(to - 1, from - 1, 0);
1075  // normal strncpy calls
1076  strncpy(to, from, from_size);
1077  strncpy(to, from, to_size);
1078  strncpy(to, from + from_size - 1, to_size);
1079  strncpy(to + to_size - 1, from, 1);
1080  // One of {to, from} points to not allocated memory
1081  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1082               LeftOOBErrorMessage(1));
1083  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1084               LeftOOBErrorMessage(1));
1085  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1086               RightOOBErrorMessage(0));
1087  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1088               RightOOBErrorMessage(0));
1089  // Length of "to" is too small
1090  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1091               RightOOBErrorMessage(0));
1092  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1093               RightOOBErrorMessage(0));
1094  // Overwrite terminator in from
1095  from[from_size - 1] = '!';
1096  // normal strncpy call
1097  strncpy(to, from, from_size);
1098  // Length of "from" is too small
1099  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1100               RightOOBErrorMessage(0));
1101  free(to);
1102  free(from);
1103}
1104
1105// Users may have different definitions of "strchr" and "index", so provide
1106// function pointer typedefs and overload RunStrChrTest implementation.
1107// We can't use macro for RunStrChrTest body here, as this macro would
1108// confuse EXPECT_DEATH gtest macro.
1109typedef char*(*PointerToStrChr1)(const char*, int);
1110typedef char*(*PointerToStrChr2)(char*, int);
1111
1112USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1113  size_t size = Ident(100);
1114  char *str = MallocAndMemsetString(size);
1115  str[10] = 'q';
1116  str[11] = '\0';
1117  EXPECT_EQ(str, StrChr(str, 'z'));
1118  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1119  EXPECT_EQ(NULL, StrChr(str, 'a'));
1120  // StrChr argument points to not allocated memory.
1121  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1122  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1123  // Overwrite the terminator and hit not allocated memory.
1124  str[11] = 'z';
1125  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1126  free(str);
1127}
1128USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1129  size_t size = Ident(100);
1130  char *str = MallocAndMemsetString(size);
1131  str[10] = 'q';
1132  str[11] = '\0';
1133  EXPECT_EQ(str, StrChr(str, 'z'));
1134  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1135  EXPECT_EQ(NULL, StrChr(str, 'a'));
1136  // StrChr argument points to not allocated memory.
1137  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1138  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1139  // Overwrite the terminator and hit not allocated memory.
1140  str[11] = 'z';
1141  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1142  free(str);
1143}
1144
1145TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1146  RunStrChrTest(&strchr);
1147  RunStrChrTest(&index);
1148}
1149
1150TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1151  // strcmp
1152  EXPECT_EQ(0, strcmp("", ""));
1153  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1154  EXPECT_GT(0, strcmp("ab", "ac"));
1155  EXPECT_GT(0, strcmp("abc", "abcd"));
1156  EXPECT_LT(0, strcmp("acc", "abc"));
1157  EXPECT_LT(0, strcmp("abcd", "abc"));
1158
1159  // strncmp
1160  EXPECT_EQ(0, strncmp("a", "b", 0));
1161  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1162  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1163  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1164  EXPECT_GT(0, strncmp("a", "b", 5));
1165  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1166  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1167  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1168  EXPECT_LT(0, strncmp("zyx", "", 2));
1169
1170  // strcasecmp
1171  EXPECT_EQ(0, strcasecmp("", ""));
1172  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1173  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1174  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1175  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1176  EXPECT_LT(0, strcasecmp("acc", "abc"));
1177  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1178
1179  // strncasecmp
1180  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1181  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1182  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1183  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1184  EXPECT_GT(0, strncasecmp("a", "B", 5));
1185  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1186  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1187  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1188  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1189
1190  // memcmp
1191  EXPECT_EQ(0, memcmp("a", "b", 0));
1192  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1193  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1194  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1195  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1196  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1197}
1198
1199typedef int(*PointerToStrCmp)(const char*, const char*);
1200void RunStrCmpTest(PointerToStrCmp StrCmp) {
1201  size_t size = Ident(100);
1202  char *s1 = MallocAndMemsetString(size);
1203  char *s2 = MallocAndMemsetString(size);
1204  s1[size - 1] = '\0';
1205  s2[size - 1] = '\0';
1206  // Normal StrCmp calls
1207  Ident(StrCmp(s1, s2));
1208  Ident(StrCmp(s1, s2 + size - 1));
1209  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1210  s1[size - 1] = 'z';
1211  s2[size - 1] = 'x';
1212  Ident(StrCmp(s1, s2));
1213  // One of arguments points to not allocated memory.
1214  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1215  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1216  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1217  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1218  // Hit unallocated memory and die.
1219  s2[size - 1] = 'z';
1220  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1221  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1222  free(s1);
1223  free(s2);
1224}
1225
1226TEST(AddressSanitizer, StrCmpOOBTest) {
1227  RunStrCmpTest(&strcmp);
1228}
1229
1230TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1231  RunStrCmpTest(&strcasecmp);
1232}
1233
1234typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1235void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1236  size_t size = Ident(100);
1237  char *s1 = MallocAndMemsetString(size);
1238  char *s2 = MallocAndMemsetString(size);
1239  s1[size - 1] = '\0';
1240  s2[size - 1] = '\0';
1241  // Normal StrNCmp calls
1242  Ident(StrNCmp(s1, s2, size + 2));
1243  s1[size - 1] = 'z';
1244  s2[size - 1] = 'x';
1245  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1246  s2[size - 1] = 'z';
1247  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1248  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1249  // One of arguments points to not allocated memory.
1250  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1251  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1252  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1253  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1254  // Hit unallocated memory and die.
1255  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1256  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1257  free(s1);
1258  free(s2);
1259}
1260
1261TEST(AddressSanitizer, StrNCmpOOBTest) {
1262  RunStrNCmpTest(&strncmp);
1263}
1264
1265TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1266  RunStrNCmpTest(&strncasecmp);
1267}
1268
1269TEST(AddressSanitizer, MemCmpOOBTest) {
1270  size_t size = Ident(100);
1271  char *s1 = MallocAndMemsetString(size);
1272  char *s2 = MallocAndMemsetString(size);
1273  // Normal memcmp calls.
1274  Ident(memcmp(s1, s2, size));
1275  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1276  Ident(memcmp(s1 - 1, s2 - 1, 0));
1277  // One of arguments points to not allocated memory.
1278  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1279  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1280  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1281  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1282  // Hit unallocated memory and die.
1283  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1284  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1285  // Zero bytes are not terminators and don't prevent from OOB.
1286  s1[size - 1] = '\0';
1287  s2[size - 1] = '\0';
1288  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1289  free(s1);
1290  free(s2);
1291}
1292
1293TEST(AddressSanitizer, StrCatOOBTest) {
1294  size_t to_size = Ident(100);
1295  char *to = MallocAndMemsetString(to_size);
1296  to[0] = '\0';
1297  size_t from_size = Ident(20);
1298  char *from = MallocAndMemsetString(from_size);
1299  from[from_size - 1] = '\0';
1300  // Normal strcat calls.
1301  strcat(to, from);
1302  strcat(to, from);
1303  strcat(to + from_size, from + from_size - 2);
1304  // Passing an invalid pointer is an error even when concatenating an empty
1305  // string.
1306  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBErrorMessage(1));
1307  // One of arguments points to not allocated memory.
1308  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1309  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1310  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1311  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1312
1313  // "from" is not zero-terminated.
1314  from[from_size - 1] = 'z';
1315  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1316  from[from_size - 1] = '\0';
1317  // "to" is not zero-terminated.
1318  memset(to, 'z', to_size);
1319  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1320  // "to" is too short to fit "from".
1321  to[to_size - from_size + 1] = '\0';
1322  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1323  // length of "to" is just enough.
1324  strcat(to, from + 1);
1325
1326  free(to);
1327  free(from);
1328}
1329
1330TEST(AddressSanitizer, StrNCatOOBTest) {
1331  size_t to_size = Ident(100);
1332  char *to = MallocAndMemsetString(to_size);
1333  to[0] = '\0';
1334  size_t from_size = Ident(20);
1335  char *from = MallocAndMemsetString(from_size);
1336  // Normal strncat calls.
1337  strncat(to, from, 0);
1338  strncat(to, from, from_size);
1339  from[from_size - 1] = '\0';
1340  strncat(to, from, 2 * from_size);
1341  // Catenating empty string with an invalid string is still an error.
1342  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBErrorMessage(1));
1343  strncat(to, from + from_size - 1, 10);
1344  // One of arguments points to not allocated memory.
1345  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBErrorMessage(1));
1346  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBErrorMessage(1));
1347  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBErrorMessage(0));
1348  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBErrorMessage(0));
1349
1350  memset(from, 'z', from_size);
1351  memset(to, 'z', to_size);
1352  to[0] = '\0';
1353  // "from" is too short.
1354  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBErrorMessage(0));
1355  // "to" is not zero-terminated.
1356  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBErrorMessage(0));
1357  // "to" is too short to fit "from".
1358  to[0] = 'z';
1359  to[to_size - from_size + 1] = '\0';
1360  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBErrorMessage(0));
1361  // "to" is just enough.
1362  strncat(to, from, from_size - 2);
1363
1364  free(to);
1365  free(from);
1366}
1367
1368static string OverlapErrorMessage(const string &func) {
1369  return func + "-param-overlap";
1370}
1371
1372TEST(AddressSanitizer, StrArgsOverlapTest) {
1373  size_t size = Ident(100);
1374  char *str = Ident((char*)malloc(size));
1375
1376// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1377// memmove().
1378#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1379    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1380  // Check "memcpy". Use Ident() to avoid inlining.
1381  memset(str, 'z', size);
1382  Ident(memcpy)(str + 1, str + 11, 10);
1383  Ident(memcpy)(str, str, 0);
1384  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1385  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1386#endif
1387
1388  // We do not treat memcpy with to==from as a bug.
1389  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1390  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1391  //              OverlapErrorMessage("memcpy"));
1392
1393  // Check "strcpy".
1394  memset(str, 'z', size);
1395  str[9] = '\0';
1396  strcpy(str + 10, str);
1397  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1398  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1399  strcpy(str, str + 5);
1400
1401  // Check "strncpy".
1402  memset(str, 'z', size);
1403  strncpy(str, str + 10, 10);
1404  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1405  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1406  str[10] = '\0';
1407  strncpy(str + 11, str, 20);
1408  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1409
1410  // Check "strcat".
1411  memset(str, 'z', size);
1412  str[10] = '\0';
1413  str[20] = '\0';
1414  strcat(str, str + 10);
1415  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1416  str[10] = '\0';
1417  strcat(str + 11, str);
1418  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1419  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1420  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1421
1422  // Check "strncat".
1423  memset(str, 'z', size);
1424  str[10] = '\0';
1425  strncat(str, str + 10, 10);  // from is empty
1426  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1427  str[10] = '\0';
1428  str[20] = '\0';
1429  strncat(str + 5, str, 5);
1430  str[10] = '\0';
1431  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1432  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1433
1434  free(str);
1435}
1436
1437void CallAtoi(const char *nptr) {
1438  Ident(atoi(nptr));
1439}
1440void CallAtol(const char *nptr) {
1441  Ident(atol(nptr));
1442}
1443void CallAtoll(const char *nptr) {
1444  Ident(atoll(nptr));
1445}
1446typedef void(*PointerToCallAtoi)(const char*);
1447
1448void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1449  char *array = MallocAndMemsetString(10, '1');
1450  // Invalid pointer to the string.
1451  EXPECT_DEATH(Atoi(array + 11), RightOOBErrorMessage(1));
1452  EXPECT_DEATH(Atoi(array - 1), LeftOOBErrorMessage(1));
1453  // Die if a buffer doesn't have terminating NULL.
1454  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1455  // Make last symbol a terminating NULL or other non-digit.
1456  array[9] = '\0';
1457  Atoi(array);
1458  array[9] = 'a';
1459  Atoi(array);
1460  Atoi(array + 9);
1461  // Sometimes we need to detect overflow if no digits are found.
1462  memset(array, ' ', 10);
1463  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1464  array[9] = '-';
1465  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1466  EXPECT_DEATH(Atoi(array + 9), RightOOBErrorMessage(0));
1467  array[8] = '-';
1468  Atoi(array);
1469  delete array;
1470}
1471
1472TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1473  RunAtoiOOBTest(&CallAtoi);
1474  RunAtoiOOBTest(&CallAtol);
1475  RunAtoiOOBTest(&CallAtoll);
1476}
1477
1478void CallStrtol(const char *nptr, char **endptr, int base) {
1479  Ident(strtol(nptr, endptr, base));
1480}
1481void CallStrtoll(const char *nptr, char **endptr, int base) {
1482  Ident(strtoll(nptr, endptr, base));
1483}
1484typedef void(*PointerToCallStrtol)(const char*, char**, int);
1485
1486void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1487  char *array = MallocAndMemsetString(3);
1488  char *endptr = NULL;
1489  array[0] = '1';
1490  array[1] = '2';
1491  array[2] = '3';
1492  // Invalid pointer to the string.
1493  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBErrorMessage(0));
1494  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBErrorMessage(1));
1495  // Buffer overflow if there is no terminating null (depends on base).
1496  Strtol(array, &endptr, 3);
1497  EXPECT_EQ(array + 2, endptr);
1498  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1499  array[2] = 'z';
1500  Strtol(array, &endptr, 35);
1501  EXPECT_EQ(array + 2, endptr);
1502  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBErrorMessage(0));
1503  // Add terminating zero to get rid of overflow.
1504  array[2] = '\0';
1505  Strtol(array, NULL, 36);
1506  // Don't check for overflow if base is invalid.
1507  Strtol(array - 1, NULL, -1);
1508  Strtol(array + 3, NULL, 1);
1509  // Sometimes we need to detect overflow if no digits are found.
1510  array[0] = array[1] = array[2] = ' ';
1511  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1512  array[2] = '+';
1513  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1514  array[2] = '-';
1515  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1516  array[1] = '+';
1517  Strtol(array, NULL, 0);
1518  array[1] = array[2] = 'z';
1519  Strtol(array, &endptr, 0);
1520  EXPECT_EQ(array, endptr);
1521  Strtol(array + 2, NULL, 0);
1522  EXPECT_EQ(array, endptr);
1523  delete array;
1524}
1525
1526TEST(AddressSanitizer, StrtollOOBTest) {
1527  RunStrtolOOBTest(&CallStrtoll);
1528}
1529TEST(AddressSanitizer, StrtolOOBTest) {
1530  RunStrtolOOBTest(&CallStrtol);
1531}
1532
1533// At the moment we instrument memcpy/memove/memset calls at compile time so we
1534// can't handle OOB error if these functions are called by pointer, see disabled
1535// MemIntrinsicCallByPointerTest below
1536typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1537typedef void*(*PointerToMemSet)(void*, int, size_t);
1538
1539void CallMemSetByPointer(PointerToMemSet MemSet) {
1540  size_t size = Ident(100);
1541  char *array = Ident((char*)malloc(size));
1542  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1543  free(array);
1544}
1545
1546void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1547  size_t size = Ident(100);
1548  char *src = Ident((char*)malloc(size));
1549  char *dst = Ident((char*)malloc(size));
1550  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1551  free(src);
1552  free(dst);
1553}
1554
1555TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1556  CallMemSetByPointer(&memset);
1557  CallMemTransferByPointer(&memcpy);
1558  CallMemTransferByPointer(&memmove);
1559}
1560
1561// This test case fails
1562// Clang optimizes memcpy/memset calls which lead to unaligned access
1563TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1564  int size = Ident(4096);
1565  char *s = Ident((char*)malloc(size));
1566  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1567  free(s);
1568}
1569
1570// TODO(samsonov): Add a test with malloc(0)
1571// TODO(samsonov): Add tests for str* and mem* functions.
1572
1573NOINLINE static int LargeFunction(bool do_bad_access) {
1574  int *x = new int[100];
1575  x[0]++;
1576  x[1]++;
1577  x[2]++;
1578  x[3]++;
1579  x[4]++;
1580  x[5]++;
1581  x[6]++;
1582  x[7]++;
1583  x[8]++;
1584  x[9]++;
1585
1586  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1587
1588  x[10]++;
1589  x[11]++;
1590  x[12]++;
1591  x[13]++;
1592  x[14]++;
1593  x[15]++;
1594  x[16]++;
1595  x[17]++;
1596  x[18]++;
1597  x[19]++;
1598
1599  delete x;
1600  return res;
1601}
1602
1603// Test the we have correct debug info for the failing instruction.
1604// This test requires the in-process symbolizer to be enabled by default.
1605TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1606  int failing_line = LargeFunction(false);
1607  char expected_warning[128];
1608  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1609  EXPECT_DEATH(LargeFunction(true), expected_warning);
1610}
1611
1612// Check that we unwind and symbolize correctly.
1613TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1614  int *a = (int*)malloc_aaa(sizeof(int));
1615  *a = 1;
1616  free_aaa(a);
1617  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1618               "malloc_fff.*malloc_eee.*malloc_ddd");
1619}
1620
1621void *ThreadedTestAlloc(void *a) {
1622  int **p = (int**)a;
1623  *p = new int;
1624  return 0;
1625}
1626
1627void *ThreadedTestFree(void *a) {
1628  int **p = (int**)a;
1629  delete *p;
1630  return 0;
1631}
1632
1633void *ThreadedTestUse(void *a) {
1634  int **p = (int**)a;
1635  **p = 1;
1636  return 0;
1637}
1638
1639void ThreadedTestSpawn() {
1640  pthread_t t;
1641  int *x;
1642  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1643  pthread_join(t, 0);
1644  pthread_create(&t, 0, ThreadedTestFree, &x);
1645  pthread_join(t, 0);
1646  pthread_create(&t, 0, ThreadedTestUse, &x);
1647  pthread_join(t, 0);
1648}
1649
1650TEST(AddressSanitizer, ThreadedTest) {
1651  EXPECT_DEATH(ThreadedTestSpawn(),
1652               ASAN_PCRE_DOTALL
1653               "Thread T.*created"
1654               ".*Thread T.*created"
1655               ".*Thread T.*created");
1656}
1657
1658#if ASAN_NEEDS_SEGV
1659TEST(AddressSanitizer, ShadowGapTest) {
1660#if SANITIZER_WORDSIZE == 32
1661  char *addr = (char*)0x22000000;
1662#else
1663  char *addr = (char*)0x0000100000080000;
1664#endif
1665  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1666}
1667#endif  // ASAN_NEEDS_SEGV
1668
1669extern "C" {
1670NOINLINE static void UseThenFreeThenUse() {
1671  char *x = Ident((char*)malloc(8));
1672  *x = 1;
1673  free_aaa(x);
1674  *x = 2;
1675}
1676}
1677
1678TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1679  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1680}
1681
1682TEST(AddressSanitizer, StrDupTest) {
1683  free(strdup(Ident("123")));
1684}
1685
1686// Currently we create and poison redzone at right of global variables.
1687char glob5[5];
1688static char static110[110];
1689const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1690static const char StaticConstGlob[3] = {9, 8, 7};
1691extern int GlobalsTest(int x);
1692
1693TEST(AddressSanitizer, GlobalTest) {
1694  static char func_static15[15];
1695
1696  static char fs1[10];
1697  static char fs2[10];
1698  static char fs3[10];
1699
1700  glob5[Ident(0)] = 0;
1701  glob5[Ident(1)] = 0;
1702  glob5[Ident(2)] = 0;
1703  glob5[Ident(3)] = 0;
1704  glob5[Ident(4)] = 0;
1705
1706  EXPECT_DEATH(glob5[Ident(5)] = 0,
1707               "0 bytes to the right of global variable.*glob5.* size 5");
1708  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1709               "6 bytes to the right of global variable.*glob5.* size 5");
1710  Ident(static110);  // avoid optimizations
1711  static110[Ident(0)] = 0;
1712  static110[Ident(109)] = 0;
1713  EXPECT_DEATH(static110[Ident(110)] = 0,
1714               "0 bytes to the right of global variable");
1715  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1716               "7 bytes to the right of global variable");
1717
1718  Ident(func_static15);  // avoid optimizations
1719  func_static15[Ident(0)] = 0;
1720  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1721               "0 bytes to the right of global variable");
1722  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1723               "9 bytes to the right of global variable");
1724
1725  Ident(fs1);
1726  Ident(fs2);
1727  Ident(fs3);
1728
1729  // We don't create left redzones, so this is not 100% guaranteed to fail.
1730  // But most likely will.
1731  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1732
1733  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1734               "is located 1 bytes to the right of .*ConstGlob");
1735  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1736               "is located 2 bytes to the right of .*StaticConstGlob");
1737
1738  // call stuff from another file.
1739  GlobalsTest(0);
1740}
1741
1742TEST(AddressSanitizer, GlobalStringConstTest) {
1743  static const char *zoo = "FOOBAR123";
1744  const char *p = Ident(zoo);
1745  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1746}
1747
1748TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1749  static char zoo[10];
1750  const char *p = Ident(zoo);
1751  // The file name should be present in the report.
1752  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1753}
1754
1755int *ReturnsPointerToALocalObject() {
1756  int a = 0;
1757  return Ident(&a);
1758}
1759
1760#if ASAN_UAR == 1
1761TEST(AddressSanitizer, LocalReferenceReturnTest) {
1762  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1763  int *p = f();
1764  // Call 'f' a few more times, 'p' should still be poisoned.
1765  for (int i = 0; i < 32; i++)
1766    f();
1767  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1768  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1769}
1770#endif
1771
1772template <int kSize>
1773NOINLINE static void FuncWithStack() {
1774  char x[kSize];
1775  Ident(x)[0] = 0;
1776  Ident(x)[kSize-1] = 0;
1777}
1778
1779static void LotsOfStackReuse() {
1780  int LargeStack[10000];
1781  Ident(LargeStack)[0] = 0;
1782  for (int i = 0; i < 10000; i++) {
1783    FuncWithStack<128 * 1>();
1784    FuncWithStack<128 * 2>();
1785    FuncWithStack<128 * 4>();
1786    FuncWithStack<128 * 8>();
1787    FuncWithStack<128 * 16>();
1788    FuncWithStack<128 * 32>();
1789    FuncWithStack<128 * 64>();
1790    FuncWithStack<128 * 128>();
1791    FuncWithStack<128 * 256>();
1792    FuncWithStack<128 * 512>();
1793    Ident(LargeStack)[0] = 0;
1794  }
1795}
1796
1797TEST(AddressSanitizer, StressStackReuseTest) {
1798  LotsOfStackReuse();
1799}
1800
1801TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1802  const int kNumThreads = 20;
1803  pthread_t t[kNumThreads];
1804  for (int i = 0; i < kNumThreads; i++) {
1805    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1806  }
1807  for (int i = 0; i < kNumThreads; i++) {
1808    pthread_join(t[i], 0);
1809  }
1810}
1811
1812static void *PthreadExit(void *a) {
1813  pthread_exit(0);
1814  return 0;
1815}
1816
1817TEST(AddressSanitizer, PthreadExitTest) {
1818  pthread_t t;
1819  for (int i = 0; i < 1000; i++) {
1820    pthread_create(&t, 0, PthreadExit, 0);
1821    pthread_join(t, 0);
1822  }
1823}
1824
1825#ifdef __EXCEPTIONS
1826NOINLINE static void StackReuseAndException() {
1827  int large_stack[1000];
1828  Ident(large_stack);
1829  ASAN_THROW(1);
1830}
1831
1832// TODO(kcc): support exceptions with use-after-return.
1833TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1834  for (int i = 0; i < 10000; i++) {
1835    try {
1836    StackReuseAndException();
1837    } catch(...) {
1838    }
1839  }
1840}
1841#endif
1842
1843TEST(AddressSanitizer, MlockTest) {
1844  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1845  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1846  EXPECT_EQ(0, munlockall());
1847  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1848}
1849
1850struct LargeStruct {
1851  int foo[100];
1852};
1853
1854// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1855// Struct copy should not cause asan warning even if lhs == rhs.
1856TEST(AddressSanitizer, LargeStructCopyTest) {
1857  LargeStruct a;
1858  *Ident(&a) = *Ident(&a);
1859}
1860
1861ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
1862static void NoAddressSafety() {
1863  char *foo = new char[10];
1864  Ident(foo)[10] = 0;
1865  delete [] foo;
1866}
1867
1868TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1869  Ident(NoAddressSafety)();
1870}
1871
1872// ------------------ demo tests; run each one-by-one -------------
1873// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1874TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1875  ThreadedTestSpawn();
1876}
1877
1878void *SimpleBugOnSTack(void *x = 0) {
1879  char a[20];
1880  Ident(a)[20] = 0;
1881  return 0;
1882}
1883
1884TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1885  SimpleBugOnSTack();
1886}
1887
1888TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1889  pthread_t t;
1890  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1891  pthread_join(t, 0);
1892}
1893
1894TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1895  uaf_test<U1>(10, 0);
1896}
1897TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1898  uaf_test<U1>(10, -2);
1899}
1900TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1901  uaf_test<U1>(10, 10);
1902}
1903
1904TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1905  uaf_test<U1>(kLargeMalloc, 0);
1906}
1907
1908TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1909  oob_test<U1>(10, -1);
1910}
1911
1912TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1913  oob_test<U1>(kLargeMalloc, -1);
1914}
1915
1916TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1917  oob_test<U1>(10, 10);
1918}
1919
1920TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1921  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1922}
1923
1924TEST(AddressSanitizer, DISABLED_DemoOOM) {
1925  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1926  printf("%p\n", malloc(size));
1927}
1928
1929TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1930  DoubleFree();
1931}
1932
1933TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1934  int *a = 0;
1935  Ident(a)[10] = 0;
1936}
1937
1938TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1939  static char a[100];
1940  static char b[100];
1941  static char c[100];
1942  Ident(a);
1943  Ident(b);
1944  Ident(c);
1945  Ident(a)[5] = 0;
1946  Ident(b)[105] = 0;
1947  Ident(a)[5] = 0;
1948}
1949
1950TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1951  const size_t kAllocSize = (1 << 28) - 1024;
1952  size_t total_size = 0;
1953  while (true) {
1954    char *x = (char*)malloc(kAllocSize);
1955    memset(x, 0, kAllocSize);
1956    total_size += kAllocSize;
1957    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
1958  }
1959}
1960
1961// http://code.google.com/p/address-sanitizer/issues/detail?id=66
1962TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
1963  for (int i = 0; i < 1000000; i++) {
1964    delete [] (Ident(new char [8644]));
1965  }
1966  char *x = new char[8192];
1967  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
1968  delete [] Ident(x);
1969}
1970
1971#ifdef __APPLE__
1972#include "asan_mac_test.h"
1973TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
1974  EXPECT_DEATH(
1975      CFAllocatorDefaultDoubleFree(NULL),
1976      "attempting double-free");
1977}
1978
1979void CFAllocator_DoubleFreeOnPthread() {
1980  pthread_t child;
1981  pthread_create(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
1982  pthread_join(child, NULL);  // Shouldn't be reached.
1983}
1984
1985TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
1986  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
1987}
1988
1989namespace {
1990
1991void *GLOB;
1992
1993void *CFAllocatorAllocateToGlob(void *unused) {
1994  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
1995  return NULL;
1996}
1997
1998void *CFAllocatorDeallocateFromGlob(void *unused) {
1999  char *p = (char*)GLOB;
2000  p[100] = 'A';  // ASan should report an error here.
2001  CFAllocatorDeallocate(NULL, GLOB);
2002  return NULL;
2003}
2004
2005void CFAllocator_PassMemoryToAnotherThread() {
2006  pthread_t th1, th2;
2007  pthread_create(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2008  pthread_join(th1, NULL);
2009  pthread_create(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2010  pthread_join(th2, NULL);
2011}
2012
2013TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2014  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2015               "heap-buffer-overflow");
2016}
2017
2018}  // namespace
2019
2020// TODO(glider): figure out whether we still need these tests. Is it correct
2021// to intercept the non-default CFAllocators?
2022TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2023  EXPECT_DEATH(
2024      CFAllocatorSystemDefaultDoubleFree(),
2025      "attempting double-free");
2026}
2027
2028// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2029TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2030  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2031}
2032
2033TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2034  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2035}
2036
2037TEST(AddressSanitizerMac, GCDDispatchAsync) {
2038  // Make sure the whole ASan report is printed, i.e. that we don't die
2039  // on a CHECK.
2040  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
2041}
2042
2043TEST(AddressSanitizerMac, GCDDispatchSync) {
2044  // Make sure the whole ASan report is printed, i.e. that we don't die
2045  // on a CHECK.
2046  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
2047}
2048
2049
2050TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2051  // Make sure the whole ASan report is printed, i.e. that we don't die
2052  // on a CHECK.
2053  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
2054}
2055
2056TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2057  // Make sure the whole ASan report is printed, i.e. that we don't die
2058  // on a CHECK.
2059  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
2060}
2061
2062TEST(AddressSanitizerMac, GCDDispatchAfter) {
2063  // Make sure the whole ASan report is printed, i.e. that we don't die
2064  // on a CHECK.
2065  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
2066}
2067
2068TEST(AddressSanitizerMac, GCDSourceEvent) {
2069  // Make sure the whole ASan report is printed, i.e. that we don't die
2070  // on a CHECK.
2071  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
2072}
2073
2074TEST(AddressSanitizerMac, GCDSourceCancel) {
2075  // Make sure the whole ASan report is printed, i.e. that we don't die
2076  // on a CHECK.
2077  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
2078}
2079
2080TEST(AddressSanitizerMac, GCDGroupAsync) {
2081  // Make sure the whole ASan report is printed, i.e. that we don't die
2082  // on a CHECK.
2083  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
2084}
2085
2086void *MallocIntrospectionLockWorker(void *_) {
2087  const int kNumPointers = 100;
2088  int i;
2089  void *pointers[kNumPointers];
2090  for (i = 0; i < kNumPointers; i++) {
2091    pointers[i] = malloc(i + 1);
2092  }
2093  for (i = 0; i < kNumPointers; i++) {
2094    free(pointers[i]);
2095  }
2096
2097  return NULL;
2098}
2099
2100void *MallocIntrospectionLockForker(void *_) {
2101  pid_t result = fork();
2102  if (result == -1) {
2103    perror("fork");
2104  }
2105  assert(result != -1);
2106  if (result == 0) {
2107    // Call malloc in the child process to make sure we won't deadlock.
2108    void *ptr = malloc(42);
2109    free(ptr);
2110    exit(0);
2111  } else {
2112    // Return in the parent process.
2113    return NULL;
2114  }
2115}
2116
2117TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2118  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2119  // will cause forked processes to deadlock.
2120  // TODO(glider): need to detect that none of the child processes deadlocked.
2121  const int kNumWorkers = 5, kNumIterations = 100;
2122  int i, iter;
2123  for (iter = 0; iter < kNumIterations; iter++) {
2124    pthread_t workers[kNumWorkers], forker;
2125    for (i = 0; i < kNumWorkers; i++) {
2126      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2127    }
2128    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
2129    for (i = 0; i < kNumWorkers; i++) {
2130      pthread_join(workers[i], 0);
2131    }
2132    pthread_join(forker, 0);
2133  }
2134}
2135
2136void *TSDAllocWorker(void *test_key) {
2137  if (test_key) {
2138    void *mem = malloc(10);
2139    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2140  }
2141  return NULL;
2142}
2143
2144TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2145  pthread_t th;
2146  pthread_key_t test_key;
2147  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2148  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
2149  pthread_join(th, NULL);
2150  pthread_key_delete(test_key);
2151}
2152
2153// Test that CFStringCreateCopy does not copy constant strings.
2154TEST(AddressSanitizerMac, CFStringCreateCopy) {
2155  CFStringRef str = CFSTR("Hello world!\n");
2156  CFStringRef str2 = CFStringCreateCopy(0, str);
2157  EXPECT_EQ(str, str2);
2158}
2159
2160TEST(AddressSanitizerMac, NSObjectOOB) {
2161  // Make sure that our allocators are used for NSObjects.
2162  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2163}
2164
2165// Make sure that correct pointer is passed to free() when deallocating a
2166// NSURL object.
2167// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2168TEST(AddressSanitizerMac, NSURLDeallocation) {
2169  TestNSURLDeallocation();
2170}
2171
2172// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2173TEST(AddressSanitizerMac, Mstats) {
2174  malloc_statistics_t stats1, stats2;
2175  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2176  const int kMallocSize = 100000;
2177  void *alloc = Ident(malloc(kMallocSize));
2178  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2179  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2180  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2181  free(alloc);
2182  // Even the default OSX allocator may not change the stats after free().
2183}
2184#endif  // __APPLE__
2185
2186// Test that instrumentation of stack allocations takes into account
2187// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2188// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2189TEST(AddressSanitizer, LongDoubleNegativeTest) {
2190  long double a, b;
2191  static long double c;
2192  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2193  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2194}
2195