1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11#include <Eigen/Geometry>
12#include <Eigen/LU>
13#include <Eigen/SVD>
14
15template<typename Scalar, int Mode, int Options> void non_projective_only()
16{
17    /* this test covers the following files:
18     Cross.h Quaternion.h, Transform.cpp
19  */
20  typedef Matrix<Scalar,3,1> Vector3;
21  typedef Quaternion<Scalar> Quaternionx;
22  typedef AngleAxis<Scalar> AngleAxisx;
23  typedef Transform<Scalar,3,Mode,Options> Transform3;
24  typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
25  typedef Translation<Scalar,3> Translation3;
26
27  Vector3 v0 = Vector3::Random(),
28          v1 = Vector3::Random();
29
30  Transform3 t0, t1, t2;
31
32  Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
33
34  Quaternionx q1, q2;
35
36  q1 = AngleAxisx(a, v0.normalized());
37
38  t0 = Transform3::Identity();
39  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
40
41  t0.linear() = q1.toRotationMatrix();
42
43  v0 << 50, 2, 1;
44  t0.scale(v0);
45
46  VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
47
48  t0.setIdentity();
49  t1.setIdentity();
50  v1 << 1, 2, 3;
51  t0.linear() = q1.toRotationMatrix();
52  t0.pretranslate(v0);
53  t0.scale(v1);
54  t1.linear() = q1.conjugate().toRotationMatrix();
55  t1.prescale(v1.cwiseInverse());
56  t1.translate(-v0);
57
58  VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
59
60  t1.fromPositionOrientationScale(v0, q1, v1);
61  VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
62  VERIFY_IS_APPROX(t1*v1, t0*v1);
63
64  // translation * vector
65  t0.setIdentity();
66  t0.translate(v0);
67  VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
68
69  // AlignedScaling * vector
70  t0.setIdentity();
71  t0.scale(v0);
72  VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
73}
74
75template<typename Scalar, int Mode, int Options> void transformations()
76{
77  /* this test covers the following files:
78     Cross.h Quaternion.h, Transform.cpp
79  */
80  using std::cos;
81  using std::abs;
82  typedef Matrix<Scalar,3,3> Matrix3;
83  typedef Matrix<Scalar,4,4> Matrix4;
84  typedef Matrix<Scalar,2,1> Vector2;
85  typedef Matrix<Scalar,3,1> Vector3;
86  typedef Matrix<Scalar,4,1> Vector4;
87  typedef Quaternion<Scalar> Quaternionx;
88  typedef AngleAxis<Scalar> AngleAxisx;
89  typedef Transform<Scalar,2,Mode,Options> Transform2;
90  typedef Transform<Scalar,3,Mode,Options> Transform3;
91  typedef typename Transform3::MatrixType MatrixType;
92  typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
93  typedef Translation<Scalar,2> Translation2;
94  typedef Translation<Scalar,3> Translation3;
95
96  Vector3 v0 = Vector3::Random(),
97          v1 = Vector3::Random();
98  Matrix3 matrot1, m;
99
100  Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
101  Scalar s0 = internal::random<Scalar>();
102
103  VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
104  VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
105  VERIFY_IS_APPROX(cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
106  m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
107  VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
108  VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
109
110  Quaternionx q1, q2;
111  q1 = AngleAxisx(a, v0.normalized());
112  q2 = AngleAxisx(a, v1.normalized());
113
114  // rotation matrix conversion
115  matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
116          * AngleAxisx(Scalar(0.2), Vector3::UnitY())
117          * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
118  VERIFY_IS_APPROX(matrot1 * v1,
119       AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
120    * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
121    * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
122
123  // angle-axis conversion
124  AngleAxisx aa = AngleAxisx(q1);
125  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
126  VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
127
128  aa.fromRotationMatrix(aa.toRotationMatrix());
129  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
130  VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
131
132  // AngleAxis
133  VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
134    Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
135
136  AngleAxisx aa1;
137  m = q1.toRotationMatrix();
138  aa1 = m;
139  VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
140    Quaternionx(m).toRotationMatrix());
141
142  // Transform
143  // TODO complete the tests !
144  a = 0;
145  while (abs(a)<Scalar(0.1))
146    a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
147  q1 = AngleAxisx(a, v0.normalized());
148  Transform3 t0, t1, t2;
149
150  // first test setIdentity() and Identity()
151  t0.setIdentity();
152  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
153  t0.matrix().setZero();
154  t0 = Transform3::Identity();
155  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
156
157  t0.setIdentity();
158  t1.setIdentity();
159  v1 << 1, 2, 3;
160  t0.linear() = q1.toRotationMatrix();
161  t0.pretranslate(v0);
162  t0.scale(v1);
163  t1.linear() = q1.conjugate().toRotationMatrix();
164  t1.prescale(v1.cwiseInverse());
165  t1.translate(-v0);
166
167  VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
168
169  t1.fromPositionOrientationScale(v0, q1, v1);
170  VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
171
172  t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
173  t1.setIdentity(); t1.scale(v0).rotate(q1);
174  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
175
176  t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
177  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
178
179  VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
180  VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
181
182  // More transform constructors, operator=, operator*=
183
184  Matrix3 mat3 = Matrix3::Random();
185  Matrix4 mat4;
186  mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
187  Transform3 tmat3(mat3), tmat4(mat4);
188  if(Mode!=int(AffineCompact))
189    tmat4.matrix()(3,3) = Scalar(1);
190  VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
191
192  Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
193  Vector3 v3 = Vector3::Random().normalized();
194  AngleAxisx aa3(a3, v3);
195  Transform3 t3(aa3);
196  Transform3 t4;
197  t4 = aa3;
198  VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
199  t4.rotate(AngleAxisx(-a3,v3));
200  VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
201  t4 *= aa3;
202  VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
203
204  v3 = Vector3::Random();
205  Translation3 tv3(v3);
206  Transform3 t5(tv3);
207  t4 = tv3;
208  VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
209  t4.translate(-v3);
210  VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
211  t4 *= tv3;
212  VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
213
214  AlignedScaling3 sv3(v3);
215  Transform3 t6(sv3);
216  t4 = sv3;
217  VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
218  t4.scale(v3.cwiseInverse());
219  VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
220  t4 *= sv3;
221  VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
222
223  // matrix * transform
224  VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix());
225
226  // chained Transform product
227  VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
228
229  // check that Transform product doesn't have aliasing problems
230  t5 = t4;
231  t5 = t5*t5;
232  VERIFY_IS_APPROX(t5, t4*t4);
233
234  // 2D transformation
235  Transform2 t20, t21;
236  Vector2 v20 = Vector2::Random();
237  Vector2 v21 = Vector2::Random();
238  for (int k=0; k<2; ++k)
239    if (abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
240  t21.setIdentity();
241  t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
242  VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
243    t21.pretranslate(v20).scale(v21).matrix());
244
245  t21.setIdentity();
246  t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
247  VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
248        * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
249
250  // Transform - new API
251  // 3D
252  t0.setIdentity();
253  t0.rotate(q1).scale(v0).translate(v0);
254  // mat * aligned scaling and mat * translation
255  t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
256  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
257  t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0);
258  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
259  t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0);
260  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
261  // mat * transformation and aligned scaling * translation
262  t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
263  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
264
265
266  t0.setIdentity();
267  t0.scale(s0).translate(v0);
268  t1 = Eigen::Scaling(s0) * Translation3(v0);
269  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
270  t0.prescale(s0);
271  t1 = Eigen::Scaling(s0) * t1;
272  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
273
274  t0 = t3;
275  t0.scale(s0);
276  t1 = t3 * Eigen::Scaling(s0,s0,s0);
277  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
278  t0.prescale(s0);
279  t1 = Eigen::Scaling(s0,s0,s0) * t1;
280  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
281
282  t0 = t3;
283  t0.scale(s0);
284  t1 = t3 * Eigen::Scaling(s0);
285  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
286  t0.prescale(s0);
287  t1 = Eigen::Scaling(s0) * t1;
288  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
289
290  t0.setIdentity();
291  t0.prerotate(q1).prescale(v0).pretranslate(v0);
292  // translation * aligned scaling and transformation * mat
293  t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
294  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
295  // scaling * mat and translation * mat
296  t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
297  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
298
299  t0.setIdentity();
300  t0.scale(v0).translate(v0).rotate(q1);
301  // translation * mat and aligned scaling * transformation
302  t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
303  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
304  // transformation * aligned scaling
305  t0.scale(v0);
306  t1 *= AlignedScaling3(v0);
307  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
308  // transformation * translation
309  t0.translate(v0);
310  t1 = t1 * Translation3(v0);
311  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
312  // translation * transformation
313  t0.pretranslate(v0);
314  t1 = Translation3(v0) * t1;
315  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
316
317  // transform * quaternion
318  t0.rotate(q1);
319  t1 = t1 * q1;
320  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
321
322  // translation * quaternion
323  t0.translate(v1).rotate(q1);
324  t1 = t1 * (Translation3(v1) * q1);
325  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
326
327  // aligned scaling * quaternion
328  t0.scale(v1).rotate(q1);
329  t1 = t1 * (AlignedScaling3(v1) * q1);
330  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
331
332  // quaternion * transform
333  t0.prerotate(q1);
334  t1 = q1 * t1;
335  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
336
337  // quaternion * translation
338  t0.rotate(q1).translate(v1);
339  t1 = t1 * (q1 * Translation3(v1));
340  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
341
342  // quaternion * aligned scaling
343  t0.rotate(q1).scale(v1);
344  t1 = t1 * (q1 * AlignedScaling3(v1));
345  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
346
347  // test transform inversion
348  t0.setIdentity();
349  t0.translate(v0);
350  t0.linear().setRandom();
351  Matrix4 t044 = Matrix4::Zero();
352  t044(3,3) = 1;
353  t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
354  VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
355  t0.setIdentity();
356  t0.translate(v0).rotate(q1);
357  t044 = Matrix4::Zero();
358  t044(3,3) = 1;
359  t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
360  VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
361
362  Matrix3 mat_rotation, mat_scaling;
363  t0.setIdentity();
364  t0.translate(v0).rotate(q1).scale(v1);
365  t0.computeRotationScaling(&mat_rotation, &mat_scaling);
366  VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
367  VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
368  VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
369  t0.computeScalingRotation(&mat_scaling, &mat_rotation);
370  VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
371  VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
372  VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
373
374  // test casting
375  Transform<float,3,Mode> t1f = t1.template cast<float>();
376  VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
377  Transform<double,3,Mode> t1d = t1.template cast<double>();
378  VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
379
380  Translation3 tr1(v0);
381  Translation<float,3> tr1f = tr1.template cast<float>();
382  VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
383  Translation<double,3> tr1d = tr1.template cast<double>();
384  VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
385
386  AngleAxis<float> aa1f = aa1.template cast<float>();
387  VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
388  AngleAxis<double> aa1d = aa1.template cast<double>();
389  VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
390
391  Rotation2D<Scalar> r2d1(internal::random<Scalar>());
392  Rotation2D<float> r2d1f = r2d1.template cast<float>();
393  VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
394  Rotation2D<double> r2d1d = r2d1.template cast<double>();
395  VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
396
397  t20 = Translation2(v20) * (Rotation2D<Scalar>(s0) * Eigen::Scaling(s0));
398  t21 = Translation2(v20) * Rotation2D<Scalar>(s0) * Eigen::Scaling(s0);
399  VERIFY_IS_APPROX(t20,t21);
400}
401
402template<typename Scalar> void transform_alignment()
403{
404  typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a;
405  typedef Transform<Scalar,3,Projective,DontAlign> Projective3u;
406
407  EIGEN_ALIGN16 Scalar array1[16];
408  EIGEN_ALIGN16 Scalar array2[16];
409  EIGEN_ALIGN16 Scalar array3[16+1];
410  Scalar* array3u = array3+1;
411
412  Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a;
413  Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u;
414  Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u;
415
416  p1->matrix().setRandom();
417  *p2 = *p1;
418  *p3 = *p1;
419
420  VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
421  VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
422
423  VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
424
425  #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
426  if(internal::packet_traits<Scalar>::Vectorizable)
427    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
428  #endif
429}
430
431template<typename Scalar, int Dim, int Options> void transform_products()
432{
433  typedef Matrix<Scalar,Dim+1,Dim+1> Mat;
434  typedef Transform<Scalar,Dim,Projective,Options> Proj;
435  typedef Transform<Scalar,Dim,Affine,Options> Aff;
436  typedef Transform<Scalar,Dim,AffineCompact,Options> AffC;
437
438  Proj p; p.matrix().setRandom();
439  Aff a; a.linear().setRandom(); a.translation().setRandom();
440  AffC ac = a;
441
442  Mat p_m(p.matrix()), a_m(a.matrix());
443
444  VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m);
445  VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m);
446  VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m);
447  VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m);
448  VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m);
449  VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m);
450  VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m);
451  VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m);
452}
453
454void test_geo_transformations()
455{
456  for(int i = 0; i < g_repeat; i++) {
457    CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() ));
458    CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() ));
459
460    CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() ));
461    CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() ));
462    CALL_SUBTEST_2(( transform_alignment<float>() ));
463
464    CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
465    CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
466    CALL_SUBTEST_3(( transform_alignment<double>() ));
467
468    CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() ));
469    CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() ));
470
471    CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() ));
472    CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() ));
473
474    CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() ));
475    CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() ));
476
477
478    CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() ));
479    CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() ));
480  }
481}
482