extendsfdf2.c revision 2d1fdb26e458c4ddc04155c1d421bced3ba90cd0
1//===-- lib/extendsfdf2.c - single -> double conversion -----------*- C -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a fairly generic conversion from a narrower to a wider
11// IEEE-754 floating-point type.  The constants and types defined following the
12// includes below parameterize the conversion.
13//
14// This routine can be trivially adapted to support conversions from
15// half-precision or to quad-precision. It does not support types that don't
16// use the usual IEEE-754 interchange formats; specifically, some work would be
17// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
18// double-double format.
19//
20// Note please, however, that this implementation is only intended to support
21// *widening* operations; if you need to convert to a *narrower* floating-point
22// type (e.g. double -> float), then this routine will not do what you want it
23// to.
24//
25// It also requires that integer types at least as large as both formats
26// are available on the target platform; this may pose a problem when trying
27// to add support for quad on some 32-bit systems, for example.  You also may
28// run into trouble finding an appropriate CLZ function for wide source types;
29// you will likely need to roll your own on some platforms.
30//
31// Finally, the following assumptions are made:
32//
33// 1. floating-point types and integer types have the same endianness on the
34//    target platform
35//
36// 2. quiet NaNs, if supported, are indicated by the leading bit of the
37//    significand field being set
38//
39//===----------------------------------------------------------------------===//
40
41#include "int_lib.h"
42
43typedef float src_t;
44typedef uint32_t src_rep_t;
45#define SRC_REP_C UINT32_C
46static const int srcSigBits = 23;
47#define src_rep_t_clz __builtin_clz
48
49typedef double dst_t;
50typedef uint64_t dst_rep_t;
51#define DST_REP_C UINT64_C
52static const int dstSigBits = 52;
53
54// End of specialization parameters.  Two helper routines for conversion to and
55// from the representation of floating-point data as integer values follow.
56
57static inline src_rep_t srcToRep(src_t x) {
58    const union { src_t f; src_rep_t i; } rep = {.f = x};
59    return rep.i;
60}
61
62static inline dst_t dstFromRep(dst_rep_t x) {
63    const union { dst_t f; dst_rep_t i; } rep = {.i = x};
64    return rep.f;
65}
66
67// End helper routines.  Conversion implementation follows.
68
69ARM_EABI_FNALIAS(f2d, extendsfdf2)
70
71COMPILER_RT_ABI dst_t
72__extendsfdf2(src_t a) {
73
74    // Various constants whose values follow from the type parameters.
75    // Any reasonable optimizer will fold and propagate all of these.
76    const int srcBits = sizeof(src_t)*CHAR_BIT;
77    const int srcExpBits = srcBits - srcSigBits - 1;
78    const int srcInfExp = (1 << srcExpBits) - 1;
79    const int srcExpBias = srcInfExp >> 1;
80
81    const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
82    const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
83    const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
84    const src_rep_t srcAbsMask = srcSignMask - 1;
85    const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
86    const src_rep_t srcNaNCode = srcQNaN - 1;
87
88    const int dstBits = sizeof(dst_t)*CHAR_BIT;
89    const int dstExpBits = dstBits - dstSigBits - 1;
90    const int dstInfExp = (1 << dstExpBits) - 1;
91    const int dstExpBias = dstInfExp >> 1;
92
93    const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
94
95    // Break a into a sign and representation of the absolute value
96    const src_rep_t aRep = srcToRep(a);
97    const src_rep_t aAbs = aRep & srcAbsMask;
98    const src_rep_t sign = aRep & srcSignMask;
99    dst_rep_t absResult;
100
101    if (aAbs - srcMinNormal < srcInfinity - srcMinNormal) {
102        // a is a normal number.
103        // Extend to the destination type by shifting the significand and
104        // exponent into the proper position and rebiasing the exponent.
105        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
106        absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
107    }
108
109    else if (aAbs >= srcInfinity) {
110        // a is NaN or infinity.
111        // Conjure the result by beginning with infinity, then setting the qNaN
112        // bit (if needed) and right-aligning the rest of the trailing NaN
113        // payload field.
114        absResult = (dst_rep_t)dstInfExp << dstSigBits;
115        absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
116        absResult |= aAbs & srcNaNCode;
117    }
118
119    else if (aAbs) {
120        // a is denormal.
121        // renormalize the significand and clear the leading bit, then insert
122        // the correct adjusted exponent in the destination type.
123        const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
124        absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
125        absResult ^= dstMinNormal;
126        const int resultExponent = dstExpBias - srcExpBias - scale + 1;
127        absResult |= (dst_rep_t)resultExponent << dstSigBits;
128    }
129
130    else {
131        // a is zero.
132        absResult = 0;
133    }
134
135    // Apply the signbit to (dst_t)abs(a).
136    const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
137    return dstFromRep(result);
138}
139