1/*
2 * Performance events:
3 *
4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 *    Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _UAPI_LINUX_PERF_EVENT_H
15#define _UAPI_LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29	PERF_TYPE_HARDWARE			= 0,
30	PERF_TYPE_SOFTWARE			= 1,
31	PERF_TYPE_TRACEPOINT			= 2,
32	PERF_TYPE_HW_CACHE			= 3,
33	PERF_TYPE_RAW				= 4,
34	PERF_TYPE_BREAKPOINT			= 5,
35
36	PERF_TYPE_MAX,				/* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45	/*
46	 * Common hardware events, generalized by the kernel:
47	 */
48	PERF_COUNT_HW_CPU_CYCLES		= 0,
49	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51	PERF_COUNT_HW_CACHE_MISSES		= 3,
52	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54	PERF_COUNT_HW_BUS_CYCLES		= 6,
55	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
58
59	PERF_COUNT_HW_MAX,			/* non-ABI */
60};
61
62/*
63 * Generalized hardware cache events:
64 *
65 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 *       { read, write, prefetch } x
67 *       { accesses, misses }
68 */
69enum perf_hw_cache_id {
70	PERF_COUNT_HW_CACHE_L1D			= 0,
71	PERF_COUNT_HW_CACHE_L1I			= 1,
72	PERF_COUNT_HW_CACHE_LL			= 2,
73	PERF_COUNT_HW_CACHE_DTLB		= 3,
74	PERF_COUNT_HW_CACHE_ITLB		= 4,
75	PERF_COUNT_HW_CACHE_BPU			= 5,
76	PERF_COUNT_HW_CACHE_NODE		= 6,
77
78	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
79};
80
81enum perf_hw_cache_op_id {
82	PERF_COUNT_HW_CACHE_OP_READ		= 0,
83	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
84	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
85
86	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
87};
88
89enum perf_hw_cache_op_result_id {
90	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
91	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
92
93	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
94};
95
96/*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102enum perf_sw_ids {
103	PERF_COUNT_SW_CPU_CLOCK			= 0,
104	PERF_COUNT_SW_TASK_CLOCK		= 1,
105	PERF_COUNT_SW_PAGE_FAULTS		= 2,
106	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
107	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
108	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
109	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
110	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
111	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
112	PERF_COUNT_SW_DUMMY			= 9,
113
114	PERF_COUNT_SW_MAX,			/* non-ABI */
115};
116
117/*
118 * Bits that can be set in attr.sample_type to request information
119 * in the overflow packets.
120 */
121enum perf_event_sample_format {
122	PERF_SAMPLE_IP				= 1U << 0,
123	PERF_SAMPLE_TID				= 1U << 1,
124	PERF_SAMPLE_TIME			= 1U << 2,
125	PERF_SAMPLE_ADDR			= 1U << 3,
126	PERF_SAMPLE_READ			= 1U << 4,
127	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
128	PERF_SAMPLE_ID				= 1U << 6,
129	PERF_SAMPLE_CPU				= 1U << 7,
130	PERF_SAMPLE_PERIOD			= 1U << 8,
131	PERF_SAMPLE_STREAM_ID			= 1U << 9,
132	PERF_SAMPLE_RAW				= 1U << 10,
133	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
134	PERF_SAMPLE_REGS_USER			= 1U << 12,
135	PERF_SAMPLE_STACK_USER			= 1U << 13,
136	PERF_SAMPLE_WEIGHT			= 1U << 14,
137	PERF_SAMPLE_DATA_SRC			= 1U << 15,
138	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
139	PERF_SAMPLE_TRANSACTION			= 1U << 17,
140
141	PERF_SAMPLE_MAX = 1U << 18,		/* non-ABI */
142};
143
144/*
145 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
146 *
147 * If the user does not pass priv level information via branch_sample_type,
148 * the kernel uses the event's priv level. Branch and event priv levels do
149 * not have to match. Branch priv level is checked for permissions.
150 *
151 * The branch types can be combined, however BRANCH_ANY covers all types
152 * of branches and therefore it supersedes all the other types.
153 */
154enum perf_branch_sample_type {
155	PERF_SAMPLE_BRANCH_USER		= 1U << 0, /* user branches */
156	PERF_SAMPLE_BRANCH_KERNEL	= 1U << 1, /* kernel branches */
157	PERF_SAMPLE_BRANCH_HV		= 1U << 2, /* hypervisor branches */
158
159	PERF_SAMPLE_BRANCH_ANY		= 1U << 3, /* any branch types */
160	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << 4, /* any call branch */
161	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << 5, /* any return branch */
162	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << 6, /* indirect calls */
163	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << 7, /* transaction aborts */
164	PERF_SAMPLE_BRANCH_IN_TX	= 1U << 8, /* in transaction */
165	PERF_SAMPLE_BRANCH_NO_TX	= 1U << 9, /* not in transaction */
166
167	PERF_SAMPLE_BRANCH_MAX		= 1U << 10, /* non-ABI */
168};
169
170#define PERF_SAMPLE_BRANCH_PLM_ALL \
171	(PERF_SAMPLE_BRANCH_USER|\
172	 PERF_SAMPLE_BRANCH_KERNEL|\
173	 PERF_SAMPLE_BRANCH_HV)
174
175/*
176 * Values to determine ABI of the registers dump.
177 */
178enum perf_sample_regs_abi {
179	PERF_SAMPLE_REGS_ABI_NONE	= 0,
180	PERF_SAMPLE_REGS_ABI_32		= 1,
181	PERF_SAMPLE_REGS_ABI_64		= 2,
182};
183
184/*
185 * Values for the memory transaction event qualifier, mostly for
186 * abort events. Multiple bits can be set.
187 */
188enum {
189	PERF_TXN_ELISION        = (1 << 0), /* From elision */
190	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
191	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
192	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
193	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
194	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
195	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
196	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
197
198	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
199
200	/* bits 32..63 are reserved for the abort code */
201
202	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
203	PERF_TXN_ABORT_SHIFT = 32,
204};
205
206/*
207 * The format of the data returned by read() on a perf event fd,
208 * as specified by attr.read_format:
209 *
210 * struct read_format {
211 *	{ u64		value;
212 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
213 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
214 *	  { u64		id;           } && PERF_FORMAT_ID
215 *	} && !PERF_FORMAT_GROUP
216 *
217 *	{ u64		nr;
218 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
219 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
220 *	  { u64		value;
221 *	    { u64	id;           } && PERF_FORMAT_ID
222 *	  }		cntr[nr];
223 *	} && PERF_FORMAT_GROUP
224 * };
225 */
226enum perf_event_read_format {
227	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
228	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
229	PERF_FORMAT_ID				= 1U << 2,
230	PERF_FORMAT_GROUP			= 1U << 3,
231
232	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
233};
234
235#define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
236#define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
237#define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
238#define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
239					/* add: sample_stack_user */
240
241/*
242 * Hardware event_id to monitor via a performance monitoring event:
243 */
244struct perf_event_attr {
245
246	/*
247	 * Major type: hardware/software/tracepoint/etc.
248	 */
249	__u32			type;
250
251	/*
252	 * Size of the attr structure, for fwd/bwd compat.
253	 */
254	__u32			size;
255
256	/*
257	 * Type specific configuration information.
258	 */
259	__u64			config;
260
261	union {
262		__u64		sample_period;
263		__u64		sample_freq;
264	};
265
266	__u64			sample_type;
267	__u64			read_format;
268
269	__u64			disabled       :  1, /* off by default        */
270				inherit	       :  1, /* children inherit it   */
271				pinned	       :  1, /* must always be on PMU */
272				exclusive      :  1, /* only group on PMU     */
273				exclude_user   :  1, /* don't count user      */
274				exclude_kernel :  1, /* ditto kernel          */
275				exclude_hv     :  1, /* ditto hypervisor      */
276				exclude_idle   :  1, /* don't count when idle */
277				mmap           :  1, /* include mmap data     */
278				comm	       :  1, /* include comm data     */
279				freq           :  1, /* use freq, not period  */
280				inherit_stat   :  1, /* per task counts       */
281				enable_on_exec :  1, /* next exec enables     */
282				task           :  1, /* trace fork/exit       */
283				watermark      :  1, /* wakeup_watermark      */
284				/*
285				 * precise_ip:
286				 *
287				 *  0 - SAMPLE_IP can have arbitrary skid
288				 *  1 - SAMPLE_IP must have constant skid
289				 *  2 - SAMPLE_IP requested to have 0 skid
290				 *  3 - SAMPLE_IP must have 0 skid
291				 *
292				 *  See also PERF_RECORD_MISC_EXACT_IP
293				 */
294				precise_ip     :  2, /* skid constraint       */
295				mmap_data      :  1, /* non-exec mmap data    */
296				sample_id_all  :  1, /* sample_type all events */
297
298				exclude_host   :  1, /* don't count in host   */
299				exclude_guest  :  1, /* don't count in guest  */
300
301				exclude_callchain_kernel : 1, /* exclude kernel callchains */
302				exclude_callchain_user   : 1, /* exclude user callchains */
303				mmap2          :  1, /* include mmap with inode data     */
304
305				__reserved_1   : 40;
306
307	union {
308		__u32		wakeup_events;	  /* wakeup every n events */
309		__u32		wakeup_watermark; /* bytes before wakeup   */
310	};
311
312	__u32			bp_type;
313	union {
314		__u64		bp_addr;
315		__u64		config1; /* extension of config */
316	};
317	union {
318		__u64		bp_len;
319		__u64		config2; /* extension of config1 */
320	};
321	__u64	branch_sample_type; /* enum perf_branch_sample_type */
322
323	/*
324	 * Defines set of user regs to dump on samples.
325	 * See asm/perf_regs.h for details.
326	 */
327	__u64	sample_regs_user;
328
329	/*
330	 * Defines size of the user stack to dump on samples.
331	 */
332	__u32	sample_stack_user;
333
334	/* Align to u64. */
335	__u32	__reserved_2;
336};
337
338#define perf_flags(attr)	(*(&(attr)->read_format + 1))
339
340/*
341 * Ioctls that can be done on a perf event fd:
342 */
343#define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
344#define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
345#define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
346#define PERF_EVENT_IOC_RESET		_IO ('$', 3)
347#define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
348#define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
349#define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
350#define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
351
352enum perf_event_ioc_flags {
353	PERF_IOC_FLAG_GROUP		= 1U << 0,
354};
355
356/*
357 * Structure of the page that can be mapped via mmap
358 */
359struct perf_event_mmap_page {
360	__u32	version;		/* version number of this structure */
361	__u32	compat_version;		/* lowest version this is compat with */
362
363	/*
364	 * Bits needed to read the hw events in user-space.
365	 *
366	 *   u32 seq, time_mult, time_shift, idx, width;
367	 *   u64 count, enabled, running;
368	 *   u64 cyc, time_offset;
369	 *   s64 pmc = 0;
370	 *
371	 *   do {
372	 *     seq = pc->lock;
373	 *     barrier()
374	 *
375	 *     enabled = pc->time_enabled;
376	 *     running = pc->time_running;
377	 *
378	 *     if (pc->cap_usr_time && enabled != running) {
379	 *       cyc = rdtsc();
380	 *       time_offset = pc->time_offset;
381	 *       time_mult   = pc->time_mult;
382	 *       time_shift  = pc->time_shift;
383	 *     }
384	 *
385	 *     idx = pc->index;
386	 *     count = pc->offset;
387	 *     if (pc->cap_usr_rdpmc && idx) {
388	 *       width = pc->pmc_width;
389	 *       pmc = rdpmc(idx - 1);
390	 *     }
391	 *
392	 *     barrier();
393	 *   } while (pc->lock != seq);
394	 *
395	 * NOTE: for obvious reason this only works on self-monitoring
396	 *       processes.
397	 */
398	__u32	lock;			/* seqlock for synchronization */
399	__u32	index;			/* hardware event identifier */
400	__s64	offset;			/* add to hardware event value */
401	__u64	time_enabled;		/* time event active */
402	__u64	time_running;		/* time event on cpu */
403	union {
404		__u64	capabilities;
405		struct {
406			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
407				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
408
409				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
410				cap_user_time		: 1, /* The time_* fields are used */
411				cap_user_time_zero	: 1, /* The time_zero field is used */
412				cap_____res		: 59;
413		};
414	};
415
416	/*
417	 * If cap_usr_rdpmc this field provides the bit-width of the value
418	 * read using the rdpmc() or equivalent instruction. This can be used
419	 * to sign extend the result like:
420	 *
421	 *   pmc <<= 64 - width;
422	 *   pmc >>= 64 - width; // signed shift right
423	 *   count += pmc;
424	 */
425	__u16	pmc_width;
426
427	/*
428	 * If cap_usr_time the below fields can be used to compute the time
429	 * delta since time_enabled (in ns) using rdtsc or similar.
430	 *
431	 *   u64 quot, rem;
432	 *   u64 delta;
433	 *
434	 *   quot = (cyc >> time_shift);
435	 *   rem = cyc & ((1 << time_shift) - 1);
436	 *   delta = time_offset + quot * time_mult +
437	 *              ((rem * time_mult) >> time_shift);
438	 *
439	 * Where time_offset,time_mult,time_shift and cyc are read in the
440	 * seqcount loop described above. This delta can then be added to
441	 * enabled and possible running (if idx), improving the scaling:
442	 *
443	 *   enabled += delta;
444	 *   if (idx)
445	 *     running += delta;
446	 *
447	 *   quot = count / running;
448	 *   rem  = count % running;
449	 *   count = quot * enabled + (rem * enabled) / running;
450	 */
451	__u16	time_shift;
452	__u32	time_mult;
453	__u64	time_offset;
454	/*
455	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
456	 * from sample timestamps.
457	 *
458	 *   time = timestamp - time_zero;
459	 *   quot = time / time_mult;
460	 *   rem  = time % time_mult;
461	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
462	 *
463	 * And vice versa:
464	 *
465	 *   quot = cyc >> time_shift;
466	 *   rem  = cyc & ((1 << time_shift) - 1);
467	 *   timestamp = time_zero + quot * time_mult +
468	 *               ((rem * time_mult) >> time_shift);
469	 */
470	__u64	time_zero;
471	__u32	size;			/* Header size up to __reserved[] fields. */
472
473		/*
474		 * Hole for extension of the self monitor capabilities
475		 */
476
477	__u8	__reserved[118*8+4];	/* align to 1k. */
478
479	/*
480	 * Control data for the mmap() data buffer.
481	 *
482	 * User-space reading the @data_head value should issue an smp_rmb(),
483	 * after reading this value.
484	 *
485	 * When the mapping is PROT_WRITE the @data_tail value should be
486	 * written by userspace to reflect the last read data, after issueing
487	 * an smp_mb() to separate the data read from the ->data_tail store.
488	 * In this case the kernel will not over-write unread data.
489	 *
490	 * See perf_output_put_handle() for the data ordering.
491	 */
492	__u64   data_head;		/* head in the data section */
493	__u64	data_tail;		/* user-space written tail */
494};
495
496#define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
497#define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
498#define PERF_RECORD_MISC_KERNEL			(1 << 0)
499#define PERF_RECORD_MISC_USER			(2 << 0)
500#define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
501#define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
502#define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
503
504#define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
505/*
506 * Indicates that the content of PERF_SAMPLE_IP points to
507 * the actual instruction that triggered the event. See also
508 * perf_event_attr::precise_ip.
509 */
510#define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
511/*
512 * Reserve the last bit to indicate some extended misc field
513 */
514#define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
515
516struct perf_event_header {
517	__u32	type;
518	__u16	misc;
519	__u16	size;
520};
521
522enum perf_event_type {
523
524	/*
525	 * If perf_event_attr.sample_id_all is set then all event types will
526	 * have the sample_type selected fields related to where/when
527	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
528	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
529	 * just after the perf_event_header and the fields already present for
530	 * the existing fields, i.e. at the end of the payload. That way a newer
531	 * perf.data file will be supported by older perf tools, with these new
532	 * optional fields being ignored.
533	 *
534	 * struct sample_id {
535	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
536	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
537	 * 	{ u64			id;       } && PERF_SAMPLE_ID
538	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
539	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
540	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
541	 * } && perf_event_attr::sample_id_all
542	 *
543	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
544	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
545	 * relative to header.size.
546	 */
547
548	/*
549	 * The MMAP events record the PROT_EXEC mappings so that we can
550	 * correlate userspace IPs to code. They have the following structure:
551	 *
552	 * struct {
553	 *	struct perf_event_header	header;
554	 *
555	 *	u32				pid, tid;
556	 *	u64				addr;
557	 *	u64				len;
558	 *	u64				pgoff;
559	 *	char				filename[];
560	 * 	struct sample_id		sample_id;
561	 * };
562	 */
563	PERF_RECORD_MMAP			= 1,
564
565	/*
566	 * struct {
567	 *	struct perf_event_header	header;
568	 *	u64				id;
569	 *	u64				lost;
570	 * 	struct sample_id		sample_id;
571	 * };
572	 */
573	PERF_RECORD_LOST			= 2,
574
575	/*
576	 * struct {
577	 *	struct perf_event_header	header;
578	 *
579	 *	u32				pid, tid;
580	 *	char				comm[];
581	 * 	struct sample_id		sample_id;
582	 * };
583	 */
584	PERF_RECORD_COMM			= 3,
585
586	/*
587	 * struct {
588	 *	struct perf_event_header	header;
589	 *	u32				pid, ppid;
590	 *	u32				tid, ptid;
591	 *	u64				time;
592	 * 	struct sample_id		sample_id;
593	 * };
594	 */
595	PERF_RECORD_EXIT			= 4,
596
597	/*
598	 * struct {
599	 *	struct perf_event_header	header;
600	 *	u64				time;
601	 *	u64				id;
602	 *	u64				stream_id;
603	 * 	struct sample_id		sample_id;
604	 * };
605	 */
606	PERF_RECORD_THROTTLE			= 5,
607	PERF_RECORD_UNTHROTTLE			= 6,
608
609	/*
610	 * struct {
611	 *	struct perf_event_header	header;
612	 *	u32				pid, ppid;
613	 *	u32				tid, ptid;
614	 *	u64				time;
615	 * 	struct sample_id		sample_id;
616	 * };
617	 */
618	PERF_RECORD_FORK			= 7,
619
620	/*
621	 * struct {
622	 *	struct perf_event_header	header;
623	 *	u32				pid, tid;
624	 *
625	 *	struct read_format		values;
626	 * 	struct sample_id		sample_id;
627	 * };
628	 */
629	PERF_RECORD_READ			= 8,
630
631	/*
632	 * struct {
633	 *	struct perf_event_header	header;
634	 *
635	 *	#
636	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
637	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
638	 *	# is fixed relative to header.
639	 *	#
640	 *
641	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
642	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
643	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
644	 *	{ u64			time;     } && PERF_SAMPLE_TIME
645	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
646	 *	{ u64			id;	  } && PERF_SAMPLE_ID
647	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
648	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
649	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
650	 *
651	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
652	 *
653	 *	{ u64			nr,
654	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
655	 *
656	 *	#
657	 *	# The RAW record below is opaque data wrt the ABI
658	 *	#
659	 *	# That is, the ABI doesn't make any promises wrt to
660	 *	# the stability of its content, it may vary depending
661	 *	# on event, hardware, kernel version and phase of
662	 *	# the moon.
663	 *	#
664	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
665	 *	#
666	 *
667	 *	{ u32			size;
668	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
669	 *
670	 *	{ u64                   nr;
671	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
672	 *
673	 * 	{ u64			abi; # enum perf_sample_regs_abi
674	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
675	 *
676	 * 	{ u64			size;
677	 * 	  char			data[size];
678	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
679	 *
680	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
681	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
682	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
683	 * };
684	 */
685	PERF_RECORD_SAMPLE			= 9,
686
687	/*
688	 * The MMAP2 records are an augmented version of MMAP, they add
689	 * maj, min, ino numbers to be used to uniquely identify each mapping
690	 *
691	 * struct {
692	 *	struct perf_event_header	header;
693	 *
694	 *	u32				pid, tid;
695	 *	u64				addr;
696	 *	u64				len;
697	 *	u64				pgoff;
698	 *	u32				maj;
699	 *	u32				min;
700	 *	u64				ino;
701	 *	u64				ino_generation;
702	 *	char				filename[];
703	 * 	struct sample_id		sample_id;
704	 * };
705	 */
706	PERF_RECORD_MMAP2			= 10,
707
708	PERF_RECORD_MAX,			/* non-ABI */
709};
710
711#define PERF_MAX_STACK_DEPTH		127
712
713enum perf_callchain_context {
714	PERF_CONTEXT_HV			= (__u64)-32,
715	PERF_CONTEXT_KERNEL		= (__u64)-128,
716	PERF_CONTEXT_USER		= (__u64)-512,
717
718	PERF_CONTEXT_GUEST		= (__u64)-2048,
719	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
720	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
721
722	PERF_CONTEXT_MAX		= (__u64)-4095,
723};
724
725#define PERF_FLAG_FD_NO_GROUP		(1U << 0)
726#define PERF_FLAG_FD_OUTPUT		(1U << 1)
727#define PERF_FLAG_PID_CGROUP		(1U << 2) /* pid=cgroup id, per-cpu mode only */
728#define PERF_FLAG_FD_CLOEXEC		(1U << 3) /* O_CLOEXEC */
729
730union perf_mem_data_src {
731	__u64 val;
732	struct {
733		__u64   mem_op:5,	/* type of opcode */
734			mem_lvl:14,	/* memory hierarchy level */
735			mem_snoop:5,	/* snoop mode */
736			mem_lock:2,	/* lock instr */
737			mem_dtlb:7,	/* tlb access */
738			mem_rsvd:31;
739	};
740};
741
742/* type of opcode (load/store/prefetch,code) */
743#define PERF_MEM_OP_NA		0x01 /* not available */
744#define PERF_MEM_OP_LOAD	0x02 /* load instruction */
745#define PERF_MEM_OP_STORE	0x04 /* store instruction */
746#define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
747#define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
748#define PERF_MEM_OP_SHIFT	0
749
750/* memory hierarchy (memory level, hit or miss) */
751#define PERF_MEM_LVL_NA		0x01  /* not available */
752#define PERF_MEM_LVL_HIT	0x02  /* hit level */
753#define PERF_MEM_LVL_MISS	0x04  /* miss level  */
754#define PERF_MEM_LVL_L1		0x08  /* L1 */
755#define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
756#define PERF_MEM_LVL_L2		0x20  /* L2 */
757#define PERF_MEM_LVL_L3		0x40  /* L3 */
758#define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
759#define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
760#define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
761#define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
762#define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
763#define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
764#define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
765#define PERF_MEM_LVL_SHIFT	5
766
767/* snoop mode */
768#define PERF_MEM_SNOOP_NA	0x01 /* not available */
769#define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
770#define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
771#define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
772#define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
773#define PERF_MEM_SNOOP_SHIFT	19
774
775/* locked instruction */
776#define PERF_MEM_LOCK_NA	0x01 /* not available */
777#define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
778#define PERF_MEM_LOCK_SHIFT	24
779
780/* TLB access */
781#define PERF_MEM_TLB_NA		0x01 /* not available */
782#define PERF_MEM_TLB_HIT	0x02 /* hit level */
783#define PERF_MEM_TLB_MISS	0x04 /* miss level */
784#define PERF_MEM_TLB_L1		0x08 /* L1 */
785#define PERF_MEM_TLB_L2		0x10 /* L2 */
786#define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
787#define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
788#define PERF_MEM_TLB_SHIFT	26
789
790#define PERF_MEM_S(a, s) \
791	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
792
793/*
794 * single taken branch record layout:
795 *
796 *      from: source instruction (may not always be a branch insn)
797 *        to: branch target
798 *   mispred: branch target was mispredicted
799 * predicted: branch target was predicted
800 *
801 * support for mispred, predicted is optional. In case it
802 * is not supported mispred = predicted = 0.
803 *
804 *     in_tx: running in a hardware transaction
805 *     abort: aborting a hardware transaction
806 */
807struct perf_branch_entry {
808	__u64	from;
809	__u64	to;
810	__u64	mispred:1,  /* target mispredicted */
811		predicted:1,/* target predicted */
812		in_tx:1,    /* in transaction */
813		abort:1,    /* transaction abort */
814		reserved:60;
815};
816
817#endif /* _UAPI_LINUX_PERF_EVENT_H */
818