tsan_rtl_thread.cc revision 47b1634df012507799eb39aa17d4022d748ba67b
1//===-- tsan_rtl_thread.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_common/sanitizer_placement_new.h"
15#include "tsan_rtl.h"
16#include "tsan_mman.h"
17#include "tsan_platform.h"
18#include "tsan_report.h"
19#include "tsan_sync.h"
20
21namespace __tsan {
22
23const int kThreadQuarantineSize = 16;
24
25static void MaybeReportThreadLeak(ThreadContext *tctx) {
26  if (tctx->detached)
27    return;
28  if (tctx->status != ThreadStatusCreated
29      && tctx->status != ThreadStatusRunning
30      && tctx->status != ThreadStatusFinished)
31    return;
32  ScopedReport rep(ReportTypeThreadLeak);
33  rep.AddThread(tctx);
34  OutputReport(rep);
35}
36
37void ThreadFinalize(ThreadState *thr) {
38  CHECK_GT(thr->in_rtl, 0);
39  if (!flags()->report_thread_leaks)
40    return;
41  Context *ctx = CTX();
42  Lock l(&ctx->thread_mtx);
43  for (unsigned i = 0; i < kMaxTid; i++) {
44    ThreadContext *tctx = ctx->threads[i];
45    if (tctx == 0)
46      continue;
47    MaybeReportThreadLeak(tctx);
48  }
49}
50
51static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
52  Context *ctx = CTX();
53  CHECK_GT(thr->in_rtl, 0);
54  CHECK(tctx->status == ThreadStatusRunning
55      || tctx->status == ThreadStatusFinished);
56  DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id);
57  tctx->status = ThreadStatusDead;
58  tctx->user_id = 0;
59  tctx->sync.Reset();
60
61  // Put to dead list.
62  tctx->dead_next = 0;
63  if (ctx->dead_list_size == 0)
64    ctx->dead_list_head = tctx;
65  else
66    ctx->dead_list_tail->dead_next = tctx;
67  ctx->dead_list_tail = tctx;
68  ctx->dead_list_size++;
69}
70
71int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
72  CHECK_GT(thr->in_rtl, 0);
73  Context *ctx = CTX();
74  Lock l(&ctx->thread_mtx);
75  StatInc(thr, StatThreadCreate);
76  int tid = -1;
77  ThreadContext *tctx = 0;
78  if (ctx->dead_list_size > kThreadQuarantineSize
79      || ctx->thread_seq >= kMaxTid) {
80    if (ctx->dead_list_size == 0) {
81      TsanPrintf("ThreadSanitizer: %d thread limit exceeded. Dying.\n",
82                 kMaxTid);
83      Die();
84    }
85    StatInc(thr, StatThreadReuse);
86    tctx = ctx->dead_list_head;
87    ctx->dead_list_head = tctx->dead_next;
88    ctx->dead_list_size--;
89    if (ctx->dead_list_size == 0) {
90      CHECK_EQ(tctx->dead_next, 0);
91      ctx->dead_list_head = 0;
92    }
93    CHECK_EQ(tctx->status, ThreadStatusDead);
94    tctx->status = ThreadStatusInvalid;
95    tctx->reuse_count++;
96    tctx->sync.Reset();
97    tid = tctx->tid;
98    DestroyAndFree(tctx->dead_info);
99  } else {
100    StatInc(thr, StatThreadMaxTid);
101    tid = ctx->thread_seq++;
102    void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
103    tctx = new(mem) ThreadContext(tid);
104    ctx->threads[tid] = tctx;
105  }
106  CHECK_NE(tctx, 0);
107  CHECK_GE(tid, 0);
108  CHECK_LT(tid, kMaxTid);
109  DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
110  CHECK_EQ(tctx->status, ThreadStatusInvalid);
111  ctx->alive_threads++;
112  if (ctx->max_alive_threads < ctx->alive_threads) {
113    ctx->max_alive_threads++;
114    CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
115    StatInc(thr, StatThreadMaxAlive);
116  }
117  tctx->status = ThreadStatusCreated;
118  tctx->thr = 0;
119  tctx->user_id = uid;
120  tctx->unique_id = ctx->unique_thread_seq++;
121  tctx->detached = detached;
122  if (tid) {
123    thr->fast_state.IncrementEpoch();
124    // Can't increment epoch w/o writing to the trace as well.
125    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
126    thr->clock.set(thr->tid, thr->fast_state.epoch());
127    thr->fast_synch_epoch = thr->fast_state.epoch();
128    thr->clock.release(&tctx->sync);
129    StatInc(thr, StatSyncRelease);
130
131    tctx->creation_stack.ObtainCurrent(thr, pc);
132  }
133  return tid;
134}
135
136void ThreadStart(ThreadState *thr, int tid) {
137  CHECK_GT(thr->in_rtl, 0);
138  uptr stk_addr = 0;
139  uptr stk_size = 0;
140  uptr tls_addr = 0;
141  uptr tls_size = 0;
142  GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
143
144  if (tid) {
145    MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
146
147    // Check that the thr object is in tls;
148    const uptr thr_beg = (uptr)thr;
149    const uptr thr_end = (uptr)thr + sizeof(*thr);
150    CHECK_GE(thr_beg, tls_addr);
151    CHECK_LE(thr_beg, tls_addr + tls_size);
152    CHECK_GE(thr_end, tls_addr);
153    CHECK_LE(thr_end, tls_addr + tls_size);
154    // Since the thr object is huge, skip it.
155    MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
156    MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
157  }
158
159  Lock l(&CTX()->thread_mtx);
160  ThreadContext *tctx = CTX()->threads[tid];
161  CHECK_NE(tctx, 0);
162  CHECK_EQ(tctx->status, ThreadStatusCreated);
163  tctx->status = ThreadStatusRunning;
164  tctx->epoch0 = tctx->epoch1 + 1;
165  tctx->epoch1 = (u64)-1;
166  new(thr) ThreadState(CTX(), tid, tctx->epoch0, stk_addr, stk_size,
167                       tls_addr, tls_size);
168  tctx->thr = thr;
169  thr->fast_synch_epoch = tctx->epoch0;
170  thr->clock.set(tid, tctx->epoch0);
171  thr->clock.acquire(&tctx->sync);
172  StatInc(thr, StatSyncAcquire);
173  DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
174          "tls_addr=%zx tls_size=%zx\n",
175          tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
176}
177
178void ThreadFinish(ThreadState *thr) {
179  CHECK_GT(thr->in_rtl, 0);
180  StatInc(thr, StatThreadFinish);
181  // FIXME: Treat it as write.
182  if (thr->stk_addr && thr->stk_size)
183    MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
184  if (thr->tls_addr && thr->tls_size) {
185    const uptr thr_beg = (uptr)thr;
186    const uptr thr_end = (uptr)thr + sizeof(*thr);
187    // Since the thr object is huge, skip it.
188    MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
189    MemoryResetRange(thr, /*pc=*/ 5,
190        thr_end, thr->tls_addr + thr->tls_size - thr_end);
191  }
192  Context *ctx = CTX();
193  Lock l(&ctx->thread_mtx);
194  ThreadContext *tctx = ctx->threads[thr->tid];
195  CHECK_NE(tctx, 0);
196  CHECK_EQ(tctx->status, ThreadStatusRunning);
197  CHECK_GT(ctx->alive_threads, 0);
198  ctx->alive_threads--;
199  if (tctx->detached) {
200    ThreadDead(thr, tctx);
201  } else {
202    thr->fast_state.IncrementEpoch();
203    // Can't increment epoch w/o writing to the trace as well.
204    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
205    thr->clock.set(thr->tid, thr->fast_state.epoch());
206    thr->fast_synch_epoch = thr->fast_state.epoch();
207    thr->clock.release(&tctx->sync);
208    StatInc(thr, StatSyncRelease);
209    tctx->status = ThreadStatusFinished;
210  }
211
212  // Save from info about the thread.
213  tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
214      ThreadDeadInfo();
215  internal_memcpy(&tctx->dead_info->trace.events[0],
216      &thr->trace.events[0], sizeof(thr->trace.events));
217  for (int i = 0; i < kTraceParts; i++) {
218    tctx->dead_info->trace.headers[i].stack0.CopyFrom(
219        thr->trace.headers[i].stack0);
220  }
221  tctx->epoch1 = thr->fast_state.epoch();
222
223  thr->~ThreadState();
224  StatAggregate(ctx->stat, thr->stat);
225  tctx->thr = 0;
226}
227
228int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
229  CHECK_GT(thr->in_rtl, 0);
230  Context *ctx = CTX();
231  Lock l(&ctx->thread_mtx);
232  int res = -1;
233  for (unsigned tid = 0; tid < kMaxTid; tid++) {
234    ThreadContext *tctx = ctx->threads[tid];
235    if (tctx != 0 && tctx->user_id == uid
236        && tctx->status != ThreadStatusInvalid) {
237      tctx->user_id = 0;
238      res = tid;
239      break;
240    }
241  }
242  DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
243  return res;
244}
245
246void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
247  CHECK_GT(thr->in_rtl, 0);
248  CHECK_GT(tid, 0);
249  CHECK_LT(tid, kMaxTid);
250  DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
251  Context *ctx = CTX();
252  Lock l(&ctx->thread_mtx);
253  ThreadContext *tctx = ctx->threads[tid];
254  if (tctx->status == ThreadStatusInvalid) {
255    TsanPrintf("ThreadSanitizer: join of non-existent thread\n");
256    return;
257  }
258  CHECK_EQ(tctx->detached, false);
259  CHECK_EQ(tctx->status, ThreadStatusFinished);
260  thr->clock.acquire(&tctx->sync);
261  StatInc(thr, StatSyncAcquire);
262  ThreadDead(thr, tctx);
263}
264
265void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
266  CHECK_GT(thr->in_rtl, 0);
267  CHECK_GT(tid, 0);
268  CHECK_LT(tid, kMaxTid);
269  Context *ctx = CTX();
270  Lock l(&ctx->thread_mtx);
271  ThreadContext *tctx = ctx->threads[tid];
272  if (tctx->status == ThreadStatusInvalid) {
273    TsanPrintf("ThreadSanitizer: detach of non-existent thread\n");
274    return;
275  }
276  if (tctx->status == ThreadStatusFinished) {
277    ThreadDead(thr, tctx);
278  } else {
279    tctx->detached = true;
280  }
281}
282
283void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
284                       uptr size, bool is_write) {
285  if (size == 0)
286    return;
287
288  u64 *shadow_mem = (u64*)MemToShadow(addr);
289  DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
290      thr->tid, (void*)pc, (void*)addr,
291      (int)size, is_write);
292
293#if TSAN_DEBUG
294  if (!IsAppMem(addr)) {
295    TsanPrintf("Access to non app mem %zx\n", addr);
296    DCHECK(IsAppMem(addr));
297  }
298  if (!IsAppMem(addr + size - 1)) {
299    TsanPrintf("Access to non app mem %zx\n", addr + size - 1);
300    DCHECK(IsAppMem(addr + size - 1));
301  }
302  if (!IsShadowMem((uptr)shadow_mem)) {
303    TsanPrintf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
304    DCHECK(IsShadowMem((uptr)shadow_mem));
305  }
306  if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
307    TsanPrintf("Bad shadow addr %p (%zx)\n",
308               shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
309    DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
310  }
311#endif
312
313  StatInc(thr, StatMopRange);
314
315  FastState fast_state = thr->fast_state;
316  if (fast_state.GetIgnoreBit())
317    return;
318
319  fast_state.IncrementEpoch();
320  thr->fast_state = fast_state;
321  TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
322
323  bool unaligned = (addr % kShadowCell) != 0;
324
325  // Handle unaligned beginning, if any.
326  for (; addr % kShadowCell && size; addr++, size--) {
327    int const kAccessSizeLog = 0;
328    Shadow cur(fast_state);
329    cur.SetWrite(is_write);
330    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
331    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
332        shadow_mem, cur);
333  }
334  if (unaligned)
335    shadow_mem += kShadowCnt;
336  // Handle middle part, if any.
337  for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
338    int const kAccessSizeLog = 3;
339    Shadow cur(fast_state);
340    cur.SetWrite(is_write);
341    cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
342    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
343        shadow_mem, cur);
344    shadow_mem += kShadowCnt;
345  }
346  // Handle ending, if any.
347  for (; size; addr++, size--) {
348    int const kAccessSizeLog = 0;
349    Shadow cur(fast_state);
350    cur.SetWrite(is_write);
351    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
352    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
353        shadow_mem, cur);
354  }
355}
356
357void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
358  MemoryAccess(thr, pc, addr, 0, 0);
359}
360
361void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
362  MemoryAccess(thr, pc, addr, 0, 1);
363}
364
365void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
366  MemoryAccess(thr, pc, addr, 3, 0);
367}
368
369void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
370  MemoryAccess(thr, pc, addr, 3, 1);
371}
372}  // namespace __tsan
373