GDBRemoteRegisterContext.cpp revision 516f0849819d094d4eab39a1f27b770259103ff8
1//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "GDBRemoteRegisterContext.h"
11
12// C Includes
13// C++ Includes
14// Other libraries and framework includes
15#include "lldb/Core/DataBufferHeap.h"
16#include "lldb/Core/DataExtractor.h"
17#include "lldb/Core/RegisterValue.h"
18#include "lldb/Core/Scalar.h"
19#include "lldb/Core/StreamString.h"
20#include "lldb/Target/ExecutionContext.h"
21// Project includes
22#include "Utility/StringExtractorGDBRemote.h"
23#include "ProcessGDBRemote.h"
24#include "ThreadGDBRemote.h"
25#include "Utility/ARM_GCC_Registers.h"
26#include "Utility/ARM_DWARF_Registers.h"
27
28using namespace lldb;
29using namespace lldb_private;
30
31//----------------------------------------------------------------------
32// GDBRemoteRegisterContext constructor
33//----------------------------------------------------------------------
34GDBRemoteRegisterContext::GDBRemoteRegisterContext
35(
36    ThreadGDBRemote &thread,
37    uint32_t concrete_frame_idx,
38    GDBRemoteDynamicRegisterInfo &reg_info,
39    bool read_all_at_once
40) :
41    RegisterContext (thread, concrete_frame_idx),
42    m_reg_info (reg_info),
43    m_reg_valid (),
44    m_reg_data (),
45    m_read_all_at_once (read_all_at_once)
46{
47    // Resize our vector of bools to contain one bool for every register.
48    // We will use these boolean values to know when a register value
49    // is valid in m_reg_data.
50    m_reg_valid.resize (reg_info.GetNumRegisters());
51
52    // Make a heap based buffer that is big enough to store all registers
53    DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
54    m_reg_data.SetData (reg_data_sp);
55
56}
57
58//----------------------------------------------------------------------
59// Destructor
60//----------------------------------------------------------------------
61GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
62{
63}
64
65void
66GDBRemoteRegisterContext::InvalidateAllRegisters ()
67{
68    SetAllRegisterValid (false);
69}
70
71void
72GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
73{
74    std::vector<bool>::iterator pos, end = m_reg_valid.end();
75    for (pos = m_reg_valid.begin(); pos != end; ++pos)
76        *pos = b;
77}
78
79size_t
80GDBRemoteRegisterContext::GetRegisterCount ()
81{
82    return m_reg_info.GetNumRegisters ();
83}
84
85const RegisterInfo *
86GDBRemoteRegisterContext::GetRegisterInfoAtIndex (uint32_t reg)
87{
88    return m_reg_info.GetRegisterInfoAtIndex (reg);
89}
90
91size_t
92GDBRemoteRegisterContext::GetRegisterSetCount ()
93{
94    return m_reg_info.GetNumRegisterSets ();
95}
96
97
98
99const RegisterSet *
100GDBRemoteRegisterContext::GetRegisterSet (uint32_t reg_set)
101{
102    return m_reg_info.GetRegisterSet (reg_set);
103}
104
105
106
107bool
108GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
109{
110    // Read the register
111    if (ReadRegisterBytes (reg_info, m_reg_data))
112    {
113        const bool partial_data_ok = false;
114        Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
115        return error.Success();
116    }
117    return false;
118}
119
120bool
121GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
122{
123    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
124    if (reg_info == NULL)
125        return false;
126
127    // Invalidate if needed
128    InvalidateIfNeeded(false);
129
130    const uint32_t reg_byte_size = reg_info->byte_size;
131    const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
132    bool success = bytes_copied == reg_byte_size;
133    if (success)
134    {
135        m_reg_valid[reg] = true;
136    }
137    else if (bytes_copied > 0)
138    {
139        // Only set register is valid to false if we copied some bytes, else
140        // leave it as it was.
141        m_reg_valid[reg] = false;
142    }
143    return success;
144}
145
146// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
147bool
148GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
149                                                GDBRemoteCommunicationClient &gdb_comm)
150{
151    char packet[64];
152    StringExtractorGDBRemote response;
153    int packet_len = 0;
154    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
155    if (gdb_comm.GetThreadSuffixSupported())
156        packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4llx;", reg, m_thread.GetID());
157    else
158        packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
159    assert (packet_len < (sizeof(packet) - 1));
160    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
161        return PrivateSetRegisterValue (reg, response);
162
163    return false;
164}
165bool
166GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
167{
168    ExecutionContext exe_ctx (CalculateThread());
169
170    Process *process = exe_ctx.GetProcessPtr();
171    Thread *thread = exe_ctx.GetThreadPtr();
172    if (process == NULL || thread == NULL)
173        return false;
174
175    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
176
177    InvalidateIfNeeded(false);
178
179    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
180
181    if (!m_reg_valid[reg])
182    {
183        Mutex::Locker locker;
184        if (gdb_comm.GetSequenceMutex (locker, 0))
185        {
186            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
187            ProcessSP process_sp (m_thread.GetProcess());
188            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
189            {
190                char packet[64];
191                StringExtractorGDBRemote response;
192                int packet_len = 0;
193                if (m_read_all_at_once)
194                {
195                    // Get all registers in one packet
196                    if (thread_suffix_supported)
197                        packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx;", m_thread.GetID());
198                    else
199                        packet_len = ::snprintf (packet, sizeof(packet), "g");
200                    assert (packet_len < (sizeof(packet) - 1));
201                    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
202                    {
203                        if (response.IsNormalResponse())
204                            if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
205                                SetAllRegisterValid (true);
206                    }
207                }
208                else if (!reg_info->value_regs)
209                {
210                    // Get each register individually
211                    GetPrimordialRegister(reg_info, gdb_comm);
212                }
213                else
214                {
215                    // Process this composite register request by delegating to the constituent
216                    // primordial registers.
217
218                    // Index of the primordial register.
219                    uint32_t prim_reg_idx;
220                    bool success = true;
221                    for (uint32_t idx = 0;
222                         (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
223                         ++idx)
224                    {
225                        // We have a valid primordial regsiter as our constituent.
226                        // Grab the corresponding register info.
227                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
228                        if (!GetPrimordialRegister(prim_reg_info, gdb_comm))
229                        {
230                            success = false;
231                            // Some failure occurred.  Let's break out of the for loop.
232                            break;
233                        }
234                    }
235                    if (success)
236                    {
237                        // If we reach this point, all primordial register requests have succeeded.
238                        // Validate this composite register.
239                        m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = true;
240                    }
241                }
242            }
243        }
244
245        // Make sure we got a valid register value after reading it
246        if (!m_reg_valid[reg])
247            return false;
248    }
249
250    if (&data != &m_reg_data)
251    {
252        // If we aren't extracting into our own buffer (which
253        // only happens when this function is called from
254        // ReadRegisterValue(uint32_t, Scalar&)) then
255        // we transfer bytes from our buffer into the data
256        // buffer that was passed in
257        data.SetByteOrder (m_reg_data.GetByteOrder());
258        data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
259    }
260    return true;
261}
262
263
264bool
265GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
266                                         const RegisterValue &value)
267{
268    DataExtractor data;
269    if (value.GetData (data))
270        return WriteRegisterBytes (reg_info, data, 0);
271    return false;
272}
273
274// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
275bool
276GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
277                                                GDBRemoteCommunicationClient &gdb_comm)
278{
279    StreamString packet;
280    StringExtractorGDBRemote response;
281    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
282    packet.Printf ("P%x=", reg);
283    packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
284                              reg_info->byte_size,
285                              lldb::endian::InlHostByteOrder(),
286                              lldb::endian::InlHostByteOrder());
287
288    if (gdb_comm.GetThreadSuffixSupported())
289        packet.Printf (";thread:%4.4llx;", m_thread.GetID());
290
291    // Invalidate just this register
292    m_reg_valid[reg] = false;
293    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
294                                              packet.GetString().size(),
295                                              response,
296                                              false))
297    {
298        if (response.IsOKResponse())
299            return true;
300    }
301    return false;
302}
303bool
304GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
305{
306    ExecutionContext exe_ctx (CalculateThread());
307
308    Process *process = exe_ctx.GetProcessPtr();
309    Thread *thread = exe_ctx.GetThreadPtr();
310    if (process == NULL || thread == NULL)
311        return false;
312
313    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
314// FIXME: This check isn't right because IsRunning checks the Public state, but this
315// is work you need to do - for instance in ShouldStop & friends - before the public
316// state has been changed.
317//    if (gdb_comm.IsRunning())
318//        return false;
319
320    // Grab a pointer to where we are going to put this register
321    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
322
323    if (dst == NULL)
324        return false;
325
326
327    if (data.CopyByteOrderedData (data_offset,                  // src offset
328                                  reg_info->byte_size,          // src length
329                                  dst,                          // dst
330                                  reg_info->byte_size,          // dst length
331                                  m_reg_data.GetByteOrder()))   // dst byte order
332    {
333        Mutex::Locker locker;
334        if (gdb_comm.GetSequenceMutex (locker, 0))
335        {
336            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
337            ProcessSP process_sp (m_thread.GetProcess());
338            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
339            {
340                uint32_t offset, end_offset;
341                StreamString packet;
342                StringExtractorGDBRemote response;
343                if (m_read_all_at_once)
344                {
345                    // Set all registers in one packet
346                    packet.PutChar ('G');
347                    offset = 0;
348                    end_offset = m_reg_data.GetByteSize();
349
350                    packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
351                                              m_reg_data.GetByteSize(),
352                                              lldb::endian::InlHostByteOrder(),
353                                              lldb::endian::InlHostByteOrder());
354
355                    if (thread_suffix_supported)
356                        packet.Printf (";thread:%4.4llx;", m_thread.GetID());
357
358                    // Invalidate all register values
359                    InvalidateIfNeeded (true);
360
361                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
362                                                              packet.GetString().size(),
363                                                              response,
364                                                              false))
365                    {
366                        SetAllRegisterValid (false);
367                        if (response.IsOKResponse())
368                        {
369                            return true;
370                        }
371                    }
372                }
373                else if (!reg_info->value_regs)
374                {
375                    // Set each register individually
376                    return SetPrimordialRegister(reg_info, gdb_comm);
377                }
378                else
379                {
380                    // Process this composite register request by delegating to the constituent
381                    // primordial registers.
382
383                    // Invalidate this composite register first.
384                    m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = false;
385
386                    // Index of the primordial register.
387                    uint32_t prim_reg_idx;
388                    // For loop index.
389                    uint32_t idx;
390
391                    // Invalidate the invalidate_regs, if present.
392                    if (reg_info->invalidate_regs)
393                    {
394                        for (idx = 0;
395                             (prim_reg_idx = reg_info->invalidate_regs[idx]) != LLDB_INVALID_REGNUM;
396                             ++idx)
397                        {
398                            // Grab the invalidate register info.
399                            const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
400                            m_reg_valid[prim_reg_info->kinds[eRegisterKindLLDB]] = false;
401                        }
402                    }
403
404                    bool success = true;
405                    for (idx = 0;
406                         (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
407                         ++idx)
408                    {
409                        // We have a valid primordial regsiter as our constituent.
410                        // Grab the corresponding register info.
411                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
412                        if (!SetPrimordialRegister(prim_reg_info, gdb_comm))
413                        {
414                            success = false;
415                            // Some failure occurred.  Let's break out of the for loop.
416                            break;
417                        }
418                    }
419                    return success;
420                }
421            }
422        }
423    }
424    return false;
425}
426
427
428bool
429GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
430{
431    ExecutionContext exe_ctx (CalculateThread());
432
433    Process *process = exe_ctx.GetProcessPtr();
434    Thread *thread = exe_ctx.GetThreadPtr();
435    if (process == NULL || thread == NULL)
436        return false;
437
438    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
439
440    StringExtractorGDBRemote response;
441
442    Mutex::Locker locker;
443    if (gdb_comm.GetSequenceMutex (locker, 0))
444    {
445        char packet[32];
446        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
447        ProcessSP process_sp (m_thread.GetProcess());
448        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
449        {
450            int packet_len = 0;
451            if (thread_suffix_supported)
452                packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx", m_thread.GetID());
453            else
454                packet_len = ::snprintf (packet, sizeof(packet), "g");
455            assert (packet_len < (sizeof(packet) - 1));
456
457            if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
458            {
459                if (response.IsErrorResponse())
460                    return false;
461
462                std::string &response_str = response.GetStringRef();
463                if (isxdigit(response_str[0]))
464                {
465                    response_str.insert(0, 1, 'G');
466                    if (thread_suffix_supported)
467                    {
468                        char thread_id_cstr[64];
469                        ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4llx;", m_thread.GetID());
470                        response_str.append (thread_id_cstr);
471                    }
472                    data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
473                    return true;
474                }
475            }
476        }
477    }
478    data_sp.reset();
479    return false;
480}
481
482bool
483GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
484{
485    if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
486        return false;
487
488    ExecutionContext exe_ctx (CalculateThread());
489
490    Process *process = exe_ctx.GetProcessPtr();
491    Thread *thread = exe_ctx.GetThreadPtr();
492    if (process == NULL || thread == NULL)
493        return false;
494
495    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
496
497    StringExtractorGDBRemote response;
498    Mutex::Locker locker;
499    if (gdb_comm.GetSequenceMutex (locker, 0))
500    {
501        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
502        ProcessSP process_sp (m_thread.GetProcess());
503        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
504        {
505            // The data_sp contains the entire G response packet including the
506            // G, and if the thread suffix is supported, it has the thread suffix
507            // as well.
508            const char *G_packet = (const char *)data_sp->GetBytes();
509            size_t G_packet_len = data_sp->GetByteSize();
510            if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
511                                                       G_packet_len,
512                                                       response,
513                                                       false))
514            {
515                if (response.IsOKResponse())
516                    return true;
517                else if (response.IsErrorResponse())
518                {
519                    uint32_t num_restored = 0;
520                    // We need to manually go through all of the registers and
521                    // restore them manually
522
523                    response.GetStringRef().assign (G_packet, G_packet_len);
524                    response.SetFilePos(1); // Skip the leading 'G'
525                    DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
526                    DataExtractor restore_data (buffer.GetBytes(),
527                                                buffer.GetByteSize(),
528                                                m_reg_data.GetByteOrder(),
529                                                m_reg_data.GetAddressByteSize());
530
531                    const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
532                                                                           restore_data.GetByteSize(),
533                                                                           '\xcc');
534
535                    if (bytes_extracted < restore_data.GetByteSize())
536                        restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
537
538                    //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
539                    const RegisterInfo *reg_info;
540                    // We have to march the offset of each register along in the
541                    // buffer to make sure we get the right offset.
542                    uint32_t reg_byte_offset = 0;
543                    for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
544                    {
545                        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
546
547                        // Skip composite registers.
548                        if (reg_info->value_regs)
549                            continue;
550
551                        // Only write down the registers that need to be written
552                        // if we are going to be doing registers individually.
553                        bool write_reg = true;
554                        const uint32_t reg_byte_size = reg_info->byte_size;
555
556                        const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
557                        if (restore_src)
558                        {
559                            if (m_reg_valid[reg])
560                            {
561                                const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
562                                if (current_src)
563                                    write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
564                            }
565
566                            if (write_reg)
567                            {
568                                StreamString packet;
569                                packet.Printf ("P%x=", reg);
570                                packet.PutBytesAsRawHex8 (restore_src,
571                                                          reg_byte_size,
572                                                          lldb::endian::InlHostByteOrder(),
573                                                          lldb::endian::InlHostByteOrder());
574
575                                if (thread_suffix_supported)
576                                    packet.Printf (";thread:%4.4llx;", m_thread.GetID());
577
578                                m_reg_valid[reg] = false;
579                                if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
580                                                                          packet.GetString().size(),
581                                                                          response,
582                                                                          false))
583                                {
584                                    if (response.IsOKResponse())
585                                        ++num_restored;
586                                }
587                            }
588                        }
589                    }
590                    return num_restored > 0;
591                }
592            }
593        }
594    }
595    return false;
596}
597
598
599uint32_t
600GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
601{
602    return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
603}
604
605void
606GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters()
607{
608    // For Advanced SIMD and VFP register mapping.
609    static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
610    static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
611    static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
612    static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
613    static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
614    static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
615    static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
616    static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
617    static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
618    static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
619    static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
620    static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
621    static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
622    static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
623    static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
624    static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
625    static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
626    static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
627    static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
628    static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
629    static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
630    static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
631    static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
632    static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
633    static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
634    static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
635    static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
636    static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
637    static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
638    static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
639    static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
640    static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
641
642    static RegisterInfo g_register_infos[] = {
643//   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
644//   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
645    { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
646    { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
647    { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
648    { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
649    { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
650    { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
651    { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
652    { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
653    { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
654    { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
655    { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
656    { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
657    { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
658    { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
659    { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
660    { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
661    { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
662    { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
663    { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
664    { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
665    { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
666    { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
667    { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
668    { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
669    { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
670    { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
671    { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
672    { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
673    { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
674    { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
675    { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
676    { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
677    { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
678    { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
679    { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
680    { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
681    { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
682    { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
683    { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
684    { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
685    { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
686    { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
687    { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
688    { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
689    { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
690    { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
691    { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
692    { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
693    { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
694    { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
695    { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
696    { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
697    { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
698    { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
699    { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
700    { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
701    { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
702    { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
703    { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
704    { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
705    { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
706    { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
707    { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
708    { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
709    { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
710    { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
711    { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
712    { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
713    { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
714    { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
715    { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
716    { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
717    { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
718    { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
719    { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
720    { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
721    { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
722    { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
723    { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
724    { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
725    { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
726    { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
727    { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
728    { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
729    { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
730    { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
731    { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
732    { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
733    { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
734    { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
735    { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
736    { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
737    { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
738    { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
739    { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
740    { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
741    { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
742    { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
743    { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
744    { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
745    { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
746    { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
747    { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
748    { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
749    { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
750    { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
751    { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
752    };
753
754    static const uint32_t num_registers = sizeof (g_register_infos)/sizeof (RegisterInfo);
755    static ConstString gpr_reg_set ("General Purpose Registers");
756    static ConstString sfp_reg_set ("Software Floating Point Registers");
757    static ConstString vfp_reg_set ("Floating Point Registers");
758    uint32_t i;
759    // Calculate the offsets of the registers
760    // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
761    // "primordial" registers is important.  This enables us to calculate the offset of the composite
762    // register by using the offset of its first primordial register.  For example, to calculate the
763    // offset of q0, use s0's offset.
764    if (g_register_infos[2].byte_offset == 0)
765    {
766        uint32_t byte_offset = 0;
767        for (i=0; i<num_registers; ++i)
768        {
769            // For primordial registers, increment the byte_offset by the byte_size to arrive at the
770            // byte_offset for the next register.  Otherwise, we have a composite register whose
771            // offset can be calculated by consulting the offset of its first primordial register.
772            if (!g_register_infos[i].value_regs)
773            {
774                g_register_infos[i].byte_offset = byte_offset;
775                byte_offset += g_register_infos[i].byte_size;
776            }
777            else
778            {
779                const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
780                g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
781            }
782        }
783    }
784    for (i=0; i<num_registers; ++i)
785    {
786        ConstString name;
787        ConstString alt_name;
788        if (g_register_infos[i].name && g_register_infos[i].name[0])
789            name.SetCString(g_register_infos[i].name);
790        if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
791            alt_name.SetCString(g_register_infos[i].alt_name);
792
793        if (i <= 15 || i == 25)
794            AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
795        else if (i <= 24)
796            AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
797        else
798            AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
799    }
800}
801
802