1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_REAL_SCHUR_H
12#define EIGEN_REAL_SCHUR_H
13
14#include "./HessenbergDecomposition.h"
15
16namespace Eigen {
17
18/** \eigenvalues_module \ingroup Eigenvalues_Module
19  *
20  *
21  * \class RealSchur
22  *
23  * \brief Performs a real Schur decomposition of a square matrix
24  *
25  * \tparam _MatrixType the type of the matrix of which we are computing the
26  * real Schur decomposition; this is expected to be an instantiation of the
27  * Matrix class template.
28  *
29  * Given a real square matrix A, this class computes the real Schur
30  * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
31  * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
32  * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
33  * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
34  * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
35  * blocks on the diagonal of T are the same as the eigenvalues of the matrix
36  * A, and thus the real Schur decomposition is used in EigenSolver to compute
37  * the eigendecomposition of a matrix.
38  *
39  * Call the function compute() to compute the real Schur decomposition of a
40  * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
41  * constructor which computes the real Schur decomposition at construction
42  * time. Once the decomposition is computed, you can use the matrixU() and
43  * matrixT() functions to retrieve the matrices U and T in the decomposition.
44  *
45  * The documentation of RealSchur(const MatrixType&, bool) contains an example
46  * of the typical use of this class.
47  *
48  * \note The implementation is adapted from
49  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
50  * Their code is based on EISPACK.
51  *
52  * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
53  */
54template<typename _MatrixType> class RealSchur
55{
56  public:
57    typedef _MatrixType MatrixType;
58    enum {
59      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61      Options = MatrixType::Options,
62      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64    };
65    typedef typename MatrixType::Scalar Scalar;
66    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
67    typedef typename MatrixType::Index Index;
68
69    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
70    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
71
72    /** \brief Default constructor.
73      *
74      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
75      *
76      * The default constructor is useful in cases in which the user intends to
77      * perform decompositions via compute().  The \p size parameter is only
78      * used as a hint. It is not an error to give a wrong \p size, but it may
79      * impair performance.
80      *
81      * \sa compute() for an example.
82      */
83    RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
84            : m_matT(size, size),
85              m_matU(size, size),
86              m_workspaceVector(size),
87              m_hess(size),
88              m_isInitialized(false),
89              m_matUisUptodate(false),
90              m_maxIters(-1)
91    { }
92
93    /** \brief Constructor; computes real Schur decomposition of given matrix.
94      *
95      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
96      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
97      *
98      * This constructor calls compute() to compute the Schur decomposition.
99      *
100      * Example: \include RealSchur_RealSchur_MatrixType.cpp
101      * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
102      */
103    RealSchur(const MatrixType& matrix, bool computeU = true)
104            : m_matT(matrix.rows(),matrix.cols()),
105              m_matU(matrix.rows(),matrix.cols()),
106              m_workspaceVector(matrix.rows()),
107              m_hess(matrix.rows()),
108              m_isInitialized(false),
109              m_matUisUptodate(false),
110              m_maxIters(-1)
111    {
112      compute(matrix, computeU);
113    }
114
115    /** \brief Returns the orthogonal matrix in the Schur decomposition.
116      *
117      * \returns A const reference to the matrix U.
118      *
119      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
120      * member function compute(const MatrixType&, bool) has been called before
121      * to compute the Schur decomposition of a matrix, and \p computeU was set
122      * to true (the default value).
123      *
124      * \sa RealSchur(const MatrixType&, bool) for an example
125      */
126    const MatrixType& matrixU() const
127    {
128      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
129      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
130      return m_matU;
131    }
132
133    /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
134      *
135      * \returns A const reference to the matrix T.
136      *
137      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
138      * member function compute(const MatrixType&, bool) has been called before
139      * to compute the Schur decomposition of a matrix.
140      *
141      * \sa RealSchur(const MatrixType&, bool) for an example
142      */
143    const MatrixType& matrixT() const
144    {
145      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
146      return m_matT;
147    }
148
149    /** \brief Computes Schur decomposition of given matrix.
150      *
151      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
152      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
153      * \returns    Reference to \c *this
154      *
155      * The Schur decomposition is computed by first reducing the matrix to
156      * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
157      * matrix is then reduced to triangular form by performing Francis QR
158      * iterations with implicit double shift. The cost of computing the Schur
159      * decomposition depends on the number of iterations; as a rough guide, it
160      * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
161      * \f$10n^3\f$ flops if \a computeU is false.
162      *
163      * Example: \include RealSchur_compute.cpp
164      * Output: \verbinclude RealSchur_compute.out
165      *
166      * \sa compute(const MatrixType&, bool, Index)
167      */
168    RealSchur& compute(const MatrixType& matrix, bool computeU = true);
169
170    /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
171     *  \param[in] matrixH Matrix in Hessenberg form H
172     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
173     *  \param computeU Computes the matriX U of the Schur vectors
174     * \return Reference to \c *this
175     *
176     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
177     *  using either the class HessenbergDecomposition or another mean.
178     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
179     *  When computeU is true, this routine computes the matrix U such that
180     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
181     *
182     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
183     * is not available, the user should give an identity matrix (Q.setIdentity())
184     *
185     * \sa compute(const MatrixType&, bool)
186     */
187    template<typename HessMatrixType, typename OrthMatrixType>
188    RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU);
189    /** \brief Reports whether previous computation was successful.
190      *
191      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
192      */
193    ComputationInfo info() const
194    {
195      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
196      return m_info;
197    }
198
199    /** \brief Sets the maximum number of iterations allowed.
200      *
201      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
202      * of the matrix.
203      */
204    RealSchur& setMaxIterations(Index maxIters)
205    {
206      m_maxIters = maxIters;
207      return *this;
208    }
209
210    /** \brief Returns the maximum number of iterations. */
211    Index getMaxIterations()
212    {
213      return m_maxIters;
214    }
215
216    /** \brief Maximum number of iterations per row.
217      *
218      * If not otherwise specified, the maximum number of iterations is this number times the size of the
219      * matrix. It is currently set to 40.
220      */
221    static const int m_maxIterationsPerRow = 40;
222
223  private:
224
225    MatrixType m_matT;
226    MatrixType m_matU;
227    ColumnVectorType m_workspaceVector;
228    HessenbergDecomposition<MatrixType> m_hess;
229    ComputationInfo m_info;
230    bool m_isInitialized;
231    bool m_matUisUptodate;
232    Index m_maxIters;
233
234    typedef Matrix<Scalar,3,1> Vector3s;
235
236    Scalar computeNormOfT();
237    Index findSmallSubdiagEntry(Index iu, const Scalar& norm);
238    void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
239    void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
240    void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
241    void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
242};
243
244
245template<typename MatrixType>
246RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
247{
248  eigen_assert(matrix.cols() == matrix.rows());
249  Index maxIters = m_maxIters;
250  if (maxIters == -1)
251    maxIters = m_maxIterationsPerRow * matrix.rows();
252
253  // Step 1. Reduce to Hessenberg form
254  m_hess.compute(matrix);
255
256  // Step 2. Reduce to real Schur form
257  computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
258
259  return *this;
260}
261template<typename MatrixType>
262template<typename HessMatrixType, typename OrthMatrixType>
263RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU)
264{
265  m_matT = matrixH;
266  if(computeU)
267    m_matU = matrixQ;
268
269  Index maxIters = m_maxIters;
270  if (maxIters == -1)
271    maxIters = m_maxIterationsPerRow * matrixH.rows();
272  m_workspaceVector.resize(m_matT.cols());
273  Scalar* workspace = &m_workspaceVector.coeffRef(0);
274
275  // The matrix m_matT is divided in three parts.
276  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
277  // Rows il,...,iu is the part we are working on (the active window).
278  // Rows iu+1,...,end are already brought in triangular form.
279  Index iu = m_matT.cols() - 1;
280  Index iter = 0;      // iteration count for current eigenvalue
281  Index totalIter = 0; // iteration count for whole matrix
282  Scalar exshift(0);   // sum of exceptional shifts
283  Scalar norm = computeNormOfT();
284
285  if(norm!=0)
286  {
287    while (iu >= 0)
288    {
289      Index il = findSmallSubdiagEntry(iu, norm);
290
291      // Check for convergence
292      if (il == iu) // One root found
293      {
294        m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
295        if (iu > 0)
296          m_matT.coeffRef(iu, iu-1) = Scalar(0);
297        iu--;
298        iter = 0;
299      }
300      else if (il == iu-1) // Two roots found
301      {
302        splitOffTwoRows(iu, computeU, exshift);
303        iu -= 2;
304        iter = 0;
305      }
306      else // No convergence yet
307      {
308        // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
309        Vector3s firstHouseholderVector(0,0,0), shiftInfo;
310        computeShift(iu, iter, exshift, shiftInfo);
311        iter = iter + 1;
312        totalIter = totalIter + 1;
313        if (totalIter > maxIters) break;
314        Index im;
315        initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
316        performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
317      }
318    }
319  }
320  if(totalIter <= maxIters)
321    m_info = Success;
322  else
323    m_info = NoConvergence;
324
325  m_isInitialized = true;
326  m_matUisUptodate = computeU;
327  return *this;
328}
329
330/** \internal Computes and returns vector L1 norm of T */
331template<typename MatrixType>
332inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
333{
334  const Index size = m_matT.cols();
335  // FIXME to be efficient the following would requires a triangular reduxion code
336  // Scalar norm = m_matT.upper().cwiseAbs().sum()
337  //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
338  Scalar norm(0);
339  for (Index j = 0; j < size; ++j)
340    norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
341  return norm;
342}
343
344/** \internal Look for single small sub-diagonal element and returns its index */
345template<typename MatrixType>
346inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& norm)
347{
348  using std::abs;
349  Index res = iu;
350  while (res > 0)
351  {
352    Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
353    if (s == 0.0)
354      s = norm;
355    if (abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
356      break;
357    res--;
358  }
359  return res;
360}
361
362/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
363template<typename MatrixType>
364inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
365{
366  using std::sqrt;
367  using std::abs;
368  const Index size = m_matT.cols();
369
370  // The eigenvalues of the 2x2 matrix [a b; c d] are
371  // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
372  Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
373  Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4
374  m_matT.coeffRef(iu,iu) += exshift;
375  m_matT.coeffRef(iu-1,iu-1) += exshift;
376
377  if (q >= Scalar(0)) // Two real eigenvalues
378  {
379    Scalar z = sqrt(abs(q));
380    JacobiRotation<Scalar> rot;
381    if (p >= Scalar(0))
382      rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
383    else
384      rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
385
386    m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
387    m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
388    m_matT.coeffRef(iu, iu-1) = Scalar(0);
389    if (computeU)
390      m_matU.applyOnTheRight(iu-1, iu, rot);
391  }
392
393  if (iu > 1)
394    m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
395}
396
397/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
398template<typename MatrixType>
399inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
400{
401  using std::sqrt;
402  using std::abs;
403  shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
404  shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
405  shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
406
407  // Wilkinson's original ad hoc shift
408  if (iter == 10)
409  {
410    exshift += shiftInfo.coeff(0);
411    for (Index i = 0; i <= iu; ++i)
412      m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
413    Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
414    shiftInfo.coeffRef(0) = Scalar(0.75) * s;
415    shiftInfo.coeffRef(1) = Scalar(0.75) * s;
416    shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
417  }
418
419  // MATLAB's new ad hoc shift
420  if (iter == 30)
421  {
422    Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
423    s = s * s + shiftInfo.coeff(2);
424    if (s > Scalar(0))
425    {
426      s = sqrt(s);
427      if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
428        s = -s;
429      s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
430      s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
431      exshift += s;
432      for (Index i = 0; i <= iu; ++i)
433        m_matT.coeffRef(i,i) -= s;
434      shiftInfo.setConstant(Scalar(0.964));
435    }
436  }
437}
438
439/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
440template<typename MatrixType>
441inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
442{
443  using std::abs;
444  Vector3s& v = firstHouseholderVector; // alias to save typing
445
446  for (im = iu-2; im >= il; --im)
447  {
448    const Scalar Tmm = m_matT.coeff(im,im);
449    const Scalar r = shiftInfo.coeff(0) - Tmm;
450    const Scalar s = shiftInfo.coeff(1) - Tmm;
451    v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
452    v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
453    v.coeffRef(2) = m_matT.coeff(im+2,im+1);
454    if (im == il) {
455      break;
456    }
457    const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
458    const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
459    if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
460    {
461      break;
462    }
463  }
464}
465
466/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
467template<typename MatrixType>
468inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
469{
470  eigen_assert(im >= il);
471  eigen_assert(im <= iu-2);
472
473  const Index size = m_matT.cols();
474
475  for (Index k = im; k <= iu-2; ++k)
476  {
477    bool firstIteration = (k == im);
478
479    Vector3s v;
480    if (firstIteration)
481      v = firstHouseholderVector;
482    else
483      v = m_matT.template block<3,1>(k,k-1);
484
485    Scalar tau, beta;
486    Matrix<Scalar, 2, 1> ess;
487    v.makeHouseholder(ess, tau, beta);
488
489    if (beta != Scalar(0)) // if v is not zero
490    {
491      if (firstIteration && k > il)
492        m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
493      else if (!firstIteration)
494        m_matT.coeffRef(k,k-1) = beta;
495
496      // These Householder transformations form the O(n^3) part of the algorithm
497      m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
498      m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
499      if (computeU)
500        m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
501    }
502  }
503
504  Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
505  Scalar tau, beta;
506  Matrix<Scalar, 1, 1> ess;
507  v.makeHouseholder(ess, tau, beta);
508
509  if (beta != Scalar(0)) // if v is not zero
510  {
511    m_matT.coeffRef(iu-1, iu-2) = beta;
512    m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
513    m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
514    if (computeU)
515      m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
516  }
517
518  // clean up pollution due to round-off errors
519  for (Index i = im+2; i <= iu; ++i)
520  {
521    m_matT.coeffRef(i,i-2) = Scalar(0);
522    if (i > im+2)
523      m_matT.coeffRef(i,i-3) = Scalar(0);
524  }
525}
526
527} // end namespace Eigen
528
529#endif // EIGEN_REAL_SCHUR_H
530