1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_BLAS_COMMON_H
11#define EIGEN_BLAS_COMMON_H
12
13#include <Eigen/Core>
14#include <Eigen/Jacobi>
15
16#include <iostream>
17#include <complex>
18
19#ifndef SCALAR
20#error the token SCALAR must be defined to compile this file
21#endif
22
23#include <Eigen/src/misc/blas.h>
24
25
26#define NOTR    0
27#define TR      1
28#define ADJ     2
29
30#define LEFT    0
31#define RIGHT   1
32
33#define UP      0
34#define LO      1
35
36#define NUNIT   0
37#define UNIT    1
38
39#define INVALID 0xff
40
41#define OP(X)   (   ((X)=='N' || (X)=='n') ? NOTR   \
42                  : ((X)=='T' || (X)=='t') ? TR     \
43                  : ((X)=='C' || (X)=='c') ? ADJ    \
44                  : INVALID)
45
46#define SIDE(X) (   ((X)=='L' || (X)=='l') ? LEFT   \
47                  : ((X)=='R' || (X)=='r') ? RIGHT  \
48                  : INVALID)
49
50#define UPLO(X) (   ((X)=='U' || (X)=='u') ? UP     \
51                  : ((X)=='L' || (X)=='l') ? LO     \
52                  : INVALID)
53
54#define DIAG(X) (   ((X)=='N' || (X)=='n') ? NUNIT  \
55                  : ((X)=='U' || (X)=='u') ? UNIT   \
56                  : INVALID)
57
58
59inline bool check_op(const char* op)
60{
61  return OP(*op)!=0xff;
62}
63
64inline bool check_side(const char* side)
65{
66  return SIDE(*side)!=0xff;
67}
68
69inline bool check_uplo(const char* uplo)
70{
71  return UPLO(*uplo)!=0xff;
72}
73
74
75namespace Eigen {
76#include "BandTriangularSolver.h"
77#include "GeneralRank1Update.h"
78#include "PackedSelfadjointProduct.h"
79#include "PackedTriangularMatrixVector.h"
80#include "PackedTriangularSolverVector.h"
81#include "Rank2Update.h"
82}
83
84using namespace Eigen;
85
86typedef SCALAR Scalar;
87typedef NumTraits<Scalar>::Real RealScalar;
88typedef std::complex<RealScalar> Complex;
89
90enum
91{
92  IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
93  Conj = IsComplex
94};
95
96typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
97typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
98typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
99typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
100
101template<typename T>
102Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
103matrix(T* data, int rows, int cols, int stride)
104{
105  return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
106}
107
108template<typename T>
109Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > vector(T* data, int size, int incr)
110{
111  return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
112}
113
114template<typename T>
115Map<Matrix<T,Dynamic,1> > vector(T* data, int size)
116{
117  return Map<Matrix<T,Dynamic,1> >(data, size);
118}
119
120template<typename T>
121T* get_compact_vector(T* x, int n, int incx)
122{
123  if(incx==1)
124    return x;
125
126  T* ret = new Scalar[n];
127  if(incx<0) vector(ret,n) = vector(x,n,-incx).reverse();
128  else       vector(ret,n) = vector(x,n, incx);
129  return ret;
130}
131
132template<typename T>
133T* copy_back(T* x_cpy, T* x, int n, int incx)
134{
135  if(x_cpy==x)
136    return 0;
137
138  if(incx<0) vector(x,n,-incx).reverse() = vector(x_cpy,n);
139  else       vector(x,n, incx)           = vector(x_cpy,n);
140  return x_cpy;
141}
142
143#define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
144
145#endif // EIGEN_BLAS_COMMON_H
146