1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include "main.h"
12#include <Eigen/Geometry>
13#include <Eigen/LU>
14#include <Eigen/SVD>
15
16template<typename T> T bounded_acos(T v)
17{
18  using std::acos;
19  using std::min;
20  using std::max;
21  return acos((max)(T(-1),(min)(v,T(1))));
22}
23
24template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
25{
26  using std::abs;
27  typedef typename QuatType::Scalar Scalar;
28  typedef AngleAxis<Scalar> AA;
29
30  Scalar largeEps = test_precision<Scalar>();
31
32  Scalar theta_tot = AA(q1*q0.inverse()).angle();
33  if(theta_tot>M_PI)
34    theta_tot = Scalar(2.*M_PI)-theta_tot;
35  for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1))
36  {
37    QuatType q = q0.slerp(t,q1);
38    Scalar theta = AA(q*q0.inverse()).angle();
39    VERIFY(abs(q.norm() - 1) < largeEps);
40    if(theta_tot==0)  VERIFY(theta_tot==0);
41    else              VERIFY(abs(theta - t * theta_tot) < largeEps);
42  }
43}
44
45template<typename Scalar, int Options> void quaternion(void)
46{
47  /* this test covers the following files:
48     Quaternion.h
49  */
50  using std::abs;
51  typedef Matrix<Scalar,3,1> Vector3;
52  typedef Matrix<Scalar,4,1> Vector4;
53  typedef Quaternion<Scalar,Options> Quaternionx;
54  typedef AngleAxis<Scalar> AngleAxisx;
55
56  Scalar largeEps = test_precision<Scalar>();
57  if (internal::is_same<Scalar,float>::value)
58    largeEps = 1e-3f;
59
60  Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
61
62  Vector3 v0 = Vector3::Random(),
63          v1 = Vector3::Random(),
64          v2 = Vector3::Random(),
65          v3 = Vector3::Random();
66
67  Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)),
68          b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
69
70  // Quaternion: Identity(), setIdentity();
71  Quaternionx q1, q2;
72  q2.setIdentity();
73  VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
74  q1.coeffs().setRandom();
75  VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
76
77  // concatenation
78  q1 *= q2;
79
80  q1 = AngleAxisx(a, v0.normalized());
81  q2 = AngleAxisx(a, v1.normalized());
82
83  // angular distance
84  Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle());
85  if (refangle>Scalar(M_PI))
86    refangle = Scalar(2)*Scalar(M_PI) - refangle;
87
88  if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
89  {
90    VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
91  }
92
93  // rotation matrix conversion
94  VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
95  VERIFY_IS_APPROX(q1 * q2 * v2,
96    q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
97
98  VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
99        || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
100
101  q2 = q1.toRotationMatrix();
102  VERIFY_IS_APPROX(q1*v1,q2*v1);
103
104
105  // angle-axis conversion
106  AngleAxisx aa = AngleAxisx(q1);
107  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
108
109  // Do not execute the test if the rotation angle is almost zero, or
110  // the rotation axis and v1 are almost parallel.
111  if (abs(aa.angle()) > 5*test_precision<Scalar>()
112      && (aa.axis() - v1.normalized()).norm() < 1.99
113      && (aa.axis() + v1.normalized()).norm() < 1.99)
114  {
115    VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
116  }
117
118  // from two vector creation
119  VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
120  VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
121  VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
122  if (internal::is_same<Scalar,double>::value)
123  {
124    v3 = (v1.array()+eps).matrix();
125    VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
126    VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
127  }
128
129  // from two vector creation static function
130  VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
131  VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
132  VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
133  if (internal::is_same<Scalar,double>::value)
134  {
135    v3 = (v1.array()+eps).matrix();
136    VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
137    VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
138  }
139
140  // inverse and conjugate
141  VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
142  VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
143
144  // test casting
145  Quaternion<float> q1f = q1.template cast<float>();
146  VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
147  Quaternion<double> q1d = q1.template cast<double>();
148  VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
149
150  // test bug 369 - improper alignment.
151  Quaternionx *q = new Quaternionx;
152  delete q;
153
154  q1 = AngleAxisx(a, v0.normalized());
155  q2 = AngleAxisx(b, v1.normalized());
156  check_slerp(q1,q2);
157
158  q1 = AngleAxisx(b, v1.normalized());
159  q2 = AngleAxisx(b+Scalar(M_PI), v1.normalized());
160  check_slerp(q1,q2);
161
162  q1 = AngleAxisx(b,  v1.normalized());
163  q2 = AngleAxisx(-b, -v1.normalized());
164  check_slerp(q1,q2);
165
166  q1.coeffs() = Vector4::Random().normalized();
167  q2.coeffs() = -q1.coeffs();
168  check_slerp(q1,q2);
169}
170
171template<typename Scalar> void mapQuaternion(void){
172  typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
173  typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
174  typedef Map<Quaternion<Scalar> > MQuaternionUA;
175  typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
176  typedef Quaternion<Scalar> Quaternionx;
177  typedef Matrix<Scalar,3,1> Vector3;
178  typedef AngleAxis<Scalar> AngleAxisx;
179
180  Vector3 v0 = Vector3::Random(),
181          v1 = Vector3::Random();
182  Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
183
184  EIGEN_ALIGN16 Scalar array1[4];
185  EIGEN_ALIGN16 Scalar array2[4];
186  EIGEN_ALIGN16 Scalar array3[4+1];
187  Scalar* array3unaligned = array3+1;
188
189  MQuaternionA    mq1(array1);
190  MCQuaternionA   mcq1(array1);
191  MQuaternionA    mq2(array2);
192  MQuaternionUA   mq3(array3unaligned);
193  MCQuaternionUA  mcq3(array3unaligned);
194
195//  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
196  mq1 = AngleAxisx(a, v0.normalized());
197  mq2 = mq1;
198  mq3 = mq1;
199
200  Quaternionx q1 = mq1;
201  Quaternionx q2 = mq2;
202  Quaternionx q3 = mq3;
203  Quaternionx q4 = MCQuaternionUA(array3unaligned);
204
205  VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
206  VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
207  VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
208  #ifdef EIGEN_VECTORIZE
209  if(internal::packet_traits<Scalar>::Vectorizable)
210    VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
211  #endif
212
213  VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
214  VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
215
216  VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
217  VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
218
219  VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
220  VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
221
222  VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
223  VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
224
225  VERIFY_IS_APPROX(mq1*mq2, q1*q2);
226  VERIFY_IS_APPROX(mq3*mq2, q3*q2);
227  VERIFY_IS_APPROX(mcq1*mq2, q1*q2);
228  VERIFY_IS_APPROX(mcq3*mq2, q3*q2);
229}
230
231template<typename Scalar> void quaternionAlignment(void){
232  typedef Quaternion<Scalar,AutoAlign> QuaternionA;
233  typedef Quaternion<Scalar,DontAlign> QuaternionUA;
234
235  EIGEN_ALIGN16 Scalar array1[4];
236  EIGEN_ALIGN16 Scalar array2[4];
237  EIGEN_ALIGN16 Scalar array3[4+1];
238  Scalar* arrayunaligned = array3+1;
239
240  QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
241  QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
242  QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
243
244  q1->coeffs().setRandom();
245  *q2 = *q1;
246  *q3 = *q1;
247
248  VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
249  VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
250  #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
251  if(internal::packet_traits<Scalar>::Vectorizable)
252    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
253  #endif
254}
255
256template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
257{
258  // there's a lot that we can't test here while still having this test compile!
259  // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
260  // CMake can help with that.
261
262  // verify that map-to-const don't have LvalueBit
263  typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
264  VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
265  VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
266  VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
267  VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
268}
269
270void test_geo_quaternion()
271{
272  for(int i = 0; i < g_repeat; i++) {
273    CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
274    CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
275    CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
276    CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
277    CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
278    CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
279    CALL_SUBTEST_5(( quaternionAlignment<float>() ));
280    CALL_SUBTEST_6(( quaternionAlignment<double>() ));
281    CALL_SUBTEST_1( mapQuaternion<float>() );
282    CALL_SUBTEST_2( mapQuaternion<double>() );
283  }
284}
285