GDBRemoteRegisterContext.cpp revision 627ca95187f5ff0fa51fd339891f24e0f7da408d
1//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "GDBRemoteRegisterContext.h"
11
12// C Includes
13// C++ Includes
14// Other libraries and framework includes
15#include "lldb/Core/DataBufferHeap.h"
16#include "lldb/Core/DataExtractor.h"
17#include "lldb/Core/RegisterValue.h"
18#include "lldb/Core/Scalar.h"
19#include "lldb/Core/StreamString.h"
20#include "lldb/Target/ExecutionContext.h"
21#include "lldb/Utility/Utils.h"
22// Project includes
23#include "Utility/StringExtractorGDBRemote.h"
24#include "ProcessGDBRemote.h"
25#include "ProcessGDBRemoteLog.h"
26#include "ThreadGDBRemote.h"
27#include "Utility/ARM_GCC_Registers.h"
28#include "Utility/ARM_DWARF_Registers.h"
29
30using namespace lldb;
31using namespace lldb_private;
32
33//----------------------------------------------------------------------
34// GDBRemoteRegisterContext constructor
35//----------------------------------------------------------------------
36GDBRemoteRegisterContext::GDBRemoteRegisterContext
37(
38    ThreadGDBRemote &thread,
39    uint32_t concrete_frame_idx,
40    GDBRemoteDynamicRegisterInfo &reg_info,
41    bool read_all_at_once
42) :
43    RegisterContext (thread, concrete_frame_idx),
44    m_reg_info (reg_info),
45    m_reg_valid (),
46    m_reg_data (),
47    m_read_all_at_once (read_all_at_once)
48{
49    // Resize our vector of bools to contain one bool for every register.
50    // We will use these boolean values to know when a register value
51    // is valid in m_reg_data.
52    m_reg_valid.resize (reg_info.GetNumRegisters());
53
54    // Make a heap based buffer that is big enough to store all registers
55    DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
56    m_reg_data.SetData (reg_data_sp);
57
58}
59
60//----------------------------------------------------------------------
61// Destructor
62//----------------------------------------------------------------------
63GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
64{
65}
66
67void
68GDBRemoteRegisterContext::InvalidateAllRegisters ()
69{
70    SetAllRegisterValid (false);
71}
72
73void
74GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
75{
76    std::vector<bool>::iterator pos, end = m_reg_valid.end();
77    for (pos = m_reg_valid.begin(); pos != end; ++pos)
78        *pos = b;
79}
80
81size_t
82GDBRemoteRegisterContext::GetRegisterCount ()
83{
84    return m_reg_info.GetNumRegisters ();
85}
86
87const RegisterInfo *
88GDBRemoteRegisterContext::GetRegisterInfoAtIndex (uint32_t reg)
89{
90    return m_reg_info.GetRegisterInfoAtIndex (reg);
91}
92
93size_t
94GDBRemoteRegisterContext::GetRegisterSetCount ()
95{
96    return m_reg_info.GetNumRegisterSets ();
97}
98
99
100
101const RegisterSet *
102GDBRemoteRegisterContext::GetRegisterSet (uint32_t reg_set)
103{
104    return m_reg_info.GetRegisterSet (reg_set);
105}
106
107
108
109bool
110GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
111{
112    // Read the register
113    if (ReadRegisterBytes (reg_info, m_reg_data))
114    {
115        const bool partial_data_ok = false;
116        Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
117        return error.Success();
118    }
119    return false;
120}
121
122bool
123GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
124{
125    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
126    if (reg_info == NULL)
127        return false;
128
129    // Invalidate if needed
130    InvalidateIfNeeded(false);
131
132    const uint32_t reg_byte_size = reg_info->byte_size;
133    const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
134    bool success = bytes_copied == reg_byte_size;
135    if (success)
136    {
137        m_reg_valid[reg] = true;
138    }
139    else if (bytes_copied > 0)
140    {
141        // Only set register is valid to false if we copied some bytes, else
142        // leave it as it was.
143        m_reg_valid[reg] = false;
144    }
145    return success;
146}
147
148// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
149bool
150GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
151                                                GDBRemoteCommunicationClient &gdb_comm)
152{
153    char packet[64];
154    StringExtractorGDBRemote response;
155    int packet_len = 0;
156    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
157    if (gdb_comm.GetThreadSuffixSupported())
158        packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4llx;", reg, m_thread.GetID());
159    else
160        packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
161    assert (packet_len < (sizeof(packet) - 1));
162    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
163        return PrivateSetRegisterValue (reg, response);
164
165    return false;
166}
167bool
168GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
169{
170    ExecutionContext exe_ctx (CalculateThread());
171
172    Process *process = exe_ctx.GetProcessPtr();
173    Thread *thread = exe_ctx.GetThreadPtr();
174    if (process == NULL || thread == NULL)
175        return false;
176
177    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
178
179    InvalidateIfNeeded(false);
180
181    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
182
183    if (!m_reg_valid[reg])
184    {
185        Mutex::Locker locker;
186        if (gdb_comm.GetSequenceMutex (locker))
187        {
188            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
189            ProcessSP process_sp (m_thread.GetProcess());
190            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
191            {
192                char packet[64];
193                StringExtractorGDBRemote response;
194                int packet_len = 0;
195                if (m_read_all_at_once)
196                {
197                    // Get all registers in one packet
198                    if (thread_suffix_supported)
199                        packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx;", m_thread.GetID());
200                    else
201                        packet_len = ::snprintf (packet, sizeof(packet), "g");
202                    assert (packet_len < (sizeof(packet) - 1));
203                    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
204                    {
205                        if (response.IsNormalResponse())
206                            if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
207                                SetAllRegisterValid (true);
208                    }
209                }
210                else if (!reg_info->value_regs)
211                {
212                    // Get each register individually
213                    GetPrimordialRegister(reg_info, gdb_comm);
214                }
215                else
216                {
217                    // Process this composite register request by delegating to the constituent
218                    // primordial registers.
219
220                    // Index of the primordial register.
221                    uint32_t prim_reg_idx;
222                    bool success = true;
223                    for (uint32_t idx = 0;
224                         (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
225                         ++idx)
226                    {
227                        // We have a valid primordial regsiter as our constituent.
228                        // Grab the corresponding register info.
229                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
230                        if (!GetPrimordialRegister(prim_reg_info, gdb_comm))
231                        {
232                            success = false;
233                            // Some failure occurred.  Let's break out of the for loop.
234                            break;
235                        }
236                    }
237                    if (success)
238                    {
239                        // If we reach this point, all primordial register requests have succeeded.
240                        // Validate this composite register.
241                        m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = true;
242                    }
243                }
244            }
245        }
246        else
247        {
248            LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
249#if LLDB_CONFIGURATION_DEBUG
250            StreamString strm;
251            gdb_comm.DumpHistory(strm);
252            Host::SetCrashDescription (strm.GetData());
253            assert (!"Didn't get sequence mutex for read register.");
254#else
255            if (log)
256            {
257                if (log->GetVerbose())
258                {
259                    StreamString strm;
260                    gdb_comm.DumpHistory(strm);
261                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData());
262                }
263                else
264                {
265                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name);
266                }
267            }
268#endif
269        }
270
271        // Make sure we got a valid register value after reading it
272        if (!m_reg_valid[reg])
273            return false;
274    }
275
276    if (&data != &m_reg_data)
277    {
278        // If we aren't extracting into our own buffer (which
279        // only happens when this function is called from
280        // ReadRegisterValue(uint32_t, Scalar&)) then
281        // we transfer bytes from our buffer into the data
282        // buffer that was passed in
283        data.SetByteOrder (m_reg_data.GetByteOrder());
284        data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
285    }
286    return true;
287}
288
289
290bool
291GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
292                                         const RegisterValue &value)
293{
294    DataExtractor data;
295    if (value.GetData (data))
296        return WriteRegisterBytes (reg_info, data, 0);
297    return false;
298}
299
300// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
301bool
302GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
303                                                GDBRemoteCommunicationClient &gdb_comm)
304{
305    StreamString packet;
306    StringExtractorGDBRemote response;
307    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
308    packet.Printf ("P%x=", reg);
309    packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
310                              reg_info->byte_size,
311                              lldb::endian::InlHostByteOrder(),
312                              lldb::endian::InlHostByteOrder());
313
314    if (gdb_comm.GetThreadSuffixSupported())
315        packet.Printf (";thread:%4.4llx;", m_thread.GetID());
316
317    // Invalidate just this register
318    m_reg_valid[reg] = false;
319    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
320                                              packet.GetString().size(),
321                                              response,
322                                              false))
323    {
324        if (response.IsOKResponse())
325            return true;
326    }
327    return false;
328}
329bool
330GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
331{
332    ExecutionContext exe_ctx (CalculateThread());
333
334    Process *process = exe_ctx.GetProcessPtr();
335    Thread *thread = exe_ctx.GetThreadPtr();
336    if (process == NULL || thread == NULL)
337        return false;
338
339    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
340// FIXME: This check isn't right because IsRunning checks the Public state, but this
341// is work you need to do - for instance in ShouldStop & friends - before the public
342// state has been changed.
343//    if (gdb_comm.IsRunning())
344//        return false;
345
346    // Grab a pointer to where we are going to put this register
347    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
348
349    if (dst == NULL)
350        return false;
351
352
353    if (data.CopyByteOrderedData (data_offset,                  // src offset
354                                  reg_info->byte_size,          // src length
355                                  dst,                          // dst
356                                  reg_info->byte_size,          // dst length
357                                  m_reg_data.GetByteOrder()))   // dst byte order
358    {
359        Mutex::Locker locker;
360        if (gdb_comm.GetSequenceMutex (locker))
361        {
362            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
363            ProcessSP process_sp (m_thread.GetProcess());
364            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
365            {
366                StreamString packet;
367                StringExtractorGDBRemote response;
368                if (m_read_all_at_once)
369                {
370                    // Set all registers in one packet
371                    packet.PutChar ('G');
372                    packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
373                                              m_reg_data.GetByteSize(),
374                                              lldb::endian::InlHostByteOrder(),
375                                              lldb::endian::InlHostByteOrder());
376
377                    if (thread_suffix_supported)
378                        packet.Printf (";thread:%4.4llx;", m_thread.GetID());
379
380                    // Invalidate all register values
381                    InvalidateIfNeeded (true);
382
383                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
384                                                              packet.GetString().size(),
385                                                              response,
386                                                              false))
387                    {
388                        SetAllRegisterValid (false);
389                        if (response.IsOKResponse())
390                        {
391                            return true;
392                        }
393                    }
394                }
395                else if (!reg_info->value_regs)
396                {
397                    // Set each register individually
398                    return SetPrimordialRegister(reg_info, gdb_comm);
399                }
400                else
401                {
402                    // Process this composite register request by delegating to the constituent
403                    // primordial registers.
404
405                    // Invalidate this composite register first.
406                    m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = false;
407
408                    // Index of the primordial register.
409                    uint32_t prim_reg_idx;
410                    // For loop index.
411                    uint32_t idx;
412
413                    // Invalidate the invalidate_regs, if present.
414                    if (reg_info->invalidate_regs)
415                    {
416                        for (idx = 0;
417                             (prim_reg_idx = reg_info->invalidate_regs[idx]) != LLDB_INVALID_REGNUM;
418                             ++idx)
419                        {
420                            // Grab the invalidate register info.
421                            const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
422                            m_reg_valid[prim_reg_info->kinds[eRegisterKindLLDB]] = false;
423                        }
424                    }
425
426                    bool success = true;
427                    for (idx = 0;
428                         (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
429                         ++idx)
430                    {
431                        // We have a valid primordial regsiter as our constituent.
432                        // Grab the corresponding register info.
433                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
434                        if (!SetPrimordialRegister(prim_reg_info, gdb_comm))
435                        {
436                            success = false;
437                            // Some failure occurred.  Let's break out of the for loop.
438                            break;
439                        }
440                    }
441                    return success;
442                }
443            }
444        }
445        else
446        {
447            LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
448#if LLDB_CONFIGURATION_DEBUG
449            StreamString strm;
450            gdb_comm.DumpHistory(strm);
451            Host::SetCrashDescription (strm.GetData());
452            assert (!"Didn't get sequence mutex for write register.");
453#else
454            if (log)
455            {
456                if (log->GetVerbose())
457                {
458                    StreamString strm;
459                    gdb_comm.DumpHistory(strm);
460                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
461                }
462                else
463                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
464            }
465#endif
466        }
467    }
468    return false;
469}
470
471
472bool
473GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
474{
475    ExecutionContext exe_ctx (CalculateThread());
476
477    Process *process = exe_ctx.GetProcessPtr();
478    Thread *thread = exe_ctx.GetThreadPtr();
479    if (process == NULL || thread == NULL)
480        return false;
481
482    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
483
484    StringExtractorGDBRemote response;
485
486    Mutex::Locker locker;
487    if (gdb_comm.GetSequenceMutex (locker))
488    {
489        char packet[32];
490        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
491        ProcessSP process_sp (m_thread.GetProcess());
492        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
493        {
494            int packet_len = 0;
495            if (thread_suffix_supported)
496                packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4llx", m_thread.GetID());
497            else
498                packet_len = ::snprintf (packet, sizeof(packet), "g");
499            assert (packet_len < (sizeof(packet) - 1));
500
501            if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
502            {
503                if (response.IsErrorResponse())
504                    return false;
505
506                std::string &response_str = response.GetStringRef();
507                if (isxdigit(response_str[0]))
508                {
509                    response_str.insert(0, 1, 'G');
510                    if (thread_suffix_supported)
511                    {
512                        char thread_id_cstr[64];
513                        ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4llx;", m_thread.GetID());
514                        response_str.append (thread_id_cstr);
515                    }
516                    data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
517                    return true;
518                }
519            }
520        }
521    }
522    else
523    {
524        LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
525#if LLDB_CONFIGURATION_DEBUG
526        StreamString strm;
527        gdb_comm.DumpHistory(strm);
528        Host::SetCrashDescription (strm.GetData());
529        assert (!"Didn't get sequence mutex for read all registers.");
530#else
531        if (log)
532        {
533            if (log->GetVerbose())
534            {
535                StreamString strm;
536                gdb_comm.DumpHistory(strm);
537                log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
538            }
539            else
540                log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
541        }
542#endif
543    }
544
545    data_sp.reset();
546    return false;
547}
548
549bool
550GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
551{
552    if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
553        return false;
554
555    ExecutionContext exe_ctx (CalculateThread());
556
557    Process *process = exe_ctx.GetProcessPtr();
558    Thread *thread = exe_ctx.GetThreadPtr();
559    if (process == NULL || thread == NULL)
560        return false;
561
562    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
563
564    StringExtractorGDBRemote response;
565    Mutex::Locker locker;
566    if (gdb_comm.GetSequenceMutex (locker))
567    {
568        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
569        ProcessSP process_sp (m_thread.GetProcess());
570        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
571        {
572            // The data_sp contains the entire G response packet including the
573            // G, and if the thread suffix is supported, it has the thread suffix
574            // as well.
575            const char *G_packet = (const char *)data_sp->GetBytes();
576            size_t G_packet_len = data_sp->GetByteSize();
577            if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
578                                                       G_packet_len,
579                                                       response,
580                                                       false))
581            {
582                if (response.IsOKResponse())
583                    return true;
584                else if (response.IsErrorResponse())
585                {
586                    uint32_t num_restored = 0;
587                    // We need to manually go through all of the registers and
588                    // restore them manually
589
590                    response.GetStringRef().assign (G_packet, G_packet_len);
591                    response.SetFilePos(1); // Skip the leading 'G'
592                    DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
593                    DataExtractor restore_data (buffer.GetBytes(),
594                                                buffer.GetByteSize(),
595                                                m_reg_data.GetByteOrder(),
596                                                m_reg_data.GetAddressByteSize());
597
598                    const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
599                                                                           restore_data.GetByteSize(),
600                                                                           '\xcc');
601
602                    if (bytes_extracted < restore_data.GetByteSize())
603                        restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
604
605                    //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
606                    const RegisterInfo *reg_info;
607                    // We have to march the offset of each register along in the
608                    // buffer to make sure we get the right offset.
609                    uint32_t reg_byte_offset = 0;
610                    for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
611                    {
612                        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
613
614                        // Skip composite registers.
615                        if (reg_info->value_regs)
616                            continue;
617
618                        // Only write down the registers that need to be written
619                        // if we are going to be doing registers individually.
620                        bool write_reg = true;
621                        const uint32_t reg_byte_size = reg_info->byte_size;
622
623                        const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
624                        if (restore_src)
625                        {
626                            if (m_reg_valid[reg])
627                            {
628                                const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
629                                if (current_src)
630                                    write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
631                            }
632
633                            if (write_reg)
634                            {
635                                StreamString packet;
636                                packet.Printf ("P%x=", reg);
637                                packet.PutBytesAsRawHex8 (restore_src,
638                                                          reg_byte_size,
639                                                          lldb::endian::InlHostByteOrder(),
640                                                          lldb::endian::InlHostByteOrder());
641
642                                if (thread_suffix_supported)
643                                    packet.Printf (";thread:%4.4llx;", m_thread.GetID());
644
645                                m_reg_valid[reg] = false;
646                                if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
647                                                                          packet.GetString().size(),
648                                                                          response,
649                                                                          false))
650                                {
651                                    if (response.IsOKResponse())
652                                        ++num_restored;
653                                }
654                            }
655                        }
656                    }
657                    return num_restored > 0;
658                }
659            }
660        }
661    }
662    else
663    {
664        LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
665#if LLDB_CONFIGURATION_DEBUG
666        StreamString strm;
667        gdb_comm.DumpHistory(strm);
668        Host::SetCrashDescription (strm.GetData());
669        assert (!"Didn't get sequence mutex for write all registers.");
670#else
671        if (log)
672        {
673            if (log->GetVerbose())
674            {
675                StreamString strm;
676                gdb_comm.DumpHistory(strm);
677                log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
678            }
679            else
680                log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
681        }
682#endif
683    }
684    return false;
685}
686
687
688uint32_t
689GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
690{
691    return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
692}
693
694void
695GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
696{
697    // For Advanced SIMD and VFP register mapping.
698    static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
699    static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
700    static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
701    static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
702    static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
703    static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
704    static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
705    static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
706    static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
707    static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
708    static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
709    static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
710    static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
711    static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
712    static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
713    static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
714    static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
715    static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
716    static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
717    static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
718    static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
719    static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
720    static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
721    static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
722    static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
723    static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
724    static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
725    static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
726    static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
727    static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
728    static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
729    static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
730
731    // This is our array of composite registers, with each element coming from the above register mappings.
732    static uint32_t *g_composites[] = {
733        g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
734        g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
735        g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
736        g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
737    };
738
739    static RegisterInfo g_register_infos[] = {
740//   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
741//   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
742    { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
743    { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
744    { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
745    { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
746    { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
747    { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
748    { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
749    { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
750    { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
751    { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
752    { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
753    { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
754    { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
755    { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
756    { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
757    { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
758    { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
759    { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
760    { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
761    { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
762    { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
763    { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
764    { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
765    { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
766    { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
767    { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
768    { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
769    { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
770    { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
771    { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
772    { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
773    { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
774    { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
775    { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
776    { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
777    { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
778    { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
779    { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
780    { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
781    { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
782    { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
783    { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
784    { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
785    { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
786    { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
787    { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
788    { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
789    { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
790    { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
791    { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
792    { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
793    { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
794    { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
795    { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
796    { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
797    { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
798    { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
799    { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
800    { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
801    { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
802    { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
803    { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
804    { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
805    { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
806    { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
807    { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
808    { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
809    { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
810    { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
811    { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
812    { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
813    { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
814    { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
815    { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
816    { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
817    { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
818    { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
819    { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
820    { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
821    { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
822    { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
823    { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
824    { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
825    { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
826    { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
827    { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
828    { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
829    { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
830    { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
831    { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
832    { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
833    { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
834    { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
835    { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
836    { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
837    { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
838    { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
839    { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
840    { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
841    { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
842    { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
843    { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
844    { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
845    { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
846    { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
847    { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
848    { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
849    };
850
851    static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
852    static ConstString gpr_reg_set ("General Purpose Registers");
853    static ConstString sfp_reg_set ("Software Floating Point Registers");
854    static ConstString vfp_reg_set ("Floating Point Registers");
855    uint32_t i;
856    if (from_scratch)
857    {
858        // Calculate the offsets of the registers
859        // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
860        // "primordial" registers is important.  This enables us to calculate the offset of the composite
861        // register by using the offset of its first primordial register.  For example, to calculate the
862        // offset of q0, use s0's offset.
863        if (g_register_infos[2].byte_offset == 0)
864        {
865            uint32_t byte_offset = 0;
866            for (i=0; i<num_registers; ++i)
867            {
868                // For primordial registers, increment the byte_offset by the byte_size to arrive at the
869                // byte_offset for the next register.  Otherwise, we have a composite register whose
870                // offset can be calculated by consulting the offset of its first primordial register.
871                if (!g_register_infos[i].value_regs)
872                {
873                    g_register_infos[i].byte_offset = byte_offset;
874                    byte_offset += g_register_infos[i].byte_size;
875                }
876                else
877                {
878                    const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
879                    g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
880                }
881            }
882        }
883        for (i=0; i<num_registers; ++i)
884        {
885            ConstString name;
886            ConstString alt_name;
887            if (g_register_infos[i].name && g_register_infos[i].name[0])
888                name.SetCString(g_register_infos[i].name);
889            if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
890                alt_name.SetCString(g_register_infos[i].alt_name);
891
892            if (i <= 15 || i == 25)
893                AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
894            else if (i <= 24)
895                AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
896            else
897                AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
898        }
899    }
900    else
901    {
902        // Add composite registers to our primordial registers, then.
903        const uint32_t num_composites = llvm::array_lengthof(g_composites);
904        const uint32_t num_primordials = GetNumRegisters();
905        RegisterInfo *g_comp_register_infos = g_register_infos + (num_registers - num_composites);
906        for (i=0; i<num_composites; ++i)
907        {
908            ConstString name;
909            ConstString alt_name;
910            const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
911            const char *reg_name = g_register_infos[first_primordial_reg].name;
912            if (reg_name && reg_name[0])
913            {
914                for (uint32_t j = 0; j < num_primordials; ++j)
915                {
916                    const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
917                    // Find a matching primordial register info entry.
918                    if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
919                    {
920                        // The name matches the existing primordial entry.
921                        // Find and assign the offset, and then add this composite register entry.
922                        g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
923                        name.SetCString(g_comp_register_infos[i].name);
924                        AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
925                    }
926                }
927            }
928        }
929    }
930}
931
932void
933GDBRemoteDynamicRegisterInfo::Addx86_64ConvenienceRegisters()
934{
935    // For eax, ebx, ecx, edx, esi, edi, ebp, esp register mapping.
936    static const char* g_mapped_names[] = {
937        "rax",
938        "rbx",
939        "rcx",
940        "rdx",
941        "rdi",
942        "rsi",
943        "rbp",
944        "rsp"
945    };
946
947    // These value regs are to be populated with the corresponding primordial register index.
948    // For example,
949    static uint32_t g_eax_regs[] =  { 0, LLDB_INVALID_REGNUM }; // 0 is to be replaced with rax's index.
950    static uint32_t g_ebx_regs[] =  { 0, LLDB_INVALID_REGNUM };
951    static uint32_t g_ecx_regs[] =  { 0, LLDB_INVALID_REGNUM };
952    static uint32_t g_edx_regs[] =  { 0, LLDB_INVALID_REGNUM };
953    static uint32_t g_edi_regs[] =  { 0, LLDB_INVALID_REGNUM };
954    static uint32_t g_esi_regs[] =  { 0, LLDB_INVALID_REGNUM };
955    static uint32_t g_ebp_regs[] =  { 0, LLDB_INVALID_REGNUM };
956    static uint32_t g_esp_regs[] =  { 0, LLDB_INVALID_REGNUM };
957
958    static RegisterInfo g_conv_register_infos[] =
959    {
960//    NAME      ALT      SZ OFF ENCODING         FORMAT                COMPILER              DWARF                 GENERIC                      GDB                   LLDB NATIVE            VALUE REGS    INVALIDATE REGS
961//    ======    =======  == === =============    ============          ===================== ===================== ============================ ====================  ====================== ==========    ===============
962    { "eax",    NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_eax_regs,              NULL},
963    { "ebx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebx_regs,              NULL},
964    { "ecx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ecx_regs,              NULL},
965    { "edx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edx_regs,              NULL},
966    { "edi"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edi_regs,              NULL},
967    { "esi"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esi_regs,              NULL},
968    { "ebp"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebp_regs,              NULL},
969    { "esp"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esp_regs,              NULL}
970    };
971
972    static const uint32_t num_conv_regs = llvm::array_lengthof(g_mapped_names);
973    static ConstString gpr_reg_set ("General Purpose Registers");
974
975    // Add convenience registers to our primordial registers.
976    const uint32_t num_primordials = GetNumRegisters();
977    uint32_t reg_kind = num_primordials;
978    for (uint32_t i=0; i<num_conv_regs; ++i)
979    {
980        ConstString name;
981        ConstString alt_name;
982        const char *prim_reg_name = g_mapped_names[i];
983        if (prim_reg_name && prim_reg_name[0])
984        {
985            for (uint32_t j = 0; j < num_primordials; ++j)
986            {
987                const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
988                // Find a matching primordial register info entry.
989                if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, prim_reg_name) == 0)
990                {
991                    // The name matches the existing primordial entry.
992                    // Find and assign the offset, and then add this composite register entry.
993                    g_conv_register_infos[i].byte_offset = reg_info->byte_offset;
994                    // Update the value_regs and the kinds fields in order to delegate to the primordial register.
995                    g_conv_register_infos[i].value_regs[0] = j;
996                    g_conv_register_infos[i].kinds[eRegisterKindLLDB] = ++reg_kind;
997                    name.SetCString(g_conv_register_infos[i].name);
998                    AddRegister(g_conv_register_infos[i], name, alt_name, gpr_reg_set);
999                }
1000            }
1001        }
1002    }
1003}
1004
1005