1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include "main.h"
12#include <Eigen/SVD>
13
14template<typename MatrixType, typename JacobiScalar>
15void jacobi(const MatrixType& m = MatrixType())
16{
17  typedef typename MatrixType::Index Index;
18  Index rows = m.rows();
19  Index cols = m.cols();
20
21  enum {
22    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
23    ColsAtCompileTime = MatrixType::ColsAtCompileTime
24  };
25
26  typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
27
28  const MatrixType a(MatrixType::Random(rows, cols));
29
30  JacobiVector v = JacobiVector::Random().normalized();
31  JacobiScalar c = v.x(), s = v.y();
32  JacobiRotation<JacobiScalar> rot(c, s);
33
34  {
35    Index p = internal::random<Index>(0, rows-1);
36    Index q;
37    do {
38      q = internal::random<Index>(0, rows-1);
39    } while (q == p);
40
41    MatrixType b = a;
42    b.applyOnTheLeft(p, q, rot);
43    VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
44    VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
45  }
46
47  {
48    Index p = internal::random<Index>(0, cols-1);
49    Index q;
50    do {
51      q = internal::random<Index>(0, cols-1);
52    } while (q == p);
53
54    MatrixType b = a;
55    b.applyOnTheRight(p, q, rot);
56    VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
57    VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
58  }
59}
60
61void test_jacobi()
62{
63  for(int i = 0; i < g_repeat; i++) {
64    CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
65    CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
66    CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
67    CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
68
69    int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
70        c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
71    CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
72    CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
73    CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
74    // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
75    CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
76    CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
77
78    TEST_SET_BUT_UNUSED_VARIABLE(r);
79    TEST_SET_BUT_UNUSED_VARIABLE(c);
80  }
81}
82