geo_quaternion.cpp revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include "main.h"
12#include <Eigen/Geometry>
13#include <Eigen/LU>
14#include <Eigen/SVD>
15
16template<typename T> T bounded_acos(T v)
17{
18  using std::acos;
19  using std::min;
20  using std::max;
21  return acos((max)(T(-1),(min)(v,T(1))));
22}
23
24template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
25{
26  typedef typename QuatType::Scalar Scalar;
27  typedef Matrix<Scalar,3,1> VectorType;
28  typedef AngleAxis<Scalar> AA;
29
30  Scalar largeEps = test_precision<Scalar>();
31
32  Scalar theta_tot = AA(q1*q0.inverse()).angle();
33  if(theta_tot>M_PI)
34    theta_tot = 2.*M_PI-theta_tot;
35  for(Scalar t=0; t<=1.001; t+=0.1)
36  {
37    QuatType q = q0.slerp(t,q1);
38    Scalar theta = AA(q*q0.inverse()).angle();
39    VERIFY(internal::abs(q.norm() - 1) < largeEps);
40    if(theta_tot==0)  VERIFY(theta_tot==0);
41    else              VERIFY(internal::abs(theta/theta_tot - t) < largeEps);
42  }
43}
44
45template<typename Scalar, int Options> void quaternion(void)
46{
47  /* this test covers the following files:
48     Quaternion.h
49  */
50
51  typedef Matrix<Scalar,3,3> Matrix3;
52  typedef Matrix<Scalar,3,1> Vector3;
53  typedef Matrix<Scalar,4,1> Vector4;
54  typedef Quaternion<Scalar,Options> Quaternionx;
55  typedef AngleAxis<Scalar> AngleAxisx;
56
57  Scalar largeEps = test_precision<Scalar>();
58  if (internal::is_same<Scalar,float>::value)
59    largeEps = 1e-3f;
60
61  Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
62
63  Vector3 v0 = Vector3::Random(),
64          v1 = Vector3::Random(),
65          v2 = Vector3::Random(),
66          v3 = Vector3::Random();
67
68  Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)),
69          b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
70
71  // Quaternion: Identity(), setIdentity();
72  Quaternionx q1, q2;
73  q2.setIdentity();
74  VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
75  q1.coeffs().setRandom();
76  VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
77
78  // concatenation
79  q1 *= q2;
80
81  q1 = AngleAxisx(a, v0.normalized());
82  q2 = AngleAxisx(a, v1.normalized());
83
84  // angular distance
85  Scalar refangle = internal::abs(AngleAxisx(q1.inverse()*q2).angle());
86  if (refangle>Scalar(M_PI))
87    refangle = Scalar(2)*Scalar(M_PI) - refangle;
88
89  if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
90  {
91    VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(q1.angularDistance(q2) - refangle), Scalar(1));
92  }
93
94  // rotation matrix conversion
95  VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
96  VERIFY_IS_APPROX(q1 * q2 * v2,
97    q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
98
99  VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
100        || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
101
102  q2 = q1.toRotationMatrix();
103  VERIFY_IS_APPROX(q1*v1,q2*v1);
104
105
106  // angle-axis conversion
107  AngleAxisx aa = AngleAxisx(q1);
108  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
109
110  // Do not execute the test if the rotation angle is almost zero, or
111  // the rotation axis and v1 are almost parallel.
112  if (internal::abs(aa.angle()) > 5*test_precision<Scalar>()
113      && (aa.axis() - v1.normalized()).norm() < 1.99
114      && (aa.axis() + v1.normalized()).norm() < 1.99)
115  {
116    VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
117  }
118
119  // from two vector creation
120  VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
121  VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
122  VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
123  if (internal::is_same<Scalar,double>::value)
124  {
125    v3 = (v1.array()+eps).matrix();
126    VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
127    VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
128  }
129
130  // from two vector creation static function
131  VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
132  VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
133  VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
134  if (internal::is_same<Scalar,double>::value)
135  {
136    v3 = (v1.array()+eps).matrix();
137    VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
138    VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
139  }
140
141  // inverse and conjugate
142  VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
143  VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
144
145  // test casting
146  Quaternion<float> q1f = q1.template cast<float>();
147  VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
148  Quaternion<double> q1d = q1.template cast<double>();
149  VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
150
151  // test bug 369 - improper alignment.
152  Quaternionx *q = new Quaternionx;
153  delete q;
154
155  q1 = AngleAxisx(a, v0.normalized());
156  q2 = AngleAxisx(b, v1.normalized());
157  check_slerp(q1,q2);
158
159  q1 = AngleAxisx(b, v1.normalized());
160  q2 = AngleAxisx(b+M_PI, v1.normalized());
161  check_slerp(q1,q2);
162
163  q1 = AngleAxisx(b,  v1.normalized());
164  q2 = AngleAxisx(-b, -v1.normalized());
165  check_slerp(q1,q2);
166
167  q1.coeffs() = Vector4::Random().normalized();
168  q2.coeffs() = -q1.coeffs();
169  check_slerp(q1,q2);
170}
171
172template<typename Scalar> void mapQuaternion(void){
173  typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
174  typedef Map<Quaternion<Scalar> > MQuaternionUA;
175  typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
176  typedef Quaternion<Scalar> Quaternionx;
177
178  EIGEN_ALIGN16 Scalar array1[4];
179  EIGEN_ALIGN16 Scalar array2[4];
180  EIGEN_ALIGN16 Scalar array3[4+1];
181  Scalar* array3unaligned = array3+1;
182
183//  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
184  MQuaternionA(array1).coeffs().setRandom();
185  (MQuaternionA(array2)) = MQuaternionA(array1);
186  (MQuaternionUA(array3unaligned)) = MQuaternionA(array1);
187
188  Quaternionx q1 = MQuaternionA(array1);
189  Quaternionx q2 = MQuaternionA(array2);
190  Quaternionx q3 = MQuaternionUA(array3unaligned);
191  Quaternionx q4 = MCQuaternionUA(array3unaligned);
192
193  VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
194  VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
195  VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
196  #ifdef EIGEN_VECTORIZE
197  if(internal::packet_traits<Scalar>::Vectorizable)
198    VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
199  #endif
200}
201
202template<typename Scalar> void quaternionAlignment(void){
203  typedef Quaternion<Scalar,AutoAlign> QuaternionA;
204  typedef Quaternion<Scalar,DontAlign> QuaternionUA;
205
206  EIGEN_ALIGN16 Scalar array1[4];
207  EIGEN_ALIGN16 Scalar array2[4];
208  EIGEN_ALIGN16 Scalar array3[4+1];
209  Scalar* arrayunaligned = array3+1;
210
211  QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
212  QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
213  QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
214
215  q1->coeffs().setRandom();
216  *q2 = *q1;
217  *q3 = *q1;
218
219  VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
220  VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
221  #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
222  if(internal::packet_traits<Scalar>::Vectorizable)
223    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
224  #endif
225}
226
227template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
228{
229  // there's a lot that we can't test here while still having this test compile!
230  // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
231  // CMake can help with that.
232
233  // verify that map-to-const don't have LvalueBit
234  typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
235  VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
236  VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
237  VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
238  VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
239}
240
241void test_geo_quaternion()
242{
243  for(int i = 0; i < g_repeat; i++) {
244    CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
245    CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
246    CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
247    CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
248    CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
249    CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
250    CALL_SUBTEST_5(( quaternionAlignment<float>() ));
251    CALL_SUBTEST_6(( quaternionAlignment<double>() ));
252    CALL_SUBTEST_1( mapQuaternion<float>() );
253    CALL_SUBTEST_2( mapQuaternion<double>() );
254  }
255}
256