1/******************************************************************************
2*
3* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
4*
5* Licensed under the Apache License, Version 2.0 (the "License");
6* you may not use this file except in compliance with the License.
7* You may obtain a copy of the License at:
8*
9* http://www.apache.org/licenses/LICENSE-2.0
10*
11* Unless required by applicable law or agreed to in writing, software
12* distributed under the License is distributed on an "AS IS" BASIS,
13* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14* See the License for the specific language governing permissions and
15* limitations under the License.
16*
17******************************************************************************/
18/**
19 *******************************************************************************
20 * @file
21 *  ihevc_chroma_itrans_recon_8x8.c
22 *
23 * @brief
24 *  Contains function definitions for 8x8 inverse transform  and reconstruction
25 * of chroma interleaved data.
26 *
27 * @author
28 *  100470
29 *
30 * @par List of Functions:
31 *  - ihevc_chroma_itrans_recon_8x8()
32 *
33 * @remarks
34 *  None
35 *
36 *******************************************************************************
37 */
38
39#include <stdio.h>
40#include <string.h>
41#include "ihevc_typedefs.h"
42#include "ihevc_macros.h"
43#include "ihevc_platform_macros.h"
44#include "ihevc_defs.h"
45#include "ihevc_trans_tables.h"
46#include "ihevc_chroma_itrans_recon.h"
47#include "ihevc_func_selector.h"
48#include "ihevc_trans_macros.h"
49
50/* All the functions work one component(U or V) of interleaved data depending upon pointers passed to it */
51/* Data visualization */
52/* U V U V U V U V */
53/* U V U V U V U V */
54/* U V U V U V U V */
55/* U V U V U V U V */
56/* If the pointer points to first byte of above stream (U) , functions will operate on U component */
57/* If the pointer points to second byte of above stream (V) , functions will operate on V component */
58
59/**
60 *******************************************************************************
61 *
62 * @brief
63 *  This function performs Inverse transform  and reconstruction for 8x8
64 * input block
65 *
66 * @par Description:
67 *  Performs inverse transform and adds the prediction  data and clips output
68 * to 8 bit
69 *
70 * @param[in] pi2_src
71 *  Input 8x8 coefficients
72 *
73 * @param[in] pi2_tmp
74 *  Temporary 8x8 buffer for storing inverse transform
75 *  1st stage output
76 *
77 * @param[in] pu1_pred
78 *  Prediction 8x8 block
79 *
80 * @param[out] pu1_dst
81 *  Output 8x8 block
82 *
83 * @param[in] src_strd
84 *  Input stride
85 *
86 * @param[in] pred_strd
87 *  Prediction stride
88 *
89 * @param[in] dst_strd
90 *  Output Stride
91 *
92 * @param[in] shift
93 *  Output shift
94 *
95 * @param[in] zero_cols
96 *  Zero columns in pi2_src
97 *
98 * @returns  Void
99 *
100 * @remarks
101 *  None
102 *
103 *******************************************************************************
104 */
105
106
107void ihevc_chroma_itrans_recon_8x8(WORD16 *pi2_src,
108                                   WORD16 *pi2_tmp,
109                                   UWORD8 *pu1_pred,
110                                   UWORD8 *pu1_dst,
111                                   WORD32 src_strd,
112                                   WORD32 pred_strd,
113                                   WORD32 dst_strd,
114                                   WORD32 zero_cols,
115                                   WORD32 zero_rows)
116{
117    WORD32 j, k;
118    WORD32 e[4], o[4];
119    WORD32 ee[2], eo[2];
120    WORD32 add;
121    WORD32 shift;
122    WORD16 *pi2_tmp_orig;
123    WORD32 trans_size;
124    WORD32 zero_rows_2nd_stage = zero_cols;
125    WORD32 row_limit_2nd_stage;
126    UNUSED(zero_rows);
127    trans_size = TRANS_SIZE_8;
128
129    pi2_tmp_orig = pi2_tmp;
130
131    if((zero_cols & 0xF0) == 0xF0)
132        row_limit_2nd_stage = 4;
133    else
134        row_limit_2nd_stage = TRANS_SIZE_8;
135
136    /* Inverse Transform 1st stage */
137    shift = IT_SHIFT_STAGE_1;
138    add = 1 << (shift - 1);
139    {
140        /************************************************************************************************/
141        /**********************************START - IT_RECON_8x8******************************************/
142        /************************************************************************************************/
143
144        for(j = 0; j < row_limit_2nd_stage; j++)
145        {
146            /* Checking for Zero Cols */
147            if((zero_cols & 1) == 1)
148            {
149                memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
150            }
151            else
152            {
153                /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
154                for(k = 0; k < 4; k++)
155                {
156                    o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
157                                    + g_ai2_ihevc_trans_8[3][k]
158                                                    * pi2_src[3 * src_strd]
159                                    + g_ai2_ihevc_trans_8[5][k]
160                                                    * pi2_src[5 * src_strd]
161                                    + g_ai2_ihevc_trans_8[7][k]
162                                                    * pi2_src[7 * src_strd];
163                }
164
165                eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]
166                                + g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd];
167                eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]
168                                + g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd];
169                ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]
170                                + g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd];
171                ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]
172                                + g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd];
173
174                /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
175                e[0] = ee[0] + eo[0];
176                e[3] = ee[0] - eo[0];
177                e[1] = ee[1] + eo[1];
178                e[2] = ee[1] - eo[1];
179                for(k = 0; k < 4; k++)
180                {
181                    pi2_tmp[k] =
182                                    CLIP_S16(((e[k] + o[k] + add) >> shift));
183                    pi2_tmp[k + 4] =
184                                    CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
185                }
186            }
187            pi2_src++;
188            pi2_tmp += trans_size;
189            zero_cols = zero_cols >> 1;
190        }
191
192        pi2_tmp = pi2_tmp_orig;
193
194        /* Inverse Transform 2nd stage */
195        shift = IT_SHIFT_STAGE_2;
196        add = 1 << (shift - 1);
197
198        if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
199        {
200            for(j = 0; j < trans_size; j++)
201            {
202                /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
203                for(k = 0; k < 4; k++)
204                {
205                    o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
206                                    + g_ai2_ihevc_trans_8[3][k]
207                                                    * pi2_tmp[3 * trans_size];
208                }
209                eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
210                eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
211                ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
212                ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
213
214                /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
215                e[0] = ee[0] + eo[0];
216                e[3] = ee[0] - eo[0];
217                e[1] = ee[1] + eo[1];
218                e[2] = ee[1] - eo[1];
219                for(k = 0; k < 4; k++)
220                {
221                    WORD32 itrans_out;
222                    itrans_out =
223                                    CLIP_S16(((e[k] + o[k] + add) >> shift));
224                    pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
225                    itrans_out =
226                                    CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
227                    pu1_dst[(k + 4) * 2] =
228                                    CLIP_U8((itrans_out + pu1_pred[(k + 4) * 2]));
229                }
230                pi2_tmp++;
231                pu1_pred += pred_strd;
232                pu1_dst += dst_strd;
233            }
234        }
235        else /* All rows of output of 1st stage are non-zero */
236        {
237            for(j = 0; j < trans_size; j++)
238            {
239                /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
240                for(k = 0; k < 4; k++)
241                {
242                    o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
243                                    + g_ai2_ihevc_trans_8[3][k]
244                                                    * pi2_tmp[3 * trans_size]
245                                    + g_ai2_ihevc_trans_8[5][k]
246                                                    * pi2_tmp[5 * trans_size]
247                                    + g_ai2_ihevc_trans_8[7][k]
248                                                    * pi2_tmp[7 * trans_size];
249                }
250
251                eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
252                                + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
253                eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
254                                + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
255                ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
256                                + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
257                ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
258                                + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
259
260                /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
261                e[0] = ee[0] + eo[0];
262                e[3] = ee[0] - eo[0];
263                e[1] = ee[1] + eo[1];
264                e[2] = ee[1] - eo[1];
265                for(k = 0; k < 4; k++)
266                {
267                    WORD32 itrans_out;
268                    itrans_out =
269                                    CLIP_S16(((e[k] + o[k] + add) >> shift));
270                    pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
271                    itrans_out =
272                                    CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
273                    pu1_dst[(k + 4) * 2] =
274                                    CLIP_U8((itrans_out + pu1_pred[(k + 4) * 2]));
275                }
276                pi2_tmp++;
277                pu1_pred += pred_strd;
278                pu1_dst += dst_strd;
279            }
280        }
281        /************************************************************************************************/
282        /************************************END - IT_RECON_8x8******************************************/
283        /************************************************************************************************/
284    }
285}
286