1//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11// C Includes
12// C++ Includes
13#include <list>
14
15#include "lldb/Core/Log.h"
16#include "lldb/Core/Section.h"
17#include "lldb/Core/ArchSpec.h"
18#include "lldb/Core/Module.h"
19#include "lldb/Core/Section.h"
20#include "lldb/Core/Timer.h"
21#include "lldb/Host/Host.h"
22#include "lldb/Symbol/DWARFCallFrameInfo.h"
23#include "lldb/Symbol/ObjectFile.h"
24#include "lldb/Symbol/UnwindPlan.h"
25#include "lldb/Target/RegisterContext.h"
26#include "lldb/Target/Thread.h"
27
28using namespace lldb;
29using namespace lldb_private;
30
31DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
32    m_objfile (objfile),
33    m_section_sp (section_sp),
34    m_reg_kind (reg_kind),  // The flavor of registers that the CFI data uses (enum RegisterKind)
35    m_flags (),
36    m_cie_map (),
37    m_cfi_data (),
38    m_cfi_data_initialized (false),
39    m_fde_index (),
40    m_fde_index_initialized (false),
41    m_is_eh_frame (is_eh_frame)
42{
43}
44
45DWARFCallFrameInfo::~DWARFCallFrameInfo()
46{
47}
48
49
50bool
51DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
52{
53    FDEEntryMap::Entry fde_entry;
54
55    // Make sure that the Address we're searching for is the same object file
56    // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
57    ModuleSP module_sp = addr.GetModule();
58    if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
59        return false;
60
61    if (GetFDEEntryByFileAddress (addr.GetFileAddress(), fde_entry) == false)
62        return false;
63    return FDEToUnwindPlan (fde_entry.data, addr, unwind_plan);
64}
65
66bool
67DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
68{
69
70    // Make sure that the Address we're searching for is the same object file
71    // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
72    ModuleSP module_sp = addr.GetModule();
73    if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
74        return false;
75
76    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
77        return false;
78    GetFDEIndex();
79    FDEEntryMap::Entry *fde_entry = m_fde_index.FindEntryThatContains (addr.GetFileAddress());
80    if (!fde_entry)
81        return false;
82
83    range = AddressRange(fde_entry->base, fde_entry->size, m_objfile.GetSectionList());
84    return true;
85}
86
87bool
88DWARFCallFrameInfo::GetFDEEntryByFileAddress (addr_t file_addr, FDEEntryMap::Entry &fde_entry)
89{
90    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
91        return false;
92
93    GetFDEIndex();
94
95    if (m_fde_index.IsEmpty())
96        return false;
97
98    FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains (file_addr);
99
100    if (fde == NULL)
101        return false;
102
103    fde_entry = *fde;
104    return true;
105}
106
107void
108DWARFCallFrameInfo::GetFunctionAddressAndSizeVector (FunctionAddressAndSizeVector &function_info)
109{
110    GetFDEIndex();
111    const size_t count = m_fde_index.GetSize();
112    function_info.Clear();
113    if (count > 0)
114        function_info.Reserve(count);
115    for (size_t i = 0; i < count; ++i)
116    {
117        const FDEEntryMap::Entry *func_offset_data_entry = m_fde_index.GetEntryAtIndex (i);
118        if (func_offset_data_entry)
119        {
120            FunctionAddressAndSizeVector::Entry function_offset_entry (func_offset_data_entry->base, func_offset_data_entry->size);
121            function_info.Append (function_offset_entry);
122        }
123    }
124}
125
126const DWARFCallFrameInfo::CIE*
127DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
128{
129    cie_map_t::iterator pos = m_cie_map.find(cie_offset);
130
131    if (pos != m_cie_map.end())
132    {
133        // Parse and cache the CIE
134        if (pos->second.get() == NULL)
135            pos->second = ParseCIE (cie_offset);
136
137        return pos->second.get();
138    }
139    return NULL;
140}
141
142DWARFCallFrameInfo::CIESP
143DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
144{
145    CIESP cie_sp(new CIE(cie_offset));
146    lldb::offset_t offset = cie_offset;
147    if (m_cfi_data_initialized == false)
148        GetCFIData();
149    const uint32_t length = m_cfi_data.GetU32(&offset);
150    const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
151    const dw_offset_t end_offset = cie_offset + length + 4;
152    if (length > 0 && ((!m_is_eh_frame && cie_id == UINT32_MAX) || (m_is_eh_frame && cie_id == 0ul)))
153    {
154        size_t i;
155        //    cie.offset = cie_offset;
156        //    cie.length = length;
157        //    cie.cieID = cieID;
158        cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
159        cie_sp->version = m_cfi_data.GetU8(&offset);
160
161        for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
162        {
163            cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
164            if (cie_sp->augmentation[i] == '\0')
165            {
166                // Zero out remaining bytes in augmentation string
167                for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
168                    cie_sp->augmentation[j] = '\0';
169
170                break;
171            }
172        }
173
174        if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
175        {
176            Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
177            return cie_sp;
178        }
179        cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
180        cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
181        cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
182
183        if (cie_sp->augmentation[0])
184        {
185            // Get the length of the eh_frame augmentation data
186            // which starts with a ULEB128 length in bytes
187            const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
188            const size_t aug_data_end = offset + aug_data_len;
189            const size_t aug_str_len = strlen(cie_sp->augmentation);
190            // A 'z' may be present as the first character of the string.
191            // If present, the Augmentation Data field shall be present.
192            // The contents of the Augmentation Data shall be intepreted
193            // according to other characters in the Augmentation String.
194            if (cie_sp->augmentation[0] == 'z')
195            {
196                // Extract the Augmentation Data
197                size_t aug_str_idx = 0;
198                for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
199                {
200                    char aug = cie_sp->augmentation[aug_str_idx];
201                    switch (aug)
202                    {
203                        case 'L':
204                            // Indicates the presence of one argument in the
205                            // Augmentation Data of the CIE, and a corresponding
206                            // argument in the Augmentation Data of the FDE. The
207                            // argument in the Augmentation Data of the CIE is
208                            // 1-byte and represents the pointer encoding used
209                            // for the argument in the Augmentation Data of the
210                            // FDE, which is the address of a language-specific
211                            // data area (LSDA). The size of the LSDA pointer is
212                            // specified by the pointer encoding used.
213                            m_cfi_data.GetU8(&offset);
214                            break;
215
216                        case 'P':
217                            // Indicates the presence of two arguments in the
218                            // Augmentation Data of the cie_sp-> The first argument
219                            // is 1-byte and represents the pointer encoding
220                            // used for the second argument, which is the
221                            // address of a personality routine handler. The
222                            // size of the personality routine pointer is
223                            // specified by the pointer encoding used.
224                        {
225                            uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
226                            m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
227                        }
228                            break;
229
230                        case 'R':
231                            // A 'R' may be present at any position after the
232                            // first character of the string. The Augmentation
233                            // Data shall include a 1 byte argument that
234                            // represents the pointer encoding for the address
235                            // pointers used in the FDE.
236                            // Example: 0x1B == DW_EH_PE_pcrel | DW_EH_PE_sdata4
237                            cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
238                            break;
239                    }
240                }
241            }
242            else if (strcmp(cie_sp->augmentation, "eh") == 0)
243            {
244                // If the Augmentation string has the value "eh", then
245                // the EH Data field shall be present
246            }
247
248            // Set the offset to be the end of the augmentation data just in case
249            // we didn't understand any of the data.
250            offset = (uint32_t)aug_data_end;
251        }
252
253        if (end_offset > offset)
254        {
255            cie_sp->inst_offset = offset;
256            cie_sp->inst_length = end_offset - offset;
257        }
258        while (offset < end_offset)
259        {
260            uint8_t inst = m_cfi_data.GetU8(&offset);
261            uint8_t primary_opcode  = inst & 0xC0;
262            uint8_t extended_opcode = inst & 0x3F;
263
264            if (extended_opcode == DW_CFA_def_cfa)
265            {
266                // Takes two unsigned LEB128 operands representing a register
267                // number and a (non-factored) offset. The required action
268                // is to define the current CFA rule to use the provided
269                // register and offset.
270                uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
271                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
272                cie_sp->initial_row.SetCFARegister (reg_num);
273                cie_sp->initial_row.SetCFAOffset (op_offset);
274                continue;
275            }
276            if (primary_opcode == DW_CFA_offset)
277            {
278                // 0x80 - high 2 bits are 0x2, lower 6 bits are register.
279                // Takes two arguments: an unsigned LEB128 constant representing a
280                // factored offset and a register number. The required action is to
281                // change the rule for the register indicated by the register number
282                // to be an offset(N) rule with a value of
283                // (N = factored offset * data_align).
284                uint32_t reg_num = extended_opcode;
285                int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
286                UnwindPlan::Row::RegisterLocation reg_location;
287                reg_location.SetAtCFAPlusOffset(op_offset);
288                cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
289                continue;
290            }
291            if (extended_opcode == DW_CFA_nop)
292            {
293                continue;
294            }
295            break;  // Stop if we hit an unrecognized opcode
296        }
297    }
298
299    return cie_sp;
300}
301
302void
303DWARFCallFrameInfo::GetCFIData()
304{
305    if (m_cfi_data_initialized == false)
306    {
307        Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
308        if (log)
309            m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
310        m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
311        m_cfi_data_initialized = true;
312    }
313}
314// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
315// of the functions and a pointer back to the function's FDE for later expansion.
316// Internalize CIEs as we come across them.
317
318void
319DWARFCallFrameInfo::GetFDEIndex ()
320{
321    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
322        return;
323
324    if (m_fde_index_initialized)
325        return;
326
327    Mutex::Locker locker(m_fde_index_mutex);
328
329    if (m_fde_index_initialized) // if two threads hit the locker
330        return;
331
332    Timer scoped_timer (__PRETTY_FUNCTION__, "%s - %s", __PRETTY_FUNCTION__, m_objfile.GetFileSpec().GetFilename().AsCString(""));
333
334    lldb::offset_t offset = 0;
335    if (m_cfi_data_initialized == false)
336        GetCFIData();
337    while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
338    {
339        const dw_offset_t current_entry = offset;
340        uint32_t len = m_cfi_data.GetU32 (&offset);
341        dw_offset_t next_entry = current_entry + len + 4;
342        dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
343
344        if (cie_id == 0 || cie_id == UINT32_MAX)
345        {
346            m_cie_map[current_entry] = ParseCIE (current_entry);
347            offset = next_entry;
348            continue;
349        }
350
351        const dw_offset_t cie_offset = current_entry + 4 - cie_id;
352        const CIE *cie = GetCIE (cie_offset);
353        if (cie)
354        {
355            const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
356            const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
357            const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
358
359            lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
360            lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
361            FDEEntryMap::Entry fde (addr, length, current_entry);
362            m_fde_index.Append(fde);
363        }
364        else
365        {
366            Host::SystemLog (Host::eSystemLogError,
367                             "error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n",
368                             cie_offset,
369                             cie_id,
370                             current_entry);
371        }
372        offset = next_entry;
373    }
374    m_fde_index.Sort();
375    m_fde_index_initialized = true;
376}
377
378bool
379DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t dwarf_offset, Address startaddr, UnwindPlan& unwind_plan)
380{
381    lldb::offset_t offset = dwarf_offset;
382    lldb::offset_t current_entry = offset;
383
384    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
385        return false;
386
387    if (m_cfi_data_initialized == false)
388        GetCFIData();
389
390    uint32_t length = m_cfi_data.GetU32 (&offset);
391    dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
392
393    assert (cie_offset != 0 && cie_offset != UINT32_MAX);
394
395    // Translate the CIE_id from the eh_frame format, which
396    // is relative to the FDE offset, into a __eh_frame section
397    // offset
398    if (m_is_eh_frame)
399    {
400        unwind_plan.SetSourceName ("eh_frame CFI");
401        cie_offset = current_entry + 4 - cie_offset;
402        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
403    }
404    else
405    {
406        unwind_plan.SetSourceName ("DWARF CFI");
407        // In theory the debug_frame info should be valid at all call sites
408        // ("asynchronous unwind info" as it is sometimes called) but in practice
409        // gcc et al all emit call frame info for the prologue and call sites, but
410        // not for the epilogue or all the other locations during the function reliably.
411        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
412    }
413    unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
414
415    const CIE *cie = GetCIE (cie_offset);
416    assert (cie != NULL);
417
418    const dw_offset_t end_offset = current_entry + length + 4;
419
420    const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
421    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
422    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
423    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
424    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
425    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
426    range.SetByteSize (range_len);
427
428    if (cie->augmentation[0] == 'z')
429    {
430        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
431        offset += aug_data_len;
432    }
433
434    uint32_t reg_num = 0;
435    int32_t op_offset = 0;
436    uint32_t code_align = cie->code_align;
437    int32_t data_align = cie->data_align;
438
439    unwind_plan.SetPlanValidAddressRange (range);
440    UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
441    *cie_initial_row = cie->initial_row;
442    UnwindPlan::RowSP row(cie_initial_row);
443
444    unwind_plan.SetRegisterKind (m_reg_kind);
445    unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
446
447    UnwindPlan::Row::RegisterLocation reg_location;
448    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
449    {
450        uint8_t inst = m_cfi_data.GetU8(&offset);
451        uint8_t primary_opcode  = inst & 0xC0;
452        uint8_t extended_opcode = inst & 0x3F;
453
454        if (primary_opcode)
455        {
456            switch (primary_opcode)
457            {
458                case DW_CFA_advance_loc :   // (Row Creation Instruction)
459                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
460                        // takes a single argument that represents a constant delta. The
461                        // required action is to create a new table row with a location
462                        // value that is computed by taking the current entry's location
463                        // value and adding (delta * code_align). All other
464                        // values in the new row are initially identical to the current row.
465                        unwind_plan.AppendRow(row);
466                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
467                        *newrow = *row.get();
468                        row.reset (newrow);
469                        row->SlideOffset(extended_opcode * code_align);
470                    }
471                    break;
472
473                case DW_CFA_offset      :
474                    {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
475                        // takes two arguments: an unsigned LEB128 constant representing a
476                        // factored offset and a register number. The required action is to
477                        // change the rule for the register indicated by the register number
478                        // to be an offset(N) rule with a value of
479                        // (N = factored offset * data_align).
480                        reg_num = extended_opcode;
481                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
482                        reg_location.SetAtCFAPlusOffset(op_offset);
483                        row->SetRegisterInfo (reg_num, reg_location);
484                    }
485                    break;
486
487                case DW_CFA_restore     :
488                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
489                        // takes a single argument that represents a register number. The
490                        // required action is to change the rule for the indicated register
491                        // to the rule assigned it by the initial_instructions in the CIE.
492                        reg_num = extended_opcode;
493                        // We only keep enough register locations around to
494                        // unwind what is in our thread, and these are organized
495                        // by the register index in that state, so we need to convert our
496                        // GCC register number from the EH frame info, to a register index
497
498                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
499                            row->SetRegisterInfo (reg_num, reg_location);
500                    }
501                    break;
502            }
503        }
504        else
505        {
506            switch (extended_opcode)
507            {
508                case DW_CFA_nop                 : // 0x0
509                    break;
510
511                case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
512                    {
513                        // DW_CFA_set_loc takes a single argument that represents an address.
514                        // The required action is to create a new table row using the
515                        // specified address as the location. All other values in the new row
516                        // are initially identical to the current row. The new location value
517                        // should always be greater than the current one.
518                        unwind_plan.AppendRow(row);
519                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
520                        *newrow = *row.get();
521                        row.reset (newrow);
522                        row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
523                    }
524                    break;
525
526                case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
527                    {
528                        // takes a single uword argument that represents a constant delta.
529                        // This instruction is identical to DW_CFA_advance_loc except for the
530                        // encoding and size of the delta argument.
531                        unwind_plan.AppendRow(row);
532                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
533                        *newrow = *row.get();
534                        row.reset (newrow);
535                        row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
536                    }
537                    break;
538
539                case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
540                    {
541                        // takes a single uword argument that represents a constant delta.
542                        // This instruction is identical to DW_CFA_advance_loc except for the
543                        // encoding and size of the delta argument.
544                        unwind_plan.AppendRow(row);
545                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
546                        *newrow = *row.get();
547                        row.reset (newrow);
548                        row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
549                    }
550                    break;
551
552                case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
553                    {
554                        // takes a single uword argument that represents a constant delta.
555                        // This instruction is identical to DW_CFA_advance_loc except for the
556                        // encoding and size of the delta argument.
557                        unwind_plan.AppendRow(row);
558                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
559                        *newrow = *row.get();
560                        row.reset (newrow);
561                        row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
562                    }
563                    break;
564
565                case DW_CFA_offset_extended     : // 0x5
566                    {
567                        // takes two unsigned LEB128 arguments representing a register number
568                        // and a factored offset. This instruction is identical to DW_CFA_offset
569                        // except for the encoding and size of the register argument.
570                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
571                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
572                        reg_location.SetAtCFAPlusOffset(op_offset);
573                        row->SetRegisterInfo (reg_num, reg_location);
574                    }
575                    break;
576
577                case DW_CFA_restore_extended    : // 0x6
578                    {
579                        // takes a single unsigned LEB128 argument that represents a register
580                        // number. This instruction is identical to DW_CFA_restore except for
581                        // the encoding and size of the register argument.
582                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
583                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
584                            row->SetRegisterInfo (reg_num, reg_location);
585                    }
586                    break;
587
588                case DW_CFA_undefined           : // 0x7
589                    {
590                        // takes a single unsigned LEB128 argument that represents a register
591                        // number. The required action is to set the rule for the specified
592                        // register to undefined.
593                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
594                        reg_location.SetUndefined();
595                        row->SetRegisterInfo (reg_num, reg_location);
596                    }
597                    break;
598
599                case DW_CFA_same_value          : // 0x8
600                    {
601                        // takes a single unsigned LEB128 argument that represents a register
602                        // number. The required action is to set the rule for the specified
603                        // register to same value.
604                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
605                        reg_location.SetSame();
606                        row->SetRegisterInfo (reg_num, reg_location);
607                    }
608                    break;
609
610                case DW_CFA_register            : // 0x9
611                    {
612                        // takes two unsigned LEB128 arguments representing register numbers.
613                        // The required action is to set the rule for the first register to be
614                        // the second register.
615
616                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
617                        uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
618                        reg_location.SetInRegister(other_reg_num);
619                        row->SetRegisterInfo (reg_num, reg_location);
620                    }
621                    break;
622
623                case DW_CFA_remember_state      : // 0xA
624                    {
625                        // These instructions define a stack of information. Encountering the
626                        // DW_CFA_remember_state instruction means to save the rules for every
627                        // register on the current row on the stack. Encountering the
628                        // DW_CFA_restore_state instruction means to pop the set of rules off
629                        // the stack and place them in the current row. (This operation is
630                        // useful for compilers that move epilogue code into the body of a
631                        // function.)
632                        unwind_plan.AppendRow (row);
633                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
634                        *newrow = *row.get();
635                        row.reset (newrow);
636                    }
637                    break;
638
639                case DW_CFA_restore_state       : // 0xB
640                    // These instructions define a stack of information. Encountering the
641                    // DW_CFA_remember_state instruction means to save the rules for every
642                    // register on the current row on the stack. Encountering the
643                    // DW_CFA_restore_state instruction means to pop the set of rules off
644                    // the stack and place them in the current row. (This operation is
645                    // useful for compilers that move epilogue code into the body of a
646                    // function.)
647                    {
648                        row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
649                    }
650                    break;
651
652                case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
653                    {
654                        // Takes two unsigned LEB128 operands representing a register
655                        // number and a (non-factored) offset. The required action
656                        // is to define the current CFA rule to use the provided
657                        // register and offset.
658                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
659                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
660                        row->SetCFARegister (reg_num);
661                        row->SetCFAOffset (op_offset);
662                    }
663                    break;
664
665                case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
666                    {
667                        // takes a single unsigned LEB128 argument representing a register
668                        // number. The required action is to define the current CFA rule to
669                        // use the provided register (but to keep the old offset).
670                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
671                        row->SetCFARegister (reg_num);
672                    }
673                    break;
674
675                case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
676                    {
677                        // Takes a single unsigned LEB128 operand representing a
678                        // (non-factored) offset. The required action is to define
679                        // the current CFA rule to use the provided offset (but
680                        // to keep the old register).
681                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
682                        row->SetCFAOffset (op_offset);
683                    }
684                    break;
685
686                case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
687                    {
688                        size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
689                        offset += (uint32_t)block_len;
690                    }
691                    break;
692
693                case DW_CFA_expression          : // 0x10
694                    {
695                        // Takes two operands: an unsigned LEB128 value representing
696                        // a register number, and a DW_FORM_block value representing a DWARF
697                        // expression. The required action is to change the rule for the
698                        // register indicated by the register number to be an expression(E)
699                        // rule where E is the DWARF expression. That is, the DWARF
700                        // expression computes the address. The value of the CFA is
701                        // pushed on the DWARF evaluation stack prior to execution of
702                        // the DWARF expression.
703                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
704                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
705                        const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
706
707                        reg_location.SetAtDWARFExpression(block_data, block_len);
708                        row->SetRegisterInfo (reg_num, reg_location);
709                    }
710                    break;
711
712                case DW_CFA_offset_extended_sf  : // 0x11
713                    {
714                        // takes two operands: an unsigned LEB128 value representing a
715                        // register number and a signed LEB128 factored offset. This
716                        // instruction is identical to DW_CFA_offset_extended except
717                        //that the second operand is signed and factored.
718                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
719                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
720                        reg_location.SetAtCFAPlusOffset(op_offset);
721                        row->SetRegisterInfo (reg_num, reg_location);
722                    }
723                    break;
724
725                case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
726                    {
727                        // Takes two operands: an unsigned LEB128 value representing
728                        // a register number and a signed LEB128 factored offset.
729                        // This instruction is identical to DW_CFA_def_cfa except
730                        // that the second operand is signed and factored.
731                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
732                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
733                        row->SetCFARegister (reg_num);
734                        row->SetCFAOffset (op_offset);
735                    }
736                    break;
737
738                case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
739                    {
740                        // takes a signed LEB128 operand representing a factored
741                        // offset. This instruction is identical to  DW_CFA_def_cfa_offset
742                        // except that the operand is signed and factored.
743                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
744                        row->SetCFAOffset (op_offset);
745                    }
746                    break;
747
748                case DW_CFA_val_expression      :   // 0x16
749                    {
750                        // takes two operands: an unsigned LEB128 value representing a register
751                        // number, and a DW_FORM_block value representing a DWARF expression.
752                        // The required action is to change the rule for the register indicated
753                        // by the register number to be a val_expression(E) rule where E is the
754                        // DWARF expression. That is, the DWARF expression computes the value of
755                        // the given register. The value of the CFA is pushed on the DWARF
756                        // evaluation stack prior to execution of the DWARF expression.
757                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
758                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
759                        const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
760//#if defined(__i386__) || defined(__x86_64__)
761//                      // The EH frame info for EIP and RIP contains code that looks for traps to
762//                      // be a specific type and increments the PC.
763//                      // For i386:
764//                      // DW_CFA_val_expression where:
765//                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
766//                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
767//                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
768//                      //       DW_OP_and, DW_OP_plus
769//                      // This basically does a:
770//                      // eip = ucontenxt.mcontext32->gpr.eip;
771//                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
772//                      //   eip++;
773//                      //
774//                      // For x86_64:
775//                      // DW_CFA_val_expression where:
776//                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
777//                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
778//                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
779//                      // This basically does a:
780//                      // rip = ucontenxt.mcontext64->gpr.rip;
781//                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
782//                      //   rip++;
783//                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
784//                      // is expected to point at least past the instruction that causes the fault/trap. So we
785//                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
786//                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
787//                      {
788//                          if (thread->Is64Bit())
789//                          {
790//                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
791//                                  block_len = 8;
792//                          }
793//                          else
794//                          {
795//                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
796//                                  block_len = 7;
797//                          }
798//                      }
799//#endif
800                        reg_location.SetIsDWARFExpression(block_data, block_len);
801                        row->SetRegisterInfo (reg_num, reg_location);
802                    }
803                    break;
804
805                case DW_CFA_val_offset          :   // 0x14
806                case DW_CFA_val_offset_sf       :   // 0x15
807                default:
808                    break;
809            }
810        }
811    }
812    unwind_plan.AppendRow(row);
813
814    return true;
815}
816