asan_test.cc revision c0d37b35439897aea821319a669832b16848cb65
1//===-- asan_test.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22#include <algorithm>
23
24#ifdef __linux__
25# include <sys/prctl.h>
26# include <sys/types.h>
27# include <sys/stat.h>
28# include <fcntl.h>
29#endif
30
31#if defined(__i386__) || defined(__x86_64__)
32#include <emmintrin.h>
33#endif
34
35#include "asan_test_utils.h"
36
37#ifndef __APPLE__
38#include <malloc.h>
39#else
40#include <malloc/malloc.h>
41#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
42#include <CoreFoundation/CFString.h>
43#endif  // __APPLE__
44
45#if ASAN_HAS_EXCEPTIONS
46# define ASAN_THROW(x) throw (x)
47#else
48# define ASAN_THROW(x)
49#endif
50
51#include <sys/mman.h>
52
53typedef uint8_t   U1;
54typedef uint16_t  U2;
55typedef uint32_t  U4;
56typedef uint64_t  U8;
57
58static const int kPageSize = 4096;
59
60// Simple stand-alone pseudorandom number generator.
61// Current algorithm is ANSI C linear congruential PRNG.
62static inline uint32_t my_rand(uint32_t* state) {
63  return (*state = *state * 1103515245 + 12345) >> 16;
64}
65
66static uint32_t global_seed = 0;
67
68const size_t kLargeMalloc = 1 << 24;
69
70template<typename T>
71NOINLINE void asan_write(T *a) {
72  *a = 0;
73}
74
75NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
76  EXPECT_EQ(0U, ((uintptr_t)p % size));
77  if      (size == 1) asan_write((uint8_t*)p);
78  else if (size == 2) asan_write((uint16_t*)p);
79  else if (size == 4) asan_write((uint32_t*)p);
80  else if (size == 8) asan_write((uint64_t*)p);
81}
82
83NOINLINE void *malloc_fff(size_t size) {
84  void *res = malloc/**/(size); break_optimization(0); return res;}
85NOINLINE void *malloc_eee(size_t size) {
86  void *res = malloc_fff(size); break_optimization(0); return res;}
87NOINLINE void *malloc_ddd(size_t size) {
88  void *res = malloc_eee(size); break_optimization(0); return res;}
89NOINLINE void *malloc_ccc(size_t size) {
90  void *res = malloc_ddd(size); break_optimization(0); return res;}
91NOINLINE void *malloc_bbb(size_t size) {
92  void *res = malloc_ccc(size); break_optimization(0); return res;}
93NOINLINE void *malloc_aaa(size_t size) {
94  void *res = malloc_bbb(size); break_optimization(0); return res;}
95
96#ifndef __APPLE__
97NOINLINE void *memalign_fff(size_t alignment, size_t size) {
98  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
99NOINLINE void *memalign_eee(size_t alignment, size_t size) {
100  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
101NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
102  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
103NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
104  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
105NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
106  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
107NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
108  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
109#endif  // __APPLE__
110
111
112NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
113NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
114NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
115
116template<typename T>
117NOINLINE void oob_test(int size, int off) {
118  char *p = (char*)malloc_aaa(size);
119  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
120  //        sizeof(T), p, p + size, off);
121  asan_write((T*)(p + off));
122  free_aaa(p);
123}
124
125
126template<typename T>
127NOINLINE void uaf_test(int size, int off) {
128  char *p = (char *)malloc_aaa(size);
129  free_aaa(p);
130  for (int i = 1; i < 100; i++)
131    free_aaa(malloc_aaa(i));
132  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
133          (long)sizeof(T), p, off);
134  asan_write((T*)(p + off));
135}
136
137TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
138#if defined(__has_feature) && __has_feature(address_sanitizer)
139  bool asan = 1;
140#elif defined(__SANITIZE_ADDRESS__)
141  bool asan = 1;
142#else
143  bool asan = 0;
144#endif
145  EXPECT_EQ(true, asan);
146}
147
148TEST(AddressSanitizer, SimpleDeathTest) {
149  EXPECT_DEATH(exit(1), "");
150}
151
152TEST(AddressSanitizer, VariousMallocsTest) {
153  int *a = (int*)malloc(100 * sizeof(int));
154  a[50] = 0;
155  free(a);
156
157  int *r = (int*)malloc(10);
158  r = (int*)realloc(r, 2000 * sizeof(int));
159  r[1000] = 0;
160  free(r);
161
162  int *b = new int[100];
163  b[50] = 0;
164  delete [] b;
165
166  int *c = new int;
167  *c = 0;
168  delete c;
169
170#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
171  int *pm;
172  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
173  EXPECT_EQ(0, pm_res);
174  free(pm);
175#endif
176
177#if !defined(__APPLE__)
178  int *ma = (int*)memalign(kPageSize, kPageSize);
179  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
180  ma[123] = 0;
181  free(ma);
182#endif  // __APPLE__
183}
184
185TEST(AddressSanitizer, CallocTest) {
186  int *a = (int*)calloc(100, sizeof(int));
187  EXPECT_EQ(0, a[10]);
188  free(a);
189}
190
191TEST(AddressSanitizer, VallocTest) {
192  void *a = valloc(100);
193  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
194  free(a);
195}
196
197#ifndef __APPLE__
198TEST(AddressSanitizer, PvallocTest) {
199  char *a = (char*)pvalloc(kPageSize + 100);
200  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
201  a[kPageSize + 101] = 1;  // we should not report an error here.
202  free(a);
203
204  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
205  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
206  a[101] = 1;  // we should not report an error here.
207  free(a);
208}
209#endif  // __APPLE__
210
211void *TSDWorker(void *test_key) {
212  if (test_key) {
213    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
214  }
215  return NULL;
216}
217
218void TSDDestructor(void *tsd) {
219  // Spawning a thread will check that the current thread id is not -1.
220  pthread_t th;
221  PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
222  PTHREAD_JOIN(th, NULL);
223}
224
225// This tests triggers the thread-specific data destruction fiasco which occurs
226// if we don't manage the TSD destructors ourselves. We create a new pthread
227// key with a non-NULL destructor which is likely to be put after the destructor
228// of AsanThread in the list of destructors.
229// In this case the TSD for AsanThread will be destroyed before TSDDestructor
230// is called for the child thread, and a CHECK will fail when we call
231// pthread_create() to spawn the grandchild.
232TEST(AddressSanitizer, DISABLED_TSDTest) {
233  pthread_t th;
234  pthread_key_t test_key;
235  pthread_key_create(&test_key, TSDDestructor);
236  PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
237  PTHREAD_JOIN(th, NULL);
238  pthread_key_delete(test_key);
239}
240
241template<typename T>
242void OOBTest() {
243  char expected_str[100];
244  for (int size = sizeof(T); size < 20; size += 5) {
245    for (int i = -5; i < 0; i++) {
246      const char *str =
247          "is located.*%d byte.*to the left";
248      sprintf(expected_str, str, abs(i));
249      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
250    }
251
252    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
253      oob_test<T>(size, i);
254
255    for (int i = size - sizeof(T) + 1; i <= (int)(size + 2 * sizeof(T)); i++) {
256      const char *str =
257          "is located.*%d byte.*to the right";
258      int off = i >= size ? (i - size) : 0;
259      // we don't catch unaligned partially OOB accesses.
260      if (i % sizeof(T)) continue;
261      sprintf(expected_str, str, off);
262      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
263    }
264  }
265
266  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
267          "is located.*1 byte.*to the left");
268  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
269          "is located.*0 byte.*to the right");
270}
271
272// TODO(glider): the following tests are EXTREMELY slow on Darwin:
273//   AddressSanitizer.OOB_char (125503 ms)
274//   AddressSanitizer.OOB_int (126890 ms)
275//   AddressSanitizer.OOBRightTest (315605 ms)
276//   AddressSanitizer.SimpleStackTest (366559 ms)
277
278TEST(AddressSanitizer, OOB_char) {
279  OOBTest<U1>();
280}
281
282TEST(AddressSanitizer, OOB_int) {
283  OOBTest<U4>();
284}
285
286TEST(AddressSanitizer, OOBRightTest) {
287  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
288    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
289      for (size_t offset = 0; offset <= 8; offset += access_size) {
290        void *p = malloc(alloc_size);
291        // allocated: [p, p + alloc_size)
292        // accessed:  [p + offset, p + offset + access_size)
293        uint8_t *addr = (uint8_t*)p + offset;
294        if (offset + access_size <= alloc_size) {
295          asan_write_sized_aligned(addr, access_size);
296        } else {
297          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
298          const char *str =
299              "is located.%d *byte.*to the right";
300          char expected_str[100];
301          sprintf(expected_str, str, outside_bytes);
302          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
303                       expected_str);
304        }
305        free(p);
306      }
307    }
308  }
309}
310
311#if ASAN_ALLOCATOR_VERSION == 2  // Broken with the asan_allocator1
312TEST(AddressSanitizer, LargeOOBRightTest) {
313  size_t large_power_of_two = 1 << 19;
314  for (size_t i = 16; i <= 256; i *= 2) {
315    size_t size = large_power_of_two - i;
316    char *p = Ident(new char[size]);
317    EXPECT_DEATH(p[size] = 0, "is located 0 bytes to the right");
318    delete [] p;
319  }
320}
321#endif  // ASAN_ALLOCATOR_VERSION == 2
322
323TEST(AddressSanitizer, UAF_char) {
324  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
325  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
326  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
327  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
328  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
329  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
330}
331
332#if ASAN_HAS_BLACKLIST
333TEST(AddressSanitizer, IgnoreTest) {
334  int *x = Ident(new int);
335  delete Ident(x);
336  *x = 0;
337}
338#endif  // ASAN_HAS_BLACKLIST
339
340struct StructWithBitField {
341  int bf1:1;
342  int bf2:1;
343  int bf3:1;
344  int bf4:29;
345};
346
347TEST(AddressSanitizer, BitFieldPositiveTest) {
348  StructWithBitField *x = new StructWithBitField;
349  delete Ident(x);
350  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
351  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
352  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
353  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
354}
355
356struct StructWithBitFields_8_24 {
357  int a:8;
358  int b:24;
359};
360
361TEST(AddressSanitizer, BitFieldNegativeTest) {
362  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
363  x->a = 0;
364  x->b = 0;
365  delete Ident(x);
366}
367
368TEST(AddressSanitizer, OutOfMemoryTest) {
369  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
370  EXPECT_EQ(0, realloc(0, size));
371  EXPECT_EQ(0, realloc(0, ~Ident(0)));
372  EXPECT_EQ(0, malloc(size));
373  EXPECT_EQ(0, malloc(~Ident(0)));
374  EXPECT_EQ(0, calloc(1, size));
375  EXPECT_EQ(0, calloc(1, ~Ident(0)));
376}
377
378#if ASAN_NEEDS_SEGV
379namespace {
380
381const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
382const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
383
384TEST(AddressSanitizer, WildAddressTest) {
385  char *c = (char*)0x123;
386  EXPECT_DEATH(*c = 0, kUnknownCrash);
387}
388
389void my_sigaction_sighandler(int, siginfo_t*, void*) {
390  fprintf(stderr, kOverriddenHandler);
391  exit(1);
392}
393
394void my_signal_sighandler(int signum) {
395  fprintf(stderr, kOverriddenHandler);
396  exit(1);
397}
398
399TEST(AddressSanitizer, SignalTest) {
400  struct sigaction sigact;
401  memset(&sigact, 0, sizeof(sigact));
402  sigact.sa_sigaction = my_sigaction_sighandler;
403  sigact.sa_flags = SA_SIGINFO;
404  // ASan should silently ignore sigaction()...
405  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
406#ifdef __APPLE__
407  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
408#endif
409  char *c = (char*)0x123;
410  EXPECT_DEATH(*c = 0, kUnknownCrash);
411  // ... and signal().
412  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
413  EXPECT_DEATH(*c = 0, kUnknownCrash);
414}
415}  // namespace
416#endif
417
418static void MallocStress(size_t n) {
419  uint32_t seed = my_rand(&global_seed);
420  for (size_t iter = 0; iter < 10; iter++) {
421    vector<void *> vec;
422    for (size_t i = 0; i < n; i++) {
423      if ((i % 3) == 0) {
424        if (vec.empty()) continue;
425        size_t idx = my_rand(&seed) % vec.size();
426        void *ptr = vec[idx];
427        vec[idx] = vec.back();
428        vec.pop_back();
429        free_aaa(ptr);
430      } else {
431        size_t size = my_rand(&seed) % 1000 + 1;
432#ifndef __APPLE__
433        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
434        char *ptr = (char*)memalign_aaa(alignment, size);
435#else
436        char *ptr = (char*) malloc_aaa(size);
437#endif
438        vec.push_back(ptr);
439        ptr[0] = 0;
440        ptr[size-1] = 0;
441        ptr[size/2] = 0;
442      }
443    }
444    for (size_t i = 0; i < vec.size(); i++)
445      free_aaa(vec[i]);
446  }
447}
448
449TEST(AddressSanitizer, MallocStressTest) {
450  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
451}
452
453static void TestLargeMalloc(size_t size) {
454  char buff[1024];
455  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
456  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
457}
458
459TEST(AddressSanitizer, LargeMallocTest) {
460  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
461    TestLargeMalloc(i);
462  }
463}
464
465#if ASAN_LOW_MEMORY != 1
466TEST(AddressSanitizer, HugeMallocTest) {
467#ifdef __APPLE__
468  // It was empirically found out that 1215 megabytes is the maximum amount of
469  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
470  // 32-bit Mac 10.7 gives even less (< 1G).
471  // (the libSystem malloc() allows allocating up to 2300 megabytes without
472  // ASan).
473  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
474#else
475  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
476#endif
477  TestLargeMalloc(n_megs << 20);
478}
479#endif
480
481#ifndef __APPLE__
482void MemalignRun(size_t align, size_t size, int idx) {
483  char *p = (char *)memalign(align, size);
484  Ident(p)[idx] = 0;
485  free(p);
486}
487
488TEST(AddressSanitizer, memalign) {
489  for (int align = 16; align <= (1 << 23); align *= 2) {
490    size_t size = align * 5;
491    EXPECT_DEATH(MemalignRun(align, size, -1),
492                 "is located 1 bytes to the left");
493    EXPECT_DEATH(MemalignRun(align, size, size + 1),
494                 "is located 1 bytes to the right");
495  }
496}
497#endif
498
499TEST(AddressSanitizer, ThreadedMallocStressTest) {
500  const int kNumThreads = 4;
501  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
502  pthread_t t[kNumThreads];
503  for (int i = 0; i < kNumThreads; i++) {
504    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
505        (void*)kNumIterations);
506  }
507  for (int i = 0; i < kNumThreads; i++) {
508    PTHREAD_JOIN(t[i], 0);
509  }
510}
511
512void *ManyThreadsWorker(void *a) {
513  for (int iter = 0; iter < 100; iter++) {
514    for (size_t size = 100; size < 2000; size *= 2) {
515      free(Ident(malloc(size)));
516    }
517  }
518  return 0;
519}
520
521TEST(AddressSanitizer, ManyThreadsTest) {
522  const size_t kNumThreads =
523      (SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
524  pthread_t t[kNumThreads];
525  for (size_t i = 0; i < kNumThreads; i++) {
526    PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
527  }
528  for (size_t i = 0; i < kNumThreads; i++) {
529    PTHREAD_JOIN(t[i], 0);
530  }
531}
532
533TEST(AddressSanitizer, ReallocTest) {
534  const int kMinElem = 5;
535  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
536  ptr[3] = 3;
537  for (int i = 0; i < 10000; i++) {
538    ptr = (int*)realloc(ptr,
539        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
540    EXPECT_EQ(3, ptr[3]);
541  }
542}
543
544#ifndef __APPLE__
545static const char *kMallocUsableSizeErrorMsg =
546  "AddressSanitizer: attempting to call malloc_usable_size()";
547
548TEST(AddressSanitizer, MallocUsableSizeTest) {
549  const size_t kArraySize = 100;
550  char *array = Ident((char*)malloc(kArraySize));
551  int *int_ptr = Ident(new int);
552  EXPECT_EQ(0U, malloc_usable_size(NULL));
553  EXPECT_EQ(kArraySize, malloc_usable_size(array));
554  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
555  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
556  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
557               kMallocUsableSizeErrorMsg);
558  free(array);
559  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
560}
561#endif
562
563void WrongFree() {
564  int *x = (int*)malloc(100 * sizeof(int));
565  // Use the allocated memory, otherwise Clang will optimize it out.
566  Ident(x);
567  free(x + 1);
568}
569
570TEST(AddressSanitizer, WrongFreeTest) {
571  EXPECT_DEATH(WrongFree(),
572               "ERROR: AddressSanitizer: attempting free.*not malloc");
573}
574
575void DoubleFree() {
576  int *x = (int*)malloc(100 * sizeof(int));
577  fprintf(stderr, "DoubleFree: x=%p\n", x);
578  free(x);
579  free(x);
580  fprintf(stderr, "should have failed in the second free(%p)\n", x);
581  abort();
582}
583
584TEST(AddressSanitizer, DoubleFreeTest) {
585  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
586               "ERROR: AddressSanitizer: attempting double-free"
587               ".*is located 0 bytes inside of 400-byte region"
588               ".*freed by thread T0 here"
589               ".*previously allocated by thread T0 here");
590}
591
592template<int kSize>
593NOINLINE void SizedStackTest() {
594  char a[kSize];
595  char  *A = Ident((char*)&a);
596  for (size_t i = 0; i < kSize; i++)
597    A[i] = i;
598  EXPECT_DEATH(A[-1] = 0, "");
599  EXPECT_DEATH(A[-20] = 0, "");
600  EXPECT_DEATH(A[-31] = 0, "");
601  EXPECT_DEATH(A[kSize] = 0, "");
602  EXPECT_DEATH(A[kSize + 1] = 0, "");
603  EXPECT_DEATH(A[kSize + 10] = 0, "");
604  EXPECT_DEATH(A[kSize + 31] = 0, "");
605}
606
607TEST(AddressSanitizer, SimpleStackTest) {
608  SizedStackTest<1>();
609  SizedStackTest<2>();
610  SizedStackTest<3>();
611  SizedStackTest<4>();
612  SizedStackTest<5>();
613  SizedStackTest<6>();
614  SizedStackTest<7>();
615  SizedStackTest<16>();
616  SizedStackTest<25>();
617  SizedStackTest<34>();
618  SizedStackTest<43>();
619  SizedStackTest<51>();
620  SizedStackTest<62>();
621  SizedStackTest<64>();
622  SizedStackTest<128>();
623}
624
625TEST(AddressSanitizer, ManyStackObjectsTest) {
626  char XXX[10];
627  char YYY[20];
628  char ZZZ[30];
629  Ident(XXX);
630  Ident(YYY);
631  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
632}
633
634NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
635  char d[4] = {0};
636  char *D = Ident(d);
637  switch (frame) {
638    case 3: a[5]++; break;
639    case 2: b[5]++; break;
640    case 1: c[5]++; break;
641    case 0: D[5]++; break;
642  }
643}
644NOINLINE static void Frame1(int frame, char *a, char *b) {
645  char c[4] = {0}; Frame0(frame, a, b, c);
646  break_optimization(0);
647}
648NOINLINE static void Frame2(int frame, char *a) {
649  char b[4] = {0}; Frame1(frame, a, b);
650  break_optimization(0);
651}
652NOINLINE static void Frame3(int frame) {
653  char a[4] = {0}; Frame2(frame, a);
654  break_optimization(0);
655}
656
657TEST(AddressSanitizer, GuiltyStackFrame0Test) {
658  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
659}
660TEST(AddressSanitizer, GuiltyStackFrame1Test) {
661  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
662}
663TEST(AddressSanitizer, GuiltyStackFrame2Test) {
664  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
665}
666TEST(AddressSanitizer, GuiltyStackFrame3Test) {
667  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
668}
669
670NOINLINE void LongJmpFunc1(jmp_buf buf) {
671  // create three red zones for these two stack objects.
672  int a;
673  int b;
674
675  int *A = Ident(&a);
676  int *B = Ident(&b);
677  *A = *B;
678  longjmp(buf, 1);
679}
680
681NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
682  // create three red zones for these two stack objects.
683  int a;
684  int b;
685
686  int *A = Ident(&a);
687  int *B = Ident(&b);
688  *A = *B;
689  __builtin_longjmp((void**)buf, 1);
690}
691
692NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
693  // create three red zones for these two stack objects.
694  int a;
695  int b;
696
697  int *A = Ident(&a);
698  int *B = Ident(&b);
699  *A = *B;
700  _longjmp(buf, 1);
701}
702
703NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
704  // create three red zones for these two stack objects.
705  int a;
706  int b;
707
708  int *A = Ident(&a);
709  int *B = Ident(&b);
710  *A = *B;
711  siglongjmp(buf, 1);
712}
713
714
715NOINLINE void TouchStackFunc() {
716  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
717  int *A = Ident(a);
718  for (int i = 0; i < 100; i++)
719    A[i] = i*i;
720}
721
722// Test that we handle longjmp and do not report fals positives on stack.
723TEST(AddressSanitizer, LongJmpTest) {
724  static jmp_buf buf;
725  if (!setjmp(buf)) {
726    LongJmpFunc1(buf);
727  } else {
728    TouchStackFunc();
729  }
730}
731
732#if not defined(__ANDROID__)
733TEST(AddressSanitizer, BuiltinLongJmpTest) {
734  static jmp_buf buf;
735  if (!__builtin_setjmp((void**)buf)) {
736    BuiltinLongJmpFunc1(buf);
737  } else {
738    TouchStackFunc();
739  }
740}
741#endif  // not defined(__ANDROID__)
742
743TEST(AddressSanitizer, UnderscopeLongJmpTest) {
744  static jmp_buf buf;
745  if (!_setjmp(buf)) {
746    UnderscopeLongJmpFunc1(buf);
747  } else {
748    TouchStackFunc();
749  }
750}
751
752TEST(AddressSanitizer, SigLongJmpTest) {
753  static sigjmp_buf buf;
754  if (!sigsetjmp(buf, 1)) {
755    SigLongJmpFunc1(buf);
756  } else {
757    TouchStackFunc();
758  }
759}
760
761#ifdef __EXCEPTIONS
762NOINLINE void ThrowFunc() {
763  // create three red zones for these two stack objects.
764  int a;
765  int b;
766
767  int *A = Ident(&a);
768  int *B = Ident(&b);
769  *A = *B;
770  ASAN_THROW(1);
771}
772
773TEST(AddressSanitizer, CxxExceptionTest) {
774  if (ASAN_UAR) return;
775  // TODO(kcc): this test crashes on 32-bit for some reason...
776  if (SANITIZER_WORDSIZE == 32) return;
777  try {
778    ThrowFunc();
779  } catch(...) {}
780  TouchStackFunc();
781}
782#endif
783
784void *ThreadStackReuseFunc1(void *unused) {
785  // create three red zones for these two stack objects.
786  int a;
787  int b;
788
789  int *A = Ident(&a);
790  int *B = Ident(&b);
791  *A = *B;
792  pthread_exit(0);
793  return 0;
794}
795
796void *ThreadStackReuseFunc2(void *unused) {
797  TouchStackFunc();
798  return 0;
799}
800
801TEST(AddressSanitizer, ThreadStackReuseTest) {
802  pthread_t t;
803  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
804  PTHREAD_JOIN(t, 0);
805  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
806  PTHREAD_JOIN(t, 0);
807}
808
809#if defined(__i386__) || defined(__x86_64__)
810TEST(AddressSanitizer, Store128Test) {
811  char *a = Ident((char*)malloc(Ident(12)));
812  char *p = a;
813  if (((uintptr_t)a % 16) != 0)
814    p = a + 8;
815  assert(((uintptr_t)p % 16) == 0);
816  __m128i value_wide = _mm_set1_epi16(0x1234);
817  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
818               "AddressSanitizer: heap-buffer-overflow");
819  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
820               "WRITE of size 16");
821  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
822               "located 0 bytes to the right of 12-byte");
823  free(a);
824}
825#endif
826
827static string RightOOBErrorMessage(int oob_distance, bool is_write) {
828  assert(oob_distance >= 0);
829  char expected_str[100];
830  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the right",
831          is_write ? "WRITE" : "READ", oob_distance);
832  return string(expected_str);
833}
834
835static string RightOOBWriteMessage(int oob_distance) {
836  return RightOOBErrorMessage(oob_distance, /*is_write*/true);
837}
838
839static string RightOOBReadMessage(int oob_distance) {
840  return RightOOBErrorMessage(oob_distance, /*is_write*/false);
841}
842
843static string LeftOOBErrorMessage(int oob_distance, bool is_write) {
844  assert(oob_distance > 0);
845  char expected_str[100];
846  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the left",
847          is_write ? "WRITE" : "READ", oob_distance);
848  return string(expected_str);
849}
850
851static string LeftOOBWriteMessage(int oob_distance) {
852  return LeftOOBErrorMessage(oob_distance, /*is_write*/true);
853}
854
855static string LeftOOBReadMessage(int oob_distance) {
856  return LeftOOBErrorMessage(oob_distance, /*is_write*/false);
857}
858
859static string LeftOOBAccessMessage(int oob_distance) {
860  assert(oob_distance > 0);
861  char expected_str[100];
862  sprintf(expected_str, "located %d bytes to the left", oob_distance);
863  return string(expected_str);
864}
865
866template<typename T>
867void MemSetOOBTestTemplate(size_t length) {
868  if (length == 0) return;
869  size_t size = Ident(sizeof(T) * length);
870  T *array = Ident((T*)malloc(size));
871  int element = Ident(42);
872  int zero = Ident(0);
873  // memset interval inside array
874  memset(array, element, size);
875  memset(array, element, size - 1);
876  memset(array + length - 1, element, sizeof(T));
877  memset(array, element, 1);
878
879  // memset 0 bytes
880  memset(array - 10, element, zero);
881  memset(array - 1, element, zero);
882  memset(array, element, zero);
883  memset(array + length, 0, zero);
884  memset(array + length + 1, 0, zero);
885
886  // try to memset bytes to the right of array
887  EXPECT_DEATH(memset(array, 0, size + 1),
888               RightOOBWriteMessage(0));
889  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
890               RightOOBWriteMessage(4));
891  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
892               RightOOBWriteMessage(2 * sizeof(T) - 1));
893  // whole interval is to the right
894  EXPECT_DEATH(memset(array + length + 1, 0, 10),
895               RightOOBWriteMessage(sizeof(T)));
896
897  // try to memset bytes to the left of array
898  EXPECT_DEATH(memset((char*)array - 1, element, size),
899               LeftOOBWriteMessage(1));
900  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
901               LeftOOBWriteMessage(5));
902  if (length >= 100) {
903    // Large OOB, we find it only if the redzone is large enough.
904    EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
905                 LeftOOBWriteMessage(5 * sizeof(T)));
906  }
907  // whole interval is to the left
908  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
909               LeftOOBWriteMessage(2 * sizeof(T)));
910
911  // try to memset bytes both to the left & to the right
912  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
913               LeftOOBWriteMessage(2));
914
915  free(array);
916}
917
918TEST(AddressSanitizer, MemSetOOBTest) {
919  MemSetOOBTestTemplate<char>(100);
920  MemSetOOBTestTemplate<int>(5);
921  MemSetOOBTestTemplate<double>(256);
922  // We can test arrays of structres/classes here, but what for?
923}
924
925// Try to allocate two arrays of 'size' bytes that are near each other.
926// Strictly speaking we are not guaranteed to find such two pointers,
927// but given the structure of asan's allocator we will.
928static bool AllocateTwoAjacentArrays(char **x1, char **x2, size_t size) {
929  vector<char *> v;
930  bool res = false;
931  for (size_t i = 0; i < 1000U && !res; i++) {
932    v.push_back(new char[size]);
933    if (i == 0) continue;
934    sort(v.begin(), v.end());
935    for (size_t j = 1; j < v.size(); j++) {
936      assert(v[j] > v[j-1]);
937      if ((size_t)(v[j] - v[j-1]) < size * 2) {
938        *x2 = v[j];
939        *x1 = v[j-1];
940        res = true;
941        break;
942      }
943    }
944  }
945
946  for (size_t i = 0; i < v.size(); i++) {
947    if (res && v[i] == *x1) continue;
948    if (res && v[i] == *x2) continue;
949    delete [] v[i];
950  }
951  return res;
952}
953
954TEST(AddressSanitizer, LargeOOBInMemset) {
955  for (size_t size = 200; size < 100000; size += size / 2) {
956    char *x1, *x2;
957    if (!AllocateTwoAjacentArrays(&x1, &x2, size))
958      continue;
959    // fprintf(stderr, "  large oob memset: %p %p %zd\n", x1, x2, size);
960    // Do a memset on x1 with huge out-of-bound access that will end up in x2.
961    EXPECT_DEATH(memset(x1, 0, size * 2), "is located 0 bytes to the right");
962    delete [] x1;
963    delete [] x2;
964    return;
965  }
966  assert(0 && "Did not find two adjacent malloc-ed pointers");
967}
968
969// Same test for memcpy and memmove functions
970template <typename T, class M>
971void MemTransferOOBTestTemplate(size_t length) {
972  if (length == 0) return;
973  size_t size = Ident(sizeof(T) * length);
974  T *src = Ident((T*)malloc(size));
975  T *dest = Ident((T*)malloc(size));
976  int zero = Ident(0);
977
978  // valid transfer of bytes between arrays
979  M::transfer(dest, src, size);
980  M::transfer(dest + 1, src, size - sizeof(T));
981  M::transfer(dest, src + length - 1, sizeof(T));
982  M::transfer(dest, src, 1);
983
984  // transfer zero bytes
985  M::transfer(dest - 1, src, 0);
986  M::transfer(dest + length, src, zero);
987  M::transfer(dest, src - 1, zero);
988  M::transfer(dest, src, zero);
989
990  // try to change mem to the right of dest
991  EXPECT_DEATH(M::transfer(dest + 1, src, size),
992               RightOOBWriteMessage(sizeof(T) - 1));
993  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
994               RightOOBWriteMessage(3));
995
996  // try to change mem to the left of dest
997  EXPECT_DEATH(M::transfer(dest - 2, src, size),
998               LeftOOBWriteMessage(2 * sizeof(T)));
999  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
1000               LeftOOBWriteMessage(3));
1001
1002  // try to access mem to the right of src
1003  EXPECT_DEATH(M::transfer(dest, src + 2, size),
1004               RightOOBReadMessage(2 * sizeof(T) - 1));
1005  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
1006               RightOOBReadMessage(2));
1007
1008  // try to access mem to the left of src
1009  EXPECT_DEATH(M::transfer(dest, src - 1, size),
1010               LeftOOBReadMessage(sizeof(T)));
1011  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
1012               LeftOOBReadMessage(6));
1013
1014  // Generally we don't need to test cases where both accessing src and writing
1015  // to dest address to poisoned memory.
1016
1017  T *big_src = Ident((T*)malloc(size * 2));
1018  T *big_dest = Ident((T*)malloc(size * 2));
1019  // try to change mem to both sides of dest
1020  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
1021               LeftOOBWriteMessage(sizeof(T)));
1022  // try to access mem to both sides of src
1023  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
1024               LeftOOBReadMessage(2 * sizeof(T)));
1025
1026  free(src);
1027  free(dest);
1028  free(big_src);
1029  free(big_dest);
1030}
1031
1032class MemCpyWrapper {
1033 public:
1034  static void* transfer(void *to, const void *from, size_t size) {
1035    return memcpy(to, from, size);
1036  }
1037};
1038TEST(AddressSanitizer, MemCpyOOBTest) {
1039  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
1040  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
1041}
1042
1043class MemMoveWrapper {
1044 public:
1045  static void* transfer(void *to, const void *from, size_t size) {
1046    return memmove(to, from, size);
1047  }
1048};
1049TEST(AddressSanitizer, MemMoveOOBTest) {
1050  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
1051  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
1052}
1053
1054// Tests for string functions
1055
1056// Used for string functions tests
1057static char global_string[] = "global";
1058static size_t global_string_length = 6;
1059
1060// Input to a test is a zero-terminated string str with given length
1061// Accesses to the bytes to the left and to the right of str
1062// are presumed to produce OOB errors
1063void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
1064  // Normal strlen calls
1065  EXPECT_EQ(strlen(str), length);
1066  if (length > 0) {
1067    EXPECT_EQ(length - 1, strlen(str + 1));
1068    EXPECT_EQ(0U, strlen(str + length));
1069  }
1070  // Arg of strlen is not malloced, OOB access
1071  if (!is_global) {
1072    // We don't insert RedZones to the left of global variables
1073    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBReadMessage(1));
1074    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBReadMessage(5));
1075  }
1076  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBReadMessage(0));
1077  // Overwrite terminator
1078  str[length] = 'a';
1079  // String is not zero-terminated, strlen will lead to OOB access
1080  EXPECT_DEATH(Ident(strlen(str)), RightOOBReadMessage(0));
1081  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBReadMessage(0));
1082  // Restore terminator
1083  str[length] = 0;
1084}
1085TEST(AddressSanitizer, StrLenOOBTest) {
1086  // Check heap-allocated string
1087  size_t length = Ident(10);
1088  char *heap_string = Ident((char*)malloc(length + 1));
1089  char stack_string[10 + 1];
1090  break_optimization(&stack_string);
1091  for (size_t i = 0; i < length; i++) {
1092    heap_string[i] = 'a';
1093    stack_string[i] = 'b';
1094  }
1095  heap_string[length] = 0;
1096  stack_string[length] = 0;
1097  StrLenOOBTestTemplate(heap_string, length, false);
1098  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
1099  //      make test for stack_string work. Or move it to output tests.
1100  // StrLenOOBTestTemplate(stack_string, length, false);
1101  StrLenOOBTestTemplate(global_string, global_string_length, true);
1102  free(heap_string);
1103}
1104
1105static inline char* MallocAndMemsetString(size_t size, char ch) {
1106  char *s = Ident((char*)malloc(size));
1107  memset(s, ch, size);
1108  return s;
1109}
1110static inline char* MallocAndMemsetString(size_t size) {
1111  return MallocAndMemsetString(size, 'z');
1112}
1113
1114#ifndef __APPLE__
1115TEST(AddressSanitizer, StrNLenOOBTest) {
1116  size_t size = Ident(123);
1117  char *str = MallocAndMemsetString(size);
1118  // Normal strnlen calls.
1119  Ident(strnlen(str - 1, 0));
1120  Ident(strnlen(str, size));
1121  Ident(strnlen(str + size - 1, 1));
1122  str[size - 1] = '\0';
1123  Ident(strnlen(str, 2 * size));
1124  // Argument points to not allocated memory.
1125  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBReadMessage(1));
1126  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBReadMessage(0));
1127  // Overwrite the terminating '\0' and hit unallocated memory.
1128  str[size - 1] = 'z';
1129  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBReadMessage(0));
1130  free(str);
1131}
1132#endif
1133
1134TEST(AddressSanitizer, StrDupOOBTest) {
1135  size_t size = Ident(42);
1136  char *str = MallocAndMemsetString(size);
1137  char *new_str;
1138  // Normal strdup calls.
1139  str[size - 1] = '\0';
1140  new_str = strdup(str);
1141  free(new_str);
1142  new_str = strdup(str + size - 1);
1143  free(new_str);
1144  // Argument points to not allocated memory.
1145  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBReadMessage(1));
1146  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBReadMessage(0));
1147  // Overwrite the terminating '\0' and hit unallocated memory.
1148  str[size - 1] = 'z';
1149  EXPECT_DEATH(Ident(strdup(str)), RightOOBReadMessage(0));
1150  free(str);
1151}
1152
1153TEST(AddressSanitizer, StrCpyOOBTest) {
1154  size_t to_size = Ident(30);
1155  size_t from_size = Ident(6);  // less than to_size
1156  char *to = Ident((char*)malloc(to_size));
1157  char *from = Ident((char*)malloc(from_size));
1158  // Normal strcpy calls.
1159  strcpy(from, "hello");
1160  strcpy(to, from);
1161  strcpy(to + to_size - from_size, from);
1162  // Length of "from" is too small.
1163  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBWriteMessage(0));
1164  // "to" or "from" points to not allocated memory.
1165  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBWriteMessage(1));
1166  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBReadMessage(1));
1167  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBReadMessage(0));
1168  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBWriteMessage(0));
1169  // Overwrite the terminating '\0' character and hit unallocated memory.
1170  from[from_size - 1] = '!';
1171  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBReadMessage(0));
1172  free(to);
1173  free(from);
1174}
1175
1176TEST(AddressSanitizer, StrNCpyOOBTest) {
1177  size_t to_size = Ident(20);
1178  size_t from_size = Ident(6);  // less than to_size
1179  char *to = Ident((char*)malloc(to_size));
1180  // From is a zero-terminated string "hello\0" of length 6
1181  char *from = Ident((char*)malloc(from_size));
1182  strcpy(from, "hello");
1183  // copy 0 bytes
1184  strncpy(to, from, 0);
1185  strncpy(to - 1, from - 1, 0);
1186  // normal strncpy calls
1187  strncpy(to, from, from_size);
1188  strncpy(to, from, to_size);
1189  strncpy(to, from + from_size - 1, to_size);
1190  strncpy(to + to_size - 1, from, 1);
1191  // One of {to, from} points to not allocated memory
1192  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1193               LeftOOBReadMessage(1));
1194  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1195               LeftOOBWriteMessage(1));
1196  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1197               RightOOBReadMessage(0));
1198  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1199               RightOOBWriteMessage(0));
1200  // Length of "to" is too small
1201  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1202               RightOOBWriteMessage(0));
1203  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1204               RightOOBWriteMessage(0));
1205  // Overwrite terminator in from
1206  from[from_size - 1] = '!';
1207  // normal strncpy call
1208  strncpy(to, from, from_size);
1209  // Length of "from" is too small
1210  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1211               RightOOBReadMessage(0));
1212  free(to);
1213  free(from);
1214}
1215
1216// Users may have different definitions of "strchr" and "index", so provide
1217// function pointer typedefs and overload RunStrChrTest implementation.
1218// We can't use macro for RunStrChrTest body here, as this macro would
1219// confuse EXPECT_DEATH gtest macro.
1220typedef char*(*PointerToStrChr1)(const char*, int);
1221typedef char*(*PointerToStrChr2)(char*, int);
1222
1223USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1224  size_t size = Ident(100);
1225  char *str = MallocAndMemsetString(size);
1226  str[10] = 'q';
1227  str[11] = '\0';
1228  EXPECT_EQ(str, StrChr(str, 'z'));
1229  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1230  EXPECT_EQ(NULL, StrChr(str, 'a'));
1231  // StrChr argument points to not allocated memory.
1232  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1233  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1234  // Overwrite the terminator and hit not allocated memory.
1235  str[11] = 'z';
1236  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1237  free(str);
1238}
1239USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1240  size_t size = Ident(100);
1241  char *str = MallocAndMemsetString(size);
1242  str[10] = 'q';
1243  str[11] = '\0';
1244  EXPECT_EQ(str, StrChr(str, 'z'));
1245  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1246  EXPECT_EQ(NULL, StrChr(str, 'a'));
1247  // StrChr argument points to not allocated memory.
1248  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1249  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1250  // Overwrite the terminator and hit not allocated memory.
1251  str[11] = 'z';
1252  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1253  free(str);
1254}
1255
1256TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1257  RunStrChrTest(&strchr);
1258  RunStrChrTest(&index);
1259}
1260
1261TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1262  // strcmp
1263  EXPECT_EQ(0, strcmp("", ""));
1264  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1265  EXPECT_GT(0, strcmp("ab", "ac"));
1266  EXPECT_GT(0, strcmp("abc", "abcd"));
1267  EXPECT_LT(0, strcmp("acc", "abc"));
1268  EXPECT_LT(0, strcmp("abcd", "abc"));
1269
1270  // strncmp
1271  EXPECT_EQ(0, strncmp("a", "b", 0));
1272  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1273  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1274  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1275  EXPECT_GT(0, strncmp("a", "b", 5));
1276  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1277  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1278  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1279  EXPECT_LT(0, strncmp("zyx", "", 2));
1280
1281  // strcasecmp
1282  EXPECT_EQ(0, strcasecmp("", ""));
1283  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1284  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1285  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1286  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1287  EXPECT_LT(0, strcasecmp("acc", "abc"));
1288  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1289
1290  // strncasecmp
1291  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1292  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1293  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1294  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1295  EXPECT_GT(0, strncasecmp("a", "B", 5));
1296  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1297  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1298  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1299  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1300
1301  // memcmp
1302  EXPECT_EQ(0, memcmp("a", "b", 0));
1303  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1304  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1305  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1306  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1307  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1308}
1309
1310typedef int(*PointerToStrCmp)(const char*, const char*);
1311void RunStrCmpTest(PointerToStrCmp StrCmp) {
1312  size_t size = Ident(100);
1313  char *s1 = MallocAndMemsetString(size);
1314  char *s2 = MallocAndMemsetString(size);
1315  s1[size - 1] = '\0';
1316  s2[size - 1] = '\0';
1317  // Normal StrCmp calls
1318  Ident(StrCmp(s1, s2));
1319  Ident(StrCmp(s1, s2 + size - 1));
1320  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1321  s1[size - 1] = 'z';
1322  s2[size - 1] = 'x';
1323  Ident(StrCmp(s1, s2));
1324  // One of arguments points to not allocated memory.
1325  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBReadMessage(1));
1326  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBReadMessage(1));
1327  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBReadMessage(0));
1328  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBReadMessage(0));
1329  // Hit unallocated memory and die.
1330  s2[size - 1] = 'z';
1331  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBReadMessage(0));
1332  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBReadMessage(0));
1333  free(s1);
1334  free(s2);
1335}
1336
1337TEST(AddressSanitizer, StrCmpOOBTest) {
1338  RunStrCmpTest(&strcmp);
1339}
1340
1341TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1342  RunStrCmpTest(&strcasecmp);
1343}
1344
1345typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1346void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1347  size_t size = Ident(100);
1348  char *s1 = MallocAndMemsetString(size);
1349  char *s2 = MallocAndMemsetString(size);
1350  s1[size - 1] = '\0';
1351  s2[size - 1] = '\0';
1352  // Normal StrNCmp calls
1353  Ident(StrNCmp(s1, s2, size + 2));
1354  s1[size - 1] = 'z';
1355  s2[size - 1] = 'x';
1356  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1357  s2[size - 1] = 'z';
1358  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1359  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1360  // One of arguments points to not allocated memory.
1361  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1362  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1363  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1364  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1365  // Hit unallocated memory and die.
1366  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1367  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1368  free(s1);
1369  free(s2);
1370}
1371
1372TEST(AddressSanitizer, StrNCmpOOBTest) {
1373  RunStrNCmpTest(&strncmp);
1374}
1375
1376TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1377  RunStrNCmpTest(&strncasecmp);
1378}
1379
1380TEST(AddressSanitizer, MemCmpOOBTest) {
1381  size_t size = Ident(100);
1382  char *s1 = MallocAndMemsetString(size);
1383  char *s2 = MallocAndMemsetString(size);
1384  // Normal memcmp calls.
1385  Ident(memcmp(s1, s2, size));
1386  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1387  Ident(memcmp(s1 - 1, s2 - 1, 0));
1388  // One of arguments points to not allocated memory.
1389  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1390  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1391  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1392  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1393  // Hit unallocated memory and die.
1394  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1395  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1396  // Zero bytes are not terminators and don't prevent from OOB.
1397  s1[size - 1] = '\0';
1398  s2[size - 1] = '\0';
1399  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
1400  free(s1);
1401  free(s2);
1402}
1403
1404TEST(AddressSanitizer, StrCatOOBTest) {
1405  // strcat() reads strlen(to) bytes from |to| before concatenating.
1406  size_t to_size = Ident(100);
1407  char *to = MallocAndMemsetString(to_size);
1408  to[0] = '\0';
1409  size_t from_size = Ident(20);
1410  char *from = MallocAndMemsetString(from_size);
1411  from[from_size - 1] = '\0';
1412  // Normal strcat calls.
1413  strcat(to, from);
1414  strcat(to, from);
1415  strcat(to + from_size, from + from_size - 2);
1416  // Passing an invalid pointer is an error even when concatenating an empty
1417  // string.
1418  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBAccessMessage(1));
1419  // One of arguments points to not allocated memory.
1420  EXPECT_DEATH(strcat(to - 1, from), LeftOOBAccessMessage(1));
1421  EXPECT_DEATH(strcat(to, from - 1), LeftOOBReadMessage(1));
1422  EXPECT_DEATH(strcat(to + to_size, from), RightOOBWriteMessage(0));
1423  EXPECT_DEATH(strcat(to, from + from_size), RightOOBReadMessage(0));
1424
1425  // "from" is not zero-terminated.
1426  from[from_size - 1] = 'z';
1427  EXPECT_DEATH(strcat(to, from), RightOOBReadMessage(0));
1428  from[from_size - 1] = '\0';
1429  // "to" is not zero-terminated.
1430  memset(to, 'z', to_size);
1431  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1432  // "to" is too short to fit "from".
1433  to[to_size - from_size + 1] = '\0';
1434  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1435  // length of "to" is just enough.
1436  strcat(to, from + 1);
1437
1438  free(to);
1439  free(from);
1440}
1441
1442TEST(AddressSanitizer, StrNCatOOBTest) {
1443  // strncat() reads strlen(to) bytes from |to| before concatenating.
1444  size_t to_size = Ident(100);
1445  char *to = MallocAndMemsetString(to_size);
1446  to[0] = '\0';
1447  size_t from_size = Ident(20);
1448  char *from = MallocAndMemsetString(from_size);
1449  // Normal strncat calls.
1450  strncat(to, from, 0);
1451  strncat(to, from, from_size);
1452  from[from_size - 1] = '\0';
1453  strncat(to, from, 2 * from_size);
1454  // Catenating empty string with an invalid string is still an error.
1455  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBAccessMessage(1));
1456  strncat(to, from + from_size - 1, 10);
1457  // One of arguments points to not allocated memory.
1458  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBAccessMessage(1));
1459  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBReadMessage(1));
1460  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBWriteMessage(0));
1461  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBReadMessage(0));
1462
1463  memset(from, 'z', from_size);
1464  memset(to, 'z', to_size);
1465  to[0] = '\0';
1466  // "from" is too short.
1467  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBReadMessage(0));
1468  // "to" is not zero-terminated.
1469  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBWriteMessage(0));
1470  // "to" is too short to fit "from".
1471  to[0] = 'z';
1472  to[to_size - from_size + 1] = '\0';
1473  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBWriteMessage(0));
1474  // "to" is just enough.
1475  strncat(to, from, from_size - 2);
1476
1477  free(to);
1478  free(from);
1479}
1480
1481static string OverlapErrorMessage(const string &func) {
1482  return func + "-param-overlap";
1483}
1484
1485TEST(AddressSanitizer, StrArgsOverlapTest) {
1486  size_t size = Ident(100);
1487  char *str = Ident((char*)malloc(size));
1488
1489// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1490// memmove().
1491#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1492    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1493  // Check "memcpy". Use Ident() to avoid inlining.
1494  memset(str, 'z', size);
1495  Ident(memcpy)(str + 1, str + 11, 10);
1496  Ident(memcpy)(str, str, 0);
1497  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1498  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1499#endif
1500
1501  // We do not treat memcpy with to==from as a bug.
1502  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1503  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1504  //              OverlapErrorMessage("memcpy"));
1505
1506  // Check "strcpy".
1507  memset(str, 'z', size);
1508  str[9] = '\0';
1509  strcpy(str + 10, str);
1510  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1511  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1512  strcpy(str, str + 5);
1513
1514  // Check "strncpy".
1515  memset(str, 'z', size);
1516  strncpy(str, str + 10, 10);
1517  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1518  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1519  str[10] = '\0';
1520  strncpy(str + 11, str, 20);
1521  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1522
1523  // Check "strcat".
1524  memset(str, 'z', size);
1525  str[10] = '\0';
1526  str[20] = '\0';
1527  strcat(str, str + 10);
1528  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1529  str[10] = '\0';
1530  strcat(str + 11, str);
1531  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1532  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1533  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1534
1535  // Check "strncat".
1536  memset(str, 'z', size);
1537  str[10] = '\0';
1538  strncat(str, str + 10, 10);  // from is empty
1539  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1540  str[10] = '\0';
1541  str[20] = '\0';
1542  strncat(str + 5, str, 5);
1543  str[10] = '\0';
1544  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1545  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1546
1547  free(str);
1548}
1549
1550void CallAtoi(const char *nptr) {
1551  Ident(atoi(nptr));
1552}
1553void CallAtol(const char *nptr) {
1554  Ident(atol(nptr));
1555}
1556void CallAtoll(const char *nptr) {
1557  Ident(atoll(nptr));
1558}
1559typedef void(*PointerToCallAtoi)(const char*);
1560
1561void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1562  char *array = MallocAndMemsetString(10, '1');
1563  // Invalid pointer to the string.
1564  EXPECT_DEATH(Atoi(array + 11), RightOOBReadMessage(1));
1565  EXPECT_DEATH(Atoi(array - 1), LeftOOBReadMessage(1));
1566  // Die if a buffer doesn't have terminating NULL.
1567  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1568  // Make last symbol a terminating NULL or other non-digit.
1569  array[9] = '\0';
1570  Atoi(array);
1571  array[9] = 'a';
1572  Atoi(array);
1573  Atoi(array + 9);
1574  // Sometimes we need to detect overflow if no digits are found.
1575  memset(array, ' ', 10);
1576  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1577  array[9] = '-';
1578  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1579  EXPECT_DEATH(Atoi(array + 9), RightOOBReadMessage(0));
1580  array[8] = '-';
1581  Atoi(array);
1582  free(array);
1583}
1584
1585TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1586  RunAtoiOOBTest(&CallAtoi);
1587  RunAtoiOOBTest(&CallAtol);
1588  RunAtoiOOBTest(&CallAtoll);
1589}
1590
1591void CallStrtol(const char *nptr, char **endptr, int base) {
1592  Ident(strtol(nptr, endptr, base));
1593}
1594void CallStrtoll(const char *nptr, char **endptr, int base) {
1595  Ident(strtoll(nptr, endptr, base));
1596}
1597typedef void(*PointerToCallStrtol)(const char*, char**, int);
1598
1599void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1600  char *array = MallocAndMemsetString(3);
1601  char *endptr = NULL;
1602  array[0] = '1';
1603  array[1] = '2';
1604  array[2] = '3';
1605  // Invalid pointer to the string.
1606  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBReadMessage(0));
1607  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBReadMessage(1));
1608  // Buffer overflow if there is no terminating null (depends on base).
1609  Strtol(array, &endptr, 3);
1610  EXPECT_EQ(array + 2, endptr);
1611  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1612  array[2] = 'z';
1613  Strtol(array, &endptr, 35);
1614  EXPECT_EQ(array + 2, endptr);
1615  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBReadMessage(0));
1616  // Add terminating zero to get rid of overflow.
1617  array[2] = '\0';
1618  Strtol(array, NULL, 36);
1619  // Don't check for overflow if base is invalid.
1620  Strtol(array - 1, NULL, -1);
1621  Strtol(array + 3, NULL, 1);
1622  // Sometimes we need to detect overflow if no digits are found.
1623  array[0] = array[1] = array[2] = ' ';
1624  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1625  array[2] = '+';
1626  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1627  array[2] = '-';
1628  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1629  array[1] = '+';
1630  Strtol(array, NULL, 0);
1631  array[1] = array[2] = 'z';
1632  Strtol(array, &endptr, 0);
1633  EXPECT_EQ(array, endptr);
1634  Strtol(array + 2, NULL, 0);
1635  EXPECT_EQ(array, endptr);
1636  free(array);
1637}
1638
1639TEST(AddressSanitizer, StrtollOOBTest) {
1640  RunStrtolOOBTest(&CallStrtoll);
1641}
1642TEST(AddressSanitizer, StrtolOOBTest) {
1643  RunStrtolOOBTest(&CallStrtol);
1644}
1645
1646// At the moment we instrument memcpy/memove/memset calls at compile time so we
1647// can't handle OOB error if these functions are called by pointer, see disabled
1648// MemIntrinsicCallByPointerTest below
1649typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1650typedef void*(*PointerToMemSet)(void*, int, size_t);
1651
1652void CallMemSetByPointer(PointerToMemSet MemSet) {
1653  size_t size = Ident(100);
1654  char *array = Ident((char*)malloc(size));
1655  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBWriteMessage(0));
1656  free(array);
1657}
1658
1659void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1660  size_t size = Ident(100);
1661  char *src = Ident((char*)malloc(size));
1662  char *dst = Ident((char*)malloc(size));
1663  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBWriteMessage(0));
1664  free(src);
1665  free(dst);
1666}
1667
1668TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1669  CallMemSetByPointer(&memset);
1670  CallMemTransferByPointer(&memcpy);
1671  CallMemTransferByPointer(&memmove);
1672}
1673
1674#if defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1675TEST(AddressSanitizer, pread) {
1676  char *x = new char[10];
1677  int fd = open("/proc/self/stat", O_RDONLY);
1678  ASSERT_GT(fd, 0);
1679  EXPECT_DEATH(pread(fd, x, 15, 0),
1680               ASAN_PCRE_DOTALL
1681               "AddressSanitizer: heap-buffer-overflow"
1682               ".* is located 0 bytes to the right of 10-byte region");
1683  close(fd);
1684  delete [] x;
1685}
1686
1687TEST(AddressSanitizer, pread64) {
1688  char *x = new char[10];
1689  int fd = open("/proc/self/stat", O_RDONLY);
1690  ASSERT_GT(fd, 0);
1691  EXPECT_DEATH(pread64(fd, x, 15, 0),
1692               ASAN_PCRE_DOTALL
1693               "AddressSanitizer: heap-buffer-overflow"
1694               ".* is located 0 bytes to the right of 10-byte region");
1695  close(fd);
1696  delete [] x;
1697}
1698
1699TEST(AddressSanitizer, read) {
1700  char *x = new char[10];
1701  int fd = open("/proc/self/stat", O_RDONLY);
1702  ASSERT_GT(fd, 0);
1703  EXPECT_DEATH(read(fd, x, 15),
1704               ASAN_PCRE_DOTALL
1705               "AddressSanitizer: heap-buffer-overflow"
1706               ".* is located 0 bytes to the right of 10-byte region");
1707  close(fd);
1708  delete [] x;
1709}
1710
1711#endif  // defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1712
1713// This test case fails
1714// Clang optimizes memcpy/memset calls which lead to unaligned access
1715TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1716  int size = Ident(4096);
1717  char *s = Ident((char*)malloc(size));
1718  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBWriteMessage(0));
1719  free(s);
1720}
1721
1722// TODO(samsonov): Add a test with malloc(0)
1723// TODO(samsonov): Add tests for str* and mem* functions.
1724
1725NOINLINE static int LargeFunction(bool do_bad_access) {
1726  int *x = new int[100];
1727  x[0]++;
1728  x[1]++;
1729  x[2]++;
1730  x[3]++;
1731  x[4]++;
1732  x[5]++;
1733  x[6]++;
1734  x[7]++;
1735  x[8]++;
1736  x[9]++;
1737
1738  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1739
1740  x[10]++;
1741  x[11]++;
1742  x[12]++;
1743  x[13]++;
1744  x[14]++;
1745  x[15]++;
1746  x[16]++;
1747  x[17]++;
1748  x[18]++;
1749  x[19]++;
1750
1751  delete x;
1752  return res;
1753}
1754
1755// Test the we have correct debug info for the failing instruction.
1756// This test requires the in-process symbolizer to be enabled by default.
1757TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1758  int failing_line = LargeFunction(false);
1759  char expected_warning[128];
1760  sprintf(expected_warning, "LargeFunction.*asan_test.*:%d", failing_line);
1761  EXPECT_DEATH(LargeFunction(true), expected_warning);
1762}
1763
1764// Check that we unwind and symbolize correctly.
1765TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1766  int *a = (int*)malloc_aaa(sizeof(int));
1767  *a = 1;
1768  free_aaa(a);
1769  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1770               "malloc_fff.*malloc_eee.*malloc_ddd");
1771}
1772
1773static void TryToSetThreadName(const char *name) {
1774#ifdef __linux__
1775  prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0);
1776#endif
1777}
1778
1779void *ThreadedTestAlloc(void *a) {
1780  TryToSetThreadName("AllocThr");
1781  int **p = (int**)a;
1782  *p = new int;
1783  return 0;
1784}
1785
1786void *ThreadedTestFree(void *a) {
1787  TryToSetThreadName("FreeThr");
1788  int **p = (int**)a;
1789  delete *p;
1790  return 0;
1791}
1792
1793void *ThreadedTestUse(void *a) {
1794  TryToSetThreadName("UseThr");
1795  int **p = (int**)a;
1796  **p = 1;
1797  return 0;
1798}
1799
1800void ThreadedTestSpawn() {
1801  pthread_t t;
1802  int *x;
1803  PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
1804  PTHREAD_JOIN(t, 0);
1805  PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
1806  PTHREAD_JOIN(t, 0);
1807  PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
1808  PTHREAD_JOIN(t, 0);
1809}
1810
1811TEST(AddressSanitizer, ThreadedTest) {
1812  EXPECT_DEATH(ThreadedTestSpawn(),
1813               ASAN_PCRE_DOTALL
1814               "Thread T.*created"
1815               ".*Thread T.*created"
1816               ".*Thread T.*created");
1817}
1818
1819#ifdef __linux__
1820TEST(AddressSanitizer, ThreadNamesTest) {
1821  // ThreadedTestSpawn();
1822  EXPECT_DEATH(ThreadedTestSpawn(),
1823               ASAN_PCRE_DOTALL
1824               "WRITE .*thread T. .UseThr."
1825               ".*freed by thread T. .FreeThr. here:"
1826               ".*previously allocated by thread T. .AllocThr. here:"
1827               ".*Thread T. .UseThr. created by T. here:"
1828               ".*Thread T. .FreeThr. created by T. here:"
1829               ".*Thread T. .AllocThr. created by T. here:"
1830               "");
1831}
1832#endif
1833
1834#if ASAN_NEEDS_SEGV
1835TEST(AddressSanitizer, ShadowGapTest) {
1836#if SANITIZER_WORDSIZE == 32
1837  char *addr = (char*)0x22000000;
1838#else
1839  char *addr = (char*)0x0000100000080000;
1840#endif
1841  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1842}
1843#endif  // ASAN_NEEDS_SEGV
1844
1845extern "C" {
1846NOINLINE static void UseThenFreeThenUse() {
1847  char *x = Ident((char*)malloc(8));
1848  *x = 1;
1849  free_aaa(x);
1850  *x = 2;
1851}
1852}
1853
1854TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1855  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1856}
1857
1858TEST(AddressSanitizer, StrDupTest) {
1859  free(strdup(Ident("123")));
1860}
1861
1862// Currently we create and poison redzone at right of global variables.
1863char glob5[5];
1864static char static110[110];
1865const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1866static const char StaticConstGlob[3] = {9, 8, 7};
1867extern int GlobalsTest(int x);
1868
1869TEST(AddressSanitizer, GlobalTest) {
1870  static char func_static15[15];
1871
1872  static char fs1[10];
1873  static char fs2[10];
1874  static char fs3[10];
1875
1876  glob5[Ident(0)] = 0;
1877  glob5[Ident(1)] = 0;
1878  glob5[Ident(2)] = 0;
1879  glob5[Ident(3)] = 0;
1880  glob5[Ident(4)] = 0;
1881
1882  EXPECT_DEATH(glob5[Ident(5)] = 0,
1883               "0 bytes to the right of global variable.*glob5.* size 5");
1884  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1885               "6 bytes to the right of global variable.*glob5.* size 5");
1886  Ident(static110);  // avoid optimizations
1887  static110[Ident(0)] = 0;
1888  static110[Ident(109)] = 0;
1889  EXPECT_DEATH(static110[Ident(110)] = 0,
1890               "0 bytes to the right of global variable");
1891  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1892               "7 bytes to the right of global variable");
1893
1894  Ident(func_static15);  // avoid optimizations
1895  func_static15[Ident(0)] = 0;
1896  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1897               "0 bytes to the right of global variable");
1898  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1899               "9 bytes to the right of global variable");
1900
1901  Ident(fs1);
1902  Ident(fs2);
1903  Ident(fs3);
1904
1905  // We don't create left redzones, so this is not 100% guaranteed to fail.
1906  // But most likely will.
1907  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1908
1909  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1910               "is located 1 bytes to the right of .*ConstGlob");
1911  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1912               "is located 2 bytes to the right of .*StaticConstGlob");
1913
1914  // call stuff from another file.
1915  GlobalsTest(0);
1916}
1917
1918TEST(AddressSanitizer, GlobalStringConstTest) {
1919  static const char *zoo = "FOOBAR123";
1920  const char *p = Ident(zoo);
1921  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1922}
1923
1924TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1925  static char zoo[10];
1926  const char *p = Ident(zoo);
1927  // The file name should be present in the report.
1928  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.");
1929}
1930
1931int *ReturnsPointerToALocalObject() {
1932  int a = 0;
1933  return Ident(&a);
1934}
1935
1936#if ASAN_UAR == 1
1937TEST(AddressSanitizer, LocalReferenceReturnTest) {
1938  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1939  int *p = f();
1940  // Call 'f' a few more times, 'p' should still be poisoned.
1941  for (int i = 0; i < 32; i++)
1942    f();
1943  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1944  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1945}
1946#endif
1947
1948template <int kSize>
1949NOINLINE static void FuncWithStack() {
1950  char x[kSize];
1951  Ident(x)[0] = 0;
1952  Ident(x)[kSize-1] = 0;
1953}
1954
1955static void LotsOfStackReuse() {
1956  int LargeStack[10000];
1957  Ident(LargeStack)[0] = 0;
1958  for (int i = 0; i < 10000; i++) {
1959    FuncWithStack<128 * 1>();
1960    FuncWithStack<128 * 2>();
1961    FuncWithStack<128 * 4>();
1962    FuncWithStack<128 * 8>();
1963    FuncWithStack<128 * 16>();
1964    FuncWithStack<128 * 32>();
1965    FuncWithStack<128 * 64>();
1966    FuncWithStack<128 * 128>();
1967    FuncWithStack<128 * 256>();
1968    FuncWithStack<128 * 512>();
1969    Ident(LargeStack)[0] = 0;
1970  }
1971}
1972
1973TEST(AddressSanitizer, StressStackReuseTest) {
1974  LotsOfStackReuse();
1975}
1976
1977TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1978  const int kNumThreads = 20;
1979  pthread_t t[kNumThreads];
1980  for (int i = 0; i < kNumThreads; i++) {
1981    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1982  }
1983  for (int i = 0; i < kNumThreads; i++) {
1984    PTHREAD_JOIN(t[i], 0);
1985  }
1986}
1987
1988static void *PthreadExit(void *a) {
1989  pthread_exit(0);
1990  return 0;
1991}
1992
1993TEST(AddressSanitizer, PthreadExitTest) {
1994  pthread_t t;
1995  for (int i = 0; i < 1000; i++) {
1996    PTHREAD_CREATE(&t, 0, PthreadExit, 0);
1997    PTHREAD_JOIN(t, 0);
1998  }
1999}
2000
2001#ifdef __EXCEPTIONS
2002NOINLINE static void StackReuseAndException() {
2003  int large_stack[1000];
2004  Ident(large_stack);
2005  ASAN_THROW(1);
2006}
2007
2008// TODO(kcc): support exceptions with use-after-return.
2009TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
2010  for (int i = 0; i < 10000; i++) {
2011    try {
2012    StackReuseAndException();
2013    } catch(...) {
2014    }
2015  }
2016}
2017#endif
2018
2019TEST(AddressSanitizer, MlockTest) {
2020  EXPECT_EQ(0, mlockall(MCL_CURRENT));
2021  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
2022  EXPECT_EQ(0, munlockall());
2023  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
2024}
2025
2026struct LargeStruct {
2027  int foo[100];
2028};
2029
2030// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
2031// Struct copy should not cause asan warning even if lhs == rhs.
2032TEST(AddressSanitizer, LargeStructCopyTest) {
2033  LargeStruct a;
2034  *Ident(&a) = *Ident(&a);
2035}
2036
2037ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
2038static void NoAddressSafety() {
2039  char *foo = new char[10];
2040  Ident(foo)[10] = 0;
2041  delete [] foo;
2042}
2043
2044TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
2045  Ident(NoAddressSafety)();
2046}
2047
2048static string MismatchStr(const string &str) {
2049  return string("AddressSanitizer: alloc-dealloc-mismatch \\(") + str;
2050}
2051
2052// This test is disabled until we enable alloc_dealloc_mismatch by default.
2053// The feature is also tested by lit tests.
2054TEST(AddressSanitizer, DISABLED_AllocDeallocMismatch) {
2055  EXPECT_DEATH(free(Ident(new int)),
2056               MismatchStr("operator new vs free"));
2057  EXPECT_DEATH(free(Ident(new int[2])),
2058               MismatchStr("operator new \\[\\] vs free"));
2059  EXPECT_DEATH(delete (Ident(new int[2])),
2060               MismatchStr("operator new \\[\\] vs operator delete"));
2061  EXPECT_DEATH(delete (Ident((int*)malloc(2 * sizeof(int)))),
2062               MismatchStr("malloc vs operator delete"));
2063  EXPECT_DEATH(delete [] (Ident(new int)),
2064               MismatchStr("operator new vs operator delete \\[\\]"));
2065  EXPECT_DEATH(delete [] (Ident((int*)malloc(2 * sizeof(int)))),
2066               MismatchStr("malloc vs operator delete \\[\\]"));
2067}
2068
2069// ------------------ demo tests; run each one-by-one -------------
2070// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
2071TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
2072  ThreadedTestSpawn();
2073}
2074
2075void *SimpleBugOnSTack(void *x = 0) {
2076  char a[20];
2077  Ident(a)[20] = 0;
2078  return 0;
2079}
2080
2081TEST(AddressSanitizer, DISABLED_DemoStackTest) {
2082  SimpleBugOnSTack();
2083}
2084
2085TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
2086  pthread_t t;
2087  PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
2088  PTHREAD_JOIN(t, 0);
2089}
2090
2091TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
2092  uaf_test<U1>(10, 0);
2093}
2094TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
2095  uaf_test<U1>(10, -2);
2096}
2097TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
2098  uaf_test<U1>(10, 10);
2099}
2100
2101TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
2102  uaf_test<U1>(kLargeMalloc, 0);
2103}
2104
2105TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
2106  oob_test<U1>(10, -1);
2107}
2108
2109TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
2110  oob_test<U1>(kLargeMalloc, -1);
2111}
2112
2113TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
2114  oob_test<U1>(10, 10);
2115}
2116
2117TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
2118  oob_test<U1>(kLargeMalloc, kLargeMalloc);
2119}
2120
2121TEST(AddressSanitizer, DISABLED_DemoOOM) {
2122  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
2123  printf("%p\n", malloc(size));
2124}
2125
2126TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
2127  DoubleFree();
2128}
2129
2130TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
2131  int *a = 0;
2132  Ident(a)[10] = 0;
2133}
2134
2135TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
2136  static char a[100];
2137  static char b[100];
2138  static char c[100];
2139  Ident(a);
2140  Ident(b);
2141  Ident(c);
2142  Ident(a)[5] = 0;
2143  Ident(b)[105] = 0;
2144  Ident(a)[5] = 0;
2145}
2146
2147TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
2148  const size_t kAllocSize = (1 << 28) - 1024;
2149  size_t total_size = 0;
2150  while (true) {
2151    char *x = (char*)malloc(kAllocSize);
2152    memset(x, 0, kAllocSize);
2153    total_size += kAllocSize;
2154    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
2155  }
2156}
2157
2158// http://code.google.com/p/address-sanitizer/issues/detail?id=66
2159TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
2160  for (int i = 0; i < 1000000; i++) {
2161    delete [] (Ident(new char [8644]));
2162  }
2163  char *x = new char[8192];
2164  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
2165  delete [] Ident(x);
2166}
2167
2168#ifdef __APPLE__
2169#include "asan_mac_test.h"
2170TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
2171  EXPECT_DEATH(
2172      CFAllocatorDefaultDoubleFree(NULL),
2173      "attempting double-free");
2174}
2175
2176void CFAllocator_DoubleFreeOnPthread() {
2177  pthread_t child;
2178  PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
2179  PTHREAD_JOIN(child, NULL);  // Shouldn't be reached.
2180}
2181
2182TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
2183  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
2184}
2185
2186namespace {
2187
2188void *GLOB;
2189
2190void *CFAllocatorAllocateToGlob(void *unused) {
2191  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
2192  return NULL;
2193}
2194
2195void *CFAllocatorDeallocateFromGlob(void *unused) {
2196  char *p = (char*)GLOB;
2197  p[100] = 'A';  // ASan should report an error here.
2198  CFAllocatorDeallocate(NULL, GLOB);
2199  return NULL;
2200}
2201
2202void CFAllocator_PassMemoryToAnotherThread() {
2203  pthread_t th1, th2;
2204  PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2205  PTHREAD_JOIN(th1, NULL);
2206  PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2207  PTHREAD_JOIN(th2, NULL);
2208}
2209
2210TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2211  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2212               "heap-buffer-overflow");
2213}
2214
2215}  // namespace
2216
2217// TODO(glider): figure out whether we still need these tests. Is it correct
2218// to intercept the non-default CFAllocators?
2219TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2220  EXPECT_DEATH(
2221      CFAllocatorSystemDefaultDoubleFree(),
2222      "attempting double-free");
2223}
2224
2225// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2226TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2227  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2228}
2229
2230TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2231  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2232}
2233
2234// For libdispatch tests below we check that ASan got to the shadow byte
2235// legend, i.e. managed to print the thread stacks (this almost certainly
2236// means that the libdispatch task creation has been intercepted correctly).
2237TEST(AddressSanitizerMac, GCDDispatchAsync) {
2238  // Make sure the whole ASan report is printed, i.e. that we don't die
2239  // on a CHECK.
2240  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte legend");
2241}
2242
2243TEST(AddressSanitizerMac, GCDDispatchSync) {
2244  // Make sure the whole ASan report is printed, i.e. that we don't die
2245  // on a CHECK.
2246  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte legend");
2247}
2248
2249
2250TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2251  // Make sure the whole ASan report is printed, i.e. that we don't die
2252  // on a CHECK.
2253  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte legend");
2254}
2255
2256TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2257  // Make sure the whole ASan report is printed, i.e. that we don't die
2258  // on a CHECK.
2259  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte legend");
2260}
2261
2262TEST(AddressSanitizerMac, GCDDispatchAfter) {
2263  // Make sure the whole ASan report is printed, i.e. that we don't die
2264  // on a CHECK.
2265  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte legend");
2266}
2267
2268TEST(AddressSanitizerMac, GCDSourceEvent) {
2269  // Make sure the whole ASan report is printed, i.e. that we don't die
2270  // on a CHECK.
2271  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte legend");
2272}
2273
2274TEST(AddressSanitizerMac, GCDSourceCancel) {
2275  // Make sure the whole ASan report is printed, i.e. that we don't die
2276  // on a CHECK.
2277  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte legend");
2278}
2279
2280TEST(AddressSanitizerMac, GCDGroupAsync) {
2281  // Make sure the whole ASan report is printed, i.e. that we don't die
2282  // on a CHECK.
2283  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte legend");
2284}
2285
2286void *MallocIntrospectionLockWorker(void *_) {
2287  const int kNumPointers = 100;
2288  int i;
2289  void *pointers[kNumPointers];
2290  for (i = 0; i < kNumPointers; i++) {
2291    pointers[i] = malloc(i + 1);
2292  }
2293  for (i = 0; i < kNumPointers; i++) {
2294    free(pointers[i]);
2295  }
2296
2297  return NULL;
2298}
2299
2300void *MallocIntrospectionLockForker(void *_) {
2301  pid_t result = fork();
2302  if (result == -1) {
2303    perror("fork");
2304  }
2305  assert(result != -1);
2306  if (result == 0) {
2307    // Call malloc in the child process to make sure we won't deadlock.
2308    void *ptr = malloc(42);
2309    free(ptr);
2310    exit(0);
2311  } else {
2312    // Return in the parent process.
2313    return NULL;
2314  }
2315}
2316
2317TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2318  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2319  // will cause forked processes to deadlock.
2320  // TODO(glider): need to detect that none of the child processes deadlocked.
2321  const int kNumWorkers = 5, kNumIterations = 100;
2322  int i, iter;
2323  for (iter = 0; iter < kNumIterations; iter++) {
2324    pthread_t workers[kNumWorkers], forker;
2325    for (i = 0; i < kNumWorkers; i++) {
2326      PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2327    }
2328    PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
2329    for (i = 0; i < kNumWorkers; i++) {
2330      PTHREAD_JOIN(workers[i], 0);
2331    }
2332    PTHREAD_JOIN(forker, 0);
2333  }
2334}
2335
2336void *TSDAllocWorker(void *test_key) {
2337  if (test_key) {
2338    void *mem = malloc(10);
2339    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2340  }
2341  return NULL;
2342}
2343
2344TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2345  pthread_t th;
2346  pthread_key_t test_key;
2347  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2348  PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
2349  PTHREAD_JOIN(th, NULL);
2350  pthread_key_delete(test_key);
2351}
2352
2353// Test that CFStringCreateCopy does not copy constant strings.
2354TEST(AddressSanitizerMac, CFStringCreateCopy) {
2355  CFStringRef str = CFSTR("Hello world!\n");
2356  CFStringRef str2 = CFStringCreateCopy(0, str);
2357  EXPECT_EQ(str, str2);
2358}
2359
2360TEST(AddressSanitizerMac, NSObjectOOB) {
2361  // Make sure that our allocators are used for NSObjects.
2362  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2363}
2364
2365// Make sure that correct pointer is passed to free() when deallocating a
2366// NSURL object.
2367// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2368TEST(AddressSanitizerMac, NSURLDeallocation) {
2369  TestNSURLDeallocation();
2370}
2371
2372// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2373TEST(AddressSanitizerMac, Mstats) {
2374  malloc_statistics_t stats1, stats2;
2375  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2376  const size_t kMallocSize = 100000;
2377  void *alloc = Ident(malloc(kMallocSize));
2378  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2379  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2380  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2381  free(alloc);
2382  // Even the default OSX allocator may not change the stats after free().
2383}
2384#endif  // __APPLE__
2385
2386// Test that instrumentation of stack allocations takes into account
2387// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2388// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2389TEST(AddressSanitizer, LongDoubleNegativeTest) {
2390  long double a, b;
2391  static long double c;
2392  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2393  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2394}
2395