1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
2<html xmlns="http://www.w3.org/1999/xhtml">
3  <head>
4    <meta http-equiv="Content-Type" content="text/html;
5      charset=ISO-8859-1">
6    <link href="style.css" rel="stylesheet" type="text/css">
7    <title>LLDB Data Formatters</title>
8  </head>
9  <body>
10    <div class="www_title"> The <strong>LLDB</strong> Debugger </div>
11    <div id="container">
12      <div id="content">
13        <!--#include virtual="sidebar.incl"-->
14        <div id="middle">
15          <div class="post">
16            <h1 class="postheader">Variable display</h1>
17            <div class="postcontent">
18            
19              <p>LLDB has a data formatters subsystem that allows users to define custom display options for their variables.</p>
20            
21            <p>Usually, when you type <code>frame variable</code> or
22                run some <code>expression</code> LLDB will
23                automatically choose the way to display your results on
24                a per-type basis, as in the following example:</p>
25            
26            <p> <code> <b>(lldb)</b> frame variable<br>
27                  (uint8_t) x = 'a'<br>
28                  (intptr_t) y = 124752287<br>
29                </code> </p>
30            
31            <p>However, in certain cases, you may want to associate a
32                different style to the display for certain datatypes.
33                To do so, you need to give hints to the debugger as to
34                how variables should be displayed.<br>
35                The LLDB <b>type</b> command allows you to do just that.<br>
36              </p>
37            
38            <p>Using it you can change your visualization to look like this: </p>
39            
40            <p> <code> <b>(lldb)</b> frame variable<br>
41                (uint8_t) x = chr='a' dec=65 hex=0x41<br>
42                (intptr_t) y = 0x76f919f<br>
43                </code> </p>
44            
45            <p>There are several features related to data visualization: <span
46                  style="font-style: italic;">formats</span>, <span
47                  style="font-style: italic;">summaries</span>, <span
48                  style="font-style: italic;">filters</span>, <span
49                  style="font-style: italic;">synthetic children</span>.</p>
50            
51            <p>To reflect this, the <b>type</b> command has four
52                subcommands (plus one specific for <i>categories</i>):<br>
53              </p>
54            
55            <p><code>type format</code></p>
56            <p><code>type summary</code></p>
57            <p><code>type filter</code></p>
58            <p><code>type synthetic</code></p>
59
60            
61            <p>These commands are meant to bind printing options to
62                types. When variables are printed, LLDB will first check
63                if custom printing options have been associated to a
64                variable's type and, if so, use them instead of picking
65                the default choices.<br>
66              </p>
67              
68              <p>Each of the commands has four subcommands available:<br>
69              </p>
70              <p><code>add</code>: associates a new printing option to one
71              or more types</p>
72              <p><code>delete</code>: deletes an existing association</p>
73              <p><code>list</code>: provides a listing of all
74                associations</p>
75              <p><code>clear</code>: deletes all associations</p>
76            </div>
77          </div>
78          
79          <div class="post">
80            <h1 class="postheader">type format</h1>
81            <div class="postcontent">
82          
83          <p>Type formats enable you to quickly override the default
84                format for displaying primitive types (the usual basic
85                C/C++/ObjC types: <code><font color="blue">int</font></code>, <code><font color="blue">float</font></code>, <code><font color="blue">char</font></code>, ...).</p>
86              
87            <p>If for some reason you want all <code>int</code>
88              variables in your program to print out as hex, you can add
89              a format to the <code>int</code> type.<br></p>
90          
91          <p>This is done by typing
92                <table class="stats" width="620" cellspacing="0">
93                        <td class="content">
94                            <b>(lldb)</b> type format add --format hex int
95                        </td>
96                <table>
97          at the LLDB command line.</p>
98                  
99              <p>The <code>--format</code> (which you can shorten to <code>-f</code>) option accepts a <a
100                  href="#formatstable">format name</a>. Then, you provide one or more
101                types to which you want the new format applied.</p>
102                
103              <p>A frequent scenario is that your program has a <code>typedef</code>
104                for a numeric type that you know represents something
105                that must be printed in a certain way. Again, you can
106                add a format just to that typedef by using <code>type
107                  format add</code> with the name alias.</p>
108                  
109              <p>But things can quickly get hierarchical. Let's say you
110                have a situation like the following:</p>
111                
112              <p><code><font color="blue">typedef int</font> A;<br>
113                  <font color="blue">typedef</font> A B;<br>
114                  <font color="blue">typedef</font> B C;<br>
115                  <font color="blue">typedef</font> C D;<br>
116                </code></p>
117                
118              <p>and you want to show all <code>A</code>'s as hex, all
119                <code>C'</code>s as byte arrays and leave the defaults
120                untouched for other types (albeit its contrived look, the example is far
121                from unrealistic in large software systems).</p>
122                
123              <p>If you simply type <br>
124                <table class="stats" width="620" cellspacing="0">
125                        <td class="content">
126                            <b>(lldb)</b> type format add -f hex A<br>
127                            <b>(lldb)</b> type format add -f uint8_t[] C
128                        </td>
129                <table>
130              <br>           
131              values of type <code>B</code> will be shown as hex
132                and values of type <code>D</code> as byte arrays, as in:</p>
133                
134              <p> <code>
135                  <b>(lldb)</b> frame variable -T<br/>
136				(A) a = 0x00000001<br/>
137				(B) b = 0x00000002<br/>
138				(C) c = {0x03 0x00 0x00 0x00}<br/>
139				(D) d = {0x04 0x00 0x00 0x00}<br/>
140			</code> </p>
141
142              <p>This is because by default LLDB <i>cascades</i>
143                formats through typedef chains. In order to avoid that
144                you can use the option <code>-C no</code> to prevent
145                cascading, thus making the two commands required to
146                achieve your goal:<br>
147                <table class="stats" width="620" cellspacing="0">
148                        <td class="content">
149                            <b>(lldb)</b> type format add -C no -f hex A<br>
150                            <b>(lldb)</b> type format add -C no -f uint8_t[] C
151                        </td>
152                <table>
153	
154	              <p>which provides the desired output:</p>                  
155	              <p> <code>
156	                  <b>(lldb)</b> frame variable -T<br/>
157					(A) a = 0x00000001<br/>
158					(B) b = 2<br/>
159					(C) c = {0x03 0x00 0x00 0x00}<br/>
160					(D) d = 4<br/>
161					</code> </p>
162
163              <p>Two additional options that you will want to look at
164                are <code>--skip-pointers</code> (<code>-p</code>) and <code>--skip-references</code> (<code>-r</code>). These two
165                options prevent LLDB from applying a format for type <code>T</code>
166                to values of type <code>T*</code> and <code>T&amp;</code>
167                respectively.</p>
168                
169              <p> <code> <b>(lldb)</b> type format add -f float32[]
170                  int<br>
171                  <b>(lldb)</b> frame variable pointer *pointer -T<br>
172                  (int *) pointer = {1.46991e-39 1.4013e-45}<br>
173                  (int) *pointer = {1.53302e-42}<br>
174                  <b>(lldb)</b> type format add -f float32[] int -p<br>
175                  <b>(lldb)</b> frame variable pointer *pointer -T<br>
176                  (int *) pointer = 0x0000000100100180<br>
177                  (int) *pointer = {1.53302e-42}<br>
178                </code> </p>
179                
180              <p>While they can be applied to pointers and references, formats will make no attempt
181	             to dereference the pointer and extract the value before applying the format, which means you
182	             are effectively formatting the address stored in the pointer rather than the pointee value.
183	             For this reason, you may want to use the <code>-p</code> option when defining formats.</p>
184
185              <p>If you need to delete a custom format simply type <code>type
186                  format delete</code> followed by the name of the type
187                to which the format applies.Even if you
188                defined the same format for multiple types on the same command,
189                <code>type format delete</code> will only remove the format for
190                the type name passed as argument.<br>
191              </p>
192              <p>
193				 To delete ALL formats, use
194                <code>type format clear</code>. To see all the formats
195                defined, use <code>type format list</code>.</p>
196              
197              <p>If all you need to do, however, is display one variable
198                in a custom format, while leaving the others of the same
199                type untouched, you can simply type:<br>
200              <br>
201                <table class="stats" width="620" cellspacing="0">
202                        <td class="content">
203                            <b>(lldb)</b> frame variable counter -f hex
204                        </td>
205                <table>
206              
207              <p>This has the effect of displaying the value of <code>counter</code>
208                as an hexadecimal number, and will keep showing it this
209                way until you either pick a different format or till you
210                let your program run again.</p>
211                
212              <p>Finally, this is a list of formatting options available
213                out of
214                which you can pick:</p><a name="formatstable"></a>
215              <table border="1">
216                <tbody>
217                  <tr valign="top">
218                    <td width="23%"><b>Format name</b></td>
219                    <td><b>Abbreviation</b></td>
220                    <td><b>Description</b></td>
221                  </tr>
222                  <tr valign="top">
223                    <td><b>default</b></td>
224                    <td><br>
225                    </td>
226                    <td>the default LLDB algorithm is used to pick a
227                      format</td>
228                  </tr>
229                  <tr valign="top">
230                    <td><b>boolean</b></td>
231                    <td>B</td>
232                    <td>show this as a true/false boolean, using the
233                      customary rule that 0 is false and everything else
234                      is true</td>
235                  </tr>
236                  <tr valign="top">
237                    <td><b>binary</b></td>
238                    <td>b</td>
239                    <td>show this as a sequence of bits</td>
240                  </tr>
241                  <tr valign="top">
242                    <td><b>bytes</b></td>
243                    <td>y</td>
244                    <td>show the bytes one after the other<br>
245                      e.g. <code>(int) s.x = 07 00 00 00</code></td>
246                  </tr>
247                  <tr valign="top">
248                    <td><b>bytes with ASCII</b></td>
249                    <td>Y</td>
250                    <td>show the bytes, but try to display them as ASCII
251                      characters as well<br>
252                      e.g. <code>(int *) c.sp.x = 50 f8 bf 5f ff 7f 00
253                        00 P.._....</code></td>
254                  </tr>
255                  <tr valign="top">
256                    <td><b>character</b></td>
257                    <td>c</td>
258                    <td>show the bytes as ASCII characters<br>
259                      e.g. <code>(int *) c.sp.x =
260                        P\xf8\xbf_\xff\x7f\0\0</code></td>
261                  </tr>
262                  <tr valign="top">
263                    <td><b>printable character</b></td>
264                    <td>C</td>
265                    <td>show the bytes as printable ASCII
266                      characters<br>
267                      e.g. <code>(int *) c.sp.x = P.._....</code></td>
268                  </tr>
269                  <tr valign="top">
270                    <td><b>complex float</b></td>
271                    <td>F</td>
272                    <td>interpret this value as the real and imaginary
273                      part of a complex floating-point number<br>
274                      e.g. <code>(int *) c.sp.x = 2.76658e+19 +
275                        4.59163e-41i</code></td>
276                  </tr>
277                  <tr valign="top">
278                    <td><b>c-string</b></td>
279                    <td>s</td>
280                    <td>show this as a 0-terminated C string</td>
281                  </tr>
282                  <tr valign="top">
283                    <td><b>decimal</b></td>
284                    <td>i</td>
285                    <td>show this as a signed integer number (this does
286                      not perform a cast, it simply shows the bytes as
287                      an integer with sign)</td>
288                  </tr>
289                  <tr valign="top">
290                    <td><b>enumeration</b></td>
291                    <td>E</td>
292                    <td>show this as an enumeration, printing the
293                      value's name if available or the integer value
294                      otherwise<br>
295                      e.g. <code>(enum enumType) val_type = eValue2</code></td>
296                  </tr>
297                  <tr valign="top">
298                    <td><b>hex</b></td>
299                    <td>x</td>
300                    <td>show this as in hexadecimal notation (this does
301                      not perform a cast, it simply shows the bytes as
302                      hex)</td>
303                  </tr>
304                  <tr valign="top">
305                    <td><b>float</b></td>
306                    <td>f</td>
307                    <td>show this as a floating-point number (this does
308                      not perform a cast, it simply interprets the bytes
309                      as an IEEE754 floating-point value)</td>
310                  </tr>
311                  <tr valign="top">
312                    <td><b>octal</b></td>
313                    <td>o</td>
314                    <td>show this in octal notation</td>
315                  </tr>
316                  <tr valign="top">
317                    <td><b>OSType</b></td>
318                    <td>O</td>
319                    <td>show this as a MacOS OSType<br>
320                      e.g. <code>(float) x = '\n\x1f\xd7\n'</code></td>
321                  </tr>
322                  <tr valign="top">
323                    <td><b>unicode16</b></td>
324                    <td>U</td>
325                    <td>show this as UTF-16 characters<br>
326                      e.g. <code>(float) x = 0xd70a 0x411f</code></td>
327                  </tr>
328                  <tr valign="top">
329                    <td><b>unicode32</b></td>
330                    <td><br>
331                    </td>
332                    <td>show this as UTF-32 characters<br>
333                      e.g. <code>(float) x = 0x411fd70a</code></td>
334                  </tr>
335                  <tr valign="top">
336                    <td><b>unsigned decimal</b></td>
337                    <td>u</td>
338                    <td>show this as an unsigned integer number (this
339                      does not perform a cast, it simply shows the bytes
340                      as unsigned integer)</td>
341                  </tr>
342                  <tr valign="top">
343                    <td><b>pointer</b></td>
344                    <td>p</td>
345                    <td>show this as a native pointer (unless this is
346                      really a pointer, the resulting address will
347                      probably be invalid)</td>
348                  </tr>
349                  <tr valign="top">
350                    <td><b>char[]</b></td>
351                    <td><br>
352                    </td>
353                    <td>show this as an array of characters<br>
354                      e.g. <code>(char) *c.sp.z = {X}</code></td>
355                  </tr>
356                  <tr valign="top">
357                    <td><b>int8_t[], uint8_t[]<br>
358                        int16_t[], uint16_t[]<br>
359                        int32_t[], uint32_t[]<br>
360                        int64_t[], uint64_t[]<br>
361                        uint128_t[]</b></td>
362                    <td><br>
363                    </td>
364                    <td>show this as an array of the corresponding
365                      integer type<br>
366                      e.g.<br>
367                      <code>(int) x = {1 0 0 0}</code> (with uint8_t[])<br>
368                      <code>(int) y = {0x00000001}</code> (with uint32_t[])</td>
369                  </tr>
370                  <tr valign="top">
371                    <td><b>float32[], float64[]</b></td>
372                    <td><br>
373                    </td>
374                    <td>show this as an array of the corresponding
375                      floating-point type<br>
376                      e.g. <code>(int *) pointer = {1.46991e-39
377                        1.4013e-45}</code></td>
378                  </tr>
379                  <tr valign="top">
380                    <td><b>complex integer</b></td>
381                    <td>I</td>
382                    <td>interpret this value as the real and imaginary
383                      part of a complex integer number<br>
384                      e.g. <code>(int *) pointer = 1048960 + 1i</code></td>
385                  </tr>
386                  <tr valign="top">
387                    <td><b>character array</b></td>
388                    <td>a</td>
389                    <td>show this as a character array<br>
390                      e.g. <code>(int *) pointer =
391                        \x80\x01\x10\0\x01\0\0\0</code></td>
392                  </tr>
393                </tbody>
394              </table>
395            </div>
396          </div>
397          
398          <div class="post">
399            <h1 class="postheader">type summary</h1>
400            <div class="postcontent">
401              <p>Type formats work by showing a different kind of display for
402              the value of a variable. However, they only work for basic types.
403              When you want to display a class or struct in a custom format, you
404              cannot do that using formats.</p>
405              <p>A different feature, type summaries, works by extracting
406                information from classes, structures, ... (<i>aggregate types</i>)
407                and arranging it in a user-defined format, as in the following example:</p>
408              <p> <i>before adding a summary...</i><br>
409                <code> <b>(lldb)</b> frame variable -T one<br>
410                  (i_am_cool) one = {<br>
411                  &nbsp;&nbsp;&nbsp;&nbsp;(int) x = 3<br>
412                  &nbsp;&nbsp;&nbsp;&nbsp;(float) y = 3.14159<br>
413                  &nbsp;&nbsp;&nbsp;&nbsp;(char) z = 'E'<br>
414                  }<br>
415                </code> <br>
416                <i>after adding a summary...</i><br>
417                <code> <b>(lldb)</b> frame variable one<br>
418                  (i_am_cool) one = int = 3, float = 3.14159, char = 69<br>
419                </code> </p>
420                
421            <p>There are two ways to use type summaries: the first one is to bind a <i>
422            summary string</i> to the type; the second is to write a Python script that returns
423            the string to be used as summary. Both options are enabled by the <code>type summary add</code>
424                command.</p>
425              <p>The command to obtain the output shown in the example is:</p>
426                <table class="stats" width="620" cellspacing="0">
427                        <td class="content">
428                            <b>(lldb)</b> type summary add --summary-string "int = ${var.x}, float = ${var.y}, char = ${var.z%u}" i_am_cool
429                        </td>
430                <table>
431                
432            <p>Initially, we will focus on summary strings, and then describe the Python binding
433            mechanism.</p>
434            
435            </div>
436          </div>
437          <div class="post">
438            <h1 class="postheader">Summary Strings</h1>
439            <div class="postcontent">
440              <p>Summary strings are written using a simple control language, exemplified by the snippet above.
441	             A summary string contains a sequence of tokens that are processed by LLDB to generate the summary.</p>
442                
443                <p>Summary strings can contain plain text, control characters and
444                special variables that have access to information about
445                the current object and the overall program state.</p>
446              <p>Plain text is any sequence of characters that doesn't contain a <code><b>'{'</b></code>,
447                <code><b>'}'</b></code>, <code><b>'$'</b></code>, or <code><b>'\'</b></code>
448                character, which are the syntax control characters.</p>
449              <p>The special variables are found in between a <code><b>"${"</b></code>
450                prefix, and end with a <code><b>"}"</b></code> suffix. Variables can be a simple name
451                or they can refer to complex objects that have subitems themselves.
452                In other words, a variable looks like <code>"<b>${object}</b>"</code> or 
453				<code>"<b>${object.child.otherchild}</b>"</code>. A variable can also be prefixed or
454				suffixed with other symbols meant to change the way its value is handled. An example is
455				<code>"<b>${*var.int_pointer[0-3]}</b>".</code></p>
456              <p>Basically, the syntax is the same one described <a
457                  href="formats.html">Frame and Thread Formatting</a>
458                plus additional symbols specific for summary strings. The main of them is <code>${var</code>,
459	            which is used refer to the variable that a summary is being created for.</p>
460              <p>The simplest thing you can do is grab a member variable
461                of a class or structure by typing its <i>expression
462                  path</i>. In the previous example, the expression path
463                for the field <code>float y</code> is simply <code>.y</code>.
464                Thus, to ask the summary string to display <code>y</code>
465                you would type <code>${var.y}</code>.</p>
466              <p>If you have code like the following: <br>
467                <code> <font color="blue">struct</font> A {<br>
468                  &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> x;<br>
469                  &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> y;<br>
470                  };<br>
471                  <font color="blue">struct</font> B {<br>
472                  &nbsp;&nbsp;&nbsp;&nbsp;A x;<br>
473                  &nbsp;&nbsp;&nbsp;&nbsp;A y;<br>
474                  &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> *z;<br>
475                  };<br>
476                </code> the expression path for the <code>y</code>
477                member of the <code>x</code> member of an object of
478                type <code>B</code> would be <code>.x.y</code> and you
479                would type <code>${var.x.y}</code> to display it in a
480                summary string for type <code>B</code>. </p>
481              <p>By default, a summary defined for type <code>T</code>, also works for types
482				<code>T*</code> and <code>T&amp;</code> (you can disable this behavior if desired).
483				For this reason, expression paths do not differentiate between <code>.</code>
484                and <code>-&gt;</code>, and the above expression path <code>.x.y</code>
485                would be just as good if you were displaying a <code>B*</code>,
486                or even if the actual definition of <code>B</code>
487                were: <code><br>
488                  <font color="blue">struct</font> B {<br>
489                  &nbsp;&nbsp;&nbsp;&nbsp;A *x;<br>
490                  &nbsp;&nbsp;&nbsp;&nbsp;A y;<br>
491                  &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> *z;<br>
492                  };<br>
493                </code> </p>
494              <p>This is unlike the behavior of <code>frame variable</code>
495                which, on the contrary, will enforce the distinction. As
496                hinted above, the rationale for this choice is that
497                waiving this distinction enables you to write a summary
498                string once for type <code>T</code> and use it for both
499                <code>T</code> and <code>T*</code> instances. As a
500                summary string is mostly about extracting nested
501                members' information, a pointer to an object is just as
502                good as the object itself for the purpose.</p>
503			  <p>If you need to access the value of the integer pointed to by <code>B::z</code>, you
504				cannot simply say <code>${var.z}</code> because that symbol refers to the pointer <code>z</code>.
505				In order to dereference it and get the pointed value, you should say <code>${*var.z}</code>. The <code>${*var</code>
506					 tells LLDB to get the object that the expression paths leads to, and then dereference it. In this example is it
507					equivalent to <code>*(bObject.z)</code> in C/C++ syntax. Because <code>.</code> and <code>-></code> operators can both be
508					used, there is no need to have dereferences in the middle of an expression path (e.g. you do not need to type
509					<code>${*(var.x).x})</code> to read <code>A::x</code> as contained in <code>*(B::x)</code>. To achieve that effect
510					you can simply write <code>${var.x->x}</code>, or even <code>${var.x.x}</code>. The <code>*</code> operator only binds
511					to the result of the whole expression path, rather than piecewise, and there is no way to use parentheses to change
512					that behavior.</p>
513              <p>Of course, a summary string can contain more than one <code>${var</code> specifier,
514				and can use <code>${var</code> and <code>${*var</code> specifiers together.</p>
515            </div>
516          </div>
517          <div class="post">
518            <h1 class="postheader">Formatting summary elements</h1>
519            <div class="postcontent">
520              <p>An expression path can include formatting codes.
521				 Much like the type formats discussed previously, you can also customize
522				the way variables are displayed in summary strings, regardless of the format they have
523				applied to their types. To do that, you can use <code>%<i>format</i></code> inside an expression path,
524				as in <code>${var.x->x%u}</code>, which would display the value of <code>x</code> as an unsigned integer.
525                
526            <p>You can also use some other special format markers, not available
527            for formats themselves, but which carry a special meaning when used in this
528            context:</p>
529            
530            <table border="1">
531                <tbody>
532                  <tr valign="top">
533                    <td width="23%"><b>Symbol</b></td>
534                    <td><b>Description</b></td>
535                  </tr>
536                  <tr valign="top">
537                    <td><b>%S</b></td>
538                    <td>Use this object's summary (the default for aggregate types)</td>
539                  </tr>
540                  <tr valign="top">
541                    <td><b>%V</b></td>
542                    <td>Use this object's value (the default for non-aggregate types)</td>
543                  </tr>
544                  <tr valign="top">
545                    <td><b>%@</b></td>
546                    <td>Use a language-runtime specific description (for C++ this does nothing,
547                    for Objective-C it calls the NSPrintForDebugger API)</td>
548                  </tr>
549                  <tr valign="top">
550                    <td><b>%L</b></td>
551                    <td>Use this object's location (memory address, register name, ...)</td>
552                  </tr>
553                  <tr valign="top">
554                    <td><b>%#</b></td>
555                    <td>Use the count of the children of this object</td>
556                  </tr>
557                  <tr valign="top">
558                    <td><b>%T</b></td>
559                    <td>Use this object's datatype name</td>
560                  </tr>
561				</tbody>
562			</table>
563                
564              <p>Option <code>--inline-children</code> (<code>-c</code>) to <code>type summary add</code>
565                tells LLDB not to look for a summary string, but instead
566                to just print a listing of all the object's children on
567                one line.</p>
568                <p> As an example, given a type <code>pair</code>:
569					<code> <br>
570	                  <b>(lldb)</b> frame variable --show-types a_pair<br>
571	                  (pair) a_pair = {<br>
572	                  &nbsp;&nbsp;&nbsp;&nbsp;(int) first = 1;<br/>
573	                  &nbsp;&nbsp;&nbsp;&nbsp;(int) second = 2;<br/>
574	                  }<br>
575	                  </code><br>
576	                  If one types the following commands:
577                <table class="stats" width="620" cellspacing="0">
578                        <td class="content">
579                        	<b>(lldb)</b> type summary add --inline-children pair<br>
580                        </td>
581                <table>
582					the output becomes: <br><code>
583
584	                  <b>(lldb)</b> frame variable a_pair<br>
585	                  (pair) a_pair = (first=1, second=2)<br>
586	                </code> </p>
587	
588			Of course, one can obtain the same effect by typing
589			<table class="stats" width="620" cellspacing="0">
590                    <td class="content">
591                    	<b>(lldb)</b> type summary add pair --summary-string "(first=${var.first}, second=${var.second})"<br>
592                    </td>
593            <table>
594            
595			While the final result is the same, using <code>--inline-children</code> can often save time. If one does not need to
596			see the names of the variables, but just their values, the option <code>--omit-names</code> (<code>-O</code>, uppercase letter o), can be combined with <code>--inline-children</code> to obtain:
597			<br><code>
598
599              <b>(lldb)</b> frame variable a_pair<br>
600              (pair) a_pair = (1, 2)<br>
601            </code> </p>
602
603			which is of course the same as
604			typing
605			<table class="stats" width="620" cellspacing="0">
606                    <td class="content">
607                    	<b>(lldb)</b> type summary add pair --summary-string "(${var.first}, ${var.second})"<br>
608                    </td>
609            <table>
610            </div>
611          </div>
612          <div class="post">
613            <h1 class="postheader">Bitfields and array syntax</h1>
614            <div class="postcontent">
615              <p>Sometimes, a basic type's value actually represents
616                several different values packed together in a bitfield.<br/>
617                With the classical view, there is no way to look at
618                them. Hexadecimal display can help, but if the bits
619                actually span nibble boundaries, the help is limited.<br/>
620                Binary view would show it all without ambiguity, but is
621                often too detailed and hard to read for real-life
622                scenarios.
623				<p>
624				To cope with the issue, LLDB supports native
625                bitfield formatting in summary strings. If your
626                expression paths leads to a so-called <i>scalar type</i>
627                (the usual int, float, char, double, short, long, long
628                long, double, long double and unsigned variants), you
629                can ask LLDB to only grab some bits out of the value and
630                display them in any format you like. If you only need one bit
631                you can use the <code>[</code><i>n</i><code>]</code>, just like
632                indexing an array. To extract multiple bits, you can use
633                a slice-like syntax: <code>[</code><i>n</i>-<i>m</i><code>]</code>, e.g. <br><p>
634                <code> <b>(lldb)</b> frame variable float_point<br>
635                  (float) float_point = -3.14159<br> </code>
636                    <table class="stats" width="620" cellspacing="0">
637                        <td class="content">
638                            <b>(lldb)</b> type summary add --summary-string "Sign: ${var[31]%B}
639                  Exponent: ${var[30-23]%x} Mantissa: ${var[0-22]%u}"
640                  float
641                        </td>
642                </table><br></code>
643				
644				<code> 
645                  <b>(lldb)</b> frame variable float_point<br>
646                  (float) float_point = -3.14159 Sign: true Exponent:
647                  0x00000080 Mantissa: 4788184<br>
648                </code> In this example, LLDB shows the internal
649                representation of a <code>float</code> variable by
650                extracting bitfields out of a float object.</p>
651                
652                <p> When typing a range, the extremes <i>n</i> and <i>m</i> are always
653	            included, and the order of the indices is irrelevant. </p>
654                
655              <p>LLDB also allows to use a similar syntax to display
656                array members inside a summary string. For instance, you
657                may want to display all arrays of a given type using a
658                more compact notation than the default, and then just
659                delve into individual array members that prove
660                interesting to your debugging task. You can tell
661                LLDB to format arrays in special ways, possibly
662                independent of the way the array members' datatype is formatted. <br>
663                e.g. <br>
664                <code> <b>(lldb)</b> frame variable sarray<br>
665                  (Simple [3]) sarray = {<br>
666                  &nbsp;&nbsp;&nbsp;&nbsp;[0] = {<br>
667                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x = 1<br>
668                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;y = 2<br>
669                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;z = '\x03'<br>
670                  &nbsp;&nbsp;&nbsp;&nbsp;}<br>
671                  &nbsp;&nbsp;&nbsp;&nbsp;[1] = {<br>
672                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x = 4<br>
673                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;y = 5<br>
674                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;z = '\x06'<br>
675                  &nbsp;&nbsp;&nbsp;&nbsp;}<br>
676                  &nbsp;&nbsp;&nbsp;&nbsp;[2] = {<br>
677                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;x = 7<br>
678                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;y = 8<br>
679                  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;z = '\t'<br>
680                  &nbsp;&nbsp;&nbsp;&nbsp;}<br>
681                  }<br></code>
682                  
683                <table class="stats" width="620" cellspacing="0">
684                        <td class="content">
685                            <b>(lldb)</b> type summary add --summary-string "${var[].x}" "Simple
686                  [3]"
687                        </td>
688                <table><br>
689                  
690                  <code>
691                  <b>(lldb)</b> frame variable sarray<br>
692                  (Simple [3]) sarray = [1,4,7]<br></code></p>
693                  
694                <p>The <code>[]</code> symbol amounts to: <i>if <code>var</code>
695                  is an array and I know its size, apply this summary
696                  string to every element of the array</i>. Here, we are
697                asking LLDB to display <code>.x</code> for every
698                element of the array, and in fact this is what happens.
699                If you find some of those integers anomalous, you can
700                then inspect that one item in greater detail, without
701                the array format getting in the way: <br>
702                <code> <b>(lldb)</b> frame variable sarray[1]<br>
703                  (Simple) sarray[1] = {<br>
704                  &nbsp;&nbsp;&nbsp;&nbsp;x = 4<br>
705                  &nbsp;&nbsp;&nbsp;&nbsp;y = 5<br>
706                  &nbsp;&nbsp;&nbsp;&nbsp;z = '\x06'<br>
707                  }<br>
708                </code> </p>
709              <p>You can also ask LLDB to only print a subset of the
710                array range by using the same syntax used to extract bit
711                for bitfields:
712                <table class="stats" width="620" cellspacing="0">
713                        <td class="content">
714                            <b>(lldb)</b> type summary add --summary-string "${var[1-2].x}" "Simple
715                  [3]"
716                        </td>
717                <table><br>
718                  <code>
719                  <b>(lldb)</b> frame variable sarray<br>
720                  (Simple [3]) sarray = [4,7]<br></code></p>
721
722              <p>If you are dealing with a pointer that you know is an array, you can use this
723	             syntax to display the elements contained in the pointed array instead of just
724	             the pointer value. However, because pointers have no notion of their size, the
725	             empty brackets <code>[]</code> operator does not work, and you must explicitly provide
726	             higher and lower bounds.</p>
727                
728            <p>In general, LLDB needs the square brackets operator <code>[]</code> in
729            order to handle arrays and pointers correctly, and for pointers it also
730            needs a range. However, a few special cases are defined to make your life easier:
731            <ul>
732				<li>you can print a 0-terminated string (<i>C-string</i>) using the %s format,
733				omitting square brackets, as in:
734				<table class="stats" width="620" cellspacing="0">
735                        <td class="content">
736                            <b>(lldb)</b> type summary add --summary-string "${var%s}" "char *"
737                        </td>
738                <table>
739                <p>
740				This syntax works for <code>char*</code> as well as for <code>char[]</code> 
741				because LLDB can rely on the final <code>\0</code> terminator to know when the string
742				has ended.</p>
743                LLDB has default summary strings for <code>char*</code> and <code>char[]</code> that use
744				this special case. On debugger startup, the following are defined automatically:
745				<table class="stats" width="620" cellspacing="0">
746                        <td class="content">
747                            <b>(lldb)</b> type summary add --summary-string "${var%s}" "char *"<br/>
748                            <b>(lldb)</b> type summary add --summary-string "${var%s}" -x "char \[[0-9]+]"<br/>
749                        </td>
750                <table>
751				</li>
752			</ul>
753            <ul>
754
755				<li>any of the array formats (<code>int8_t[]</code>,
756				<code>float32{}</code>, ...), and the <code>y</code>, <code>Y</code>
757				and <code>a</code> formats
758				work to print an array of a non-aggregate
759				type, even if square brackets are omitted.
760				<table class="stats" width="620" cellspacing="0">
761                        <td class="content">
762                            <b>(lldb)</b> type summary add --summary-string "${var%int32_t[]}" "int [10]"
763                        </td>
764                <table>
765                
766            </ul>
767                This feature, however, is not enabled for pointers because there is no
768                way for LLDB to detect the end of the pointed data.
769                <br>
770                This also does not work for other formats (e.g. <code>boolean</code>), and you must
771                specify the square brackets operator to get the expected output.
772            </p>
773        </div>
774          </div>
775          
776        <div class="post">
777            <h1 class="postheader">Python scripting</h1>
778            <div class="postcontent">
779            
780            <p>Most of the times, summary strings prove good enough for the job of summarizing
781            the contents of a variable. However, as soon as you need to do more than picking
782            some values and rearranging them for display, summary strings stop being an
783            effective tool. This is because summary strings lack the power to actually perform
784            any kind of computation on the value of variables.</p>
785            <p>To solve this issue, you can bind some Python scripting code as a summary for
786            your datatype, and that script has the ability to both extract children variables
787            as the summary strings do and to perform active computation on the extracted
788            values. As a small example, let's say we have a Rectangle class:</p>
789            
790            <code>
791<font color="blue">class</font> Rectangle<br/>
792{<br/>
793<font color="blue">private</font>:<br/>
794    &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> height;<br/>
795    &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> width;<br/>
796<font color="blue">public</font>:<br/>
797    &nbsp;&nbsp;&nbsp;&nbsp;Rectangle() : height(3), width(5) {}<br/>
798    &nbsp;&nbsp;&nbsp;&nbsp;Rectangle(<font color="blue">int</font> H) : height(H), width(H*2-1) {}<br/>
799    &nbsp;&nbsp;&nbsp;&nbsp;Rectangle(<font color="blue">int</font> H, <font color="blue">int</font> W) : height(H), width(W) {}<br/>
800    
801    &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> GetHeight() { return height; }<br/>
802    &nbsp;&nbsp;&nbsp;&nbsp;<font color="blue">int</font> GetWidth() { return width; }<br/>
803    
804};<br/>
805</code>
806            
807            <p>Summary strings are effective to reduce the screen real estate used by
808            the default viewing mode, but are not effective if we want to display the
809            area and perimeter of <code>Rectangle</code> objects</p>
810            
811            <p>To obtain this, we can simply attach a small Python script to the <code>Rectangle</code>
812            class, as shown in this example:</p>
813            
814            	<table class="stats" width="620" cellspacing="0">
815                        <td class="content">
816                            <b>(lldb)</b> type summary add -P Rectangle<br/>
817                            Enter your Python command(s). Type 'DONE' to end.<br/>
818def function (valobj,internal_dict):<br/>
819     &nbsp;&nbsp;&nbsp;&nbsp;height_val = valobj.GetChildMemberWithName('height')<br/>
820     &nbsp;&nbsp;&nbsp;&nbsp;width_val = valobj.GetChildMemberWithName('width')<br/>
821     &nbsp;&nbsp;&nbsp;&nbsp;height = height_val.GetValueAsUnsigned(0)<br/>
822     &nbsp;&nbsp;&nbsp;&nbsp;width = width_val.GetValueAsUnsigned(0)<br/>
823     &nbsp;&nbsp;&nbsp;&nbsp;area = height*width<br/>
824     &nbsp;&nbsp;&nbsp;&nbsp;perimeter = 2*(height + width)<br/>
825     &nbsp;&nbsp;&nbsp;&nbsp;return 'Area: ' + str(area) + ', Perimeter: ' + str(perimeter)<br/>
826     &nbsp;&nbsp;&nbsp;&nbsp;DONE<br/>
827<b>(lldb)</b> frame variable<br/>
828(Rectangle) r1 = Area: 20, Perimeter: 18<br/>
829(Rectangle) r2 = Area: 72, Perimeter: 36<br/>
830(Rectangle) r3 = Area: 16, Perimeter: 16<br/>
831                        </td>
832                </table>
833            
834            <p>In order to write effective summary scripts, you need to know the LLDB public
835            API, which is the way Python code can access the LLDB object model. For further
836            details on the API you should look at <a href="scripting.html">this page</a>, or at
837            the LLDB <a href="docs.html">API reference documentation</a>.</p>
838            
839            <p>As a brief introduction, your script is encapsulated into a function that is
840            passed two parameters: <code>valobj</code> and <code>internal_dict</code>.</p>
841            
842            <p><code>internal_dict</code> is an internal support parameter used by LLDB and you should
843            not touch it.<br/><code>valobj</code> is the object encapsulating the actual
844            variable being displayed, and its type is <a href="http://llvm.org/svn/llvm-project/lldb/trunk/include/lldb/API/SBValue.h">SBValue</a>.
845 			Out of the many possible operations on an SBValue, the basic one is retrieve the children objects
846            it contains (essentially, the fields of the object wrapped by it), by calling
847            <code>GetChildMemberWithName()</code>, passing it the child's name as a string.<br/>
848            If the variable has a value, you can ask for it, and return it as a string using <code>GetValue()</code>,
849            or as a signed/unsigned number using <code>GetValueAsSigned()</code>, <code>GetValueAsUnsigned()</code>.
850			It is also possible to retrieve an <a href="http://llvm.org/svn/llvm-project/lldb/trunk/include/lldb/API/SBData.h"><code>SBData</code></a> object by calling <code>GetData()</code> and then read
851			the object's contents out of the <code>SBData</code>.
852            
853            <p>If you need to delve into several levels of hierarchy, as you can do with summary
854            strings, you can use the method <code>GetValueForExpressionPath()</code>, passing it
855            an expression path just like those you could use for summary strings (one of the differences
856			is that dereferencing a pointer does not occur by prefixing the path with a <code>*</code>,
857			but by calling the <code>Dereference()</code> method on the returned SBValue).
858			If you need to access array slices, you cannot do that (yet) via this method call, and you must
859            use <code>GetChildAtIndex()</code> querying it for the array items one by one.
860			Also, handling custom formats is something you have to deal with on your own.
861            
862            <p>Other than interactively typing a Python script there are two other ways for you
863            to input a Python script as a summary:
864            
865            <ul>
866            <li> using the --python-script option to <code>type summary add </code> and typing the script
867            code as an option argument; as in:            </ul>
868
869                <table class="stats" width="620" cellspacing="0">
870                        <td class="content">
871                            <b>(lldb)</b> type summary add --python-script "height = 
872                            valobj.GetChildMemberWithName('height').GetValueAsUnsigned(0);width = 
873                            valobj.GetChildMemberWithName('width').GetValueAsUnsigned(0);
874                            return 'Area: %d' % (height*width)" Rectangle<br/>
875                        </td>
876                </table>
877            <ul>
878            <li> using the <code>--python-function</code> (<code>-F</code>) option to <code>type summary add </code> and giving the name of a 
879            Python function with the correct prototype. Most probably, you will define (or have
880            already defined) the function in the interactive interpreter, or somehow
881            loaded it from a file, using the <code>command script import</code> command. LLDB will emit a warning if it is unable to find the function you passed, but will still register the binding.
882            </ul>
883            
884            </p>
885            
886            </div>
887        </div>
888
889        <div class="post">
890            <h1 class="postheader">Regular expression typenames</h1>
891            <div class="postcontent">
892              <p>As you noticed, in order to associate the custom
893                summary string to the array types, one must give the
894                array size as part of the typename. This can long become
895                tiresome when using arrays of different sizes, <code>Simple
896
897                  [3]</code>, <code>Simple [9]</code>, <code>Simple
898                  [12]</code>, ...</p>
899              <p>If you use the <code>-x</code> option, type names are
900                treated as regular expressions instead of type names.
901                This would let you rephrase the above example
902                for arrays of type <code>Simple [3]</code> as: <br>
903                
904                <table class="stats" width="620" cellspacing="0">
905                        <td class="content">
906                            <b>(lldb)</b> type summary add --summary-string "${var[].x}"
907                  -x "Simple \[[0-9]+\]"
908                        </td>
909                <table>
910                
911                <code> 
912                  <b>(lldb)</b> frame variable<br>
913                  (Simple [3]) sarray = [1,4,7]<br>
914                  (Simple [2]) sother = [3,6]<br>
915                </code> The above scenario works for <code>Simple [3]</code>
916                as well as for any other array of <code>Simple</code>
917                objects. </p>
918              <p>While this feature is mostly useful for arrays, you
919                could also use regular expressions to catch other type
920                sets grouped by name. However, as regular expression
921                matching is slower than normal name matching, LLDB will
922                first try to match by name in any way it can, and only
923                when this fails, will it resort to regular expression
924                matching. </p>
925				<p>One of the ways LLDB uses this feature internally, is to match
926					the names of STL container classes, regardless of the template
927					arguments provided. The details for this are found at <a href="http://llvm.org/svn/llvm-project/lldb/trunk/source/DataFormatters/FormatManager.cpp">FormatManager.cpp</a></p>
928
929              <p>The regular expression language used by LLDB is the <a href="http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions">POSIX extended language</a>, as defined by the <a href="http://pubs.opengroup.org/onlinepubs/7908799/xsh/regex.h.html">Single UNIX Specification</a>, of which Mac OS X is a
930	compliant implementation.
931
932            </div>
933          </div>
934          
935        <div class="post">
936            <h1 class="postheader">Named summaries</h1>
937            <div class="postcontent">
938            <p>For a given type, there may be different meaningful summary
939            representations. However, currently, only one summary can be associated
940            to a type at each moment. If you need to temporarily override the association
941            for a variable, without changing the summary string for to its type,
942            you can use named summaries.</p>
943            
944            <p>Named summaries work by attaching a name to a summary when creating
945            it. Then, when there is a need to attach the summary to a variable, the
946            <code>frame variable</code> command, supports a <code>--summary</code> option
947            that tells LLDB to use the named summary given instead of the default one.</p>
948            
949                <table class="stats" width="620" cellspacing="0">
950                        <td class="content">
951                            <b>(lldb)</b> type summary add --summary-string "x=${var.integer}" --name NamedSummary
952                        </td>
953                <table>
954                <code> <b>(lldb)</b> frame variable one<br>
955                  (i_am_cool) one = int = 3, float = 3.14159, char = 69<br>
956                  <b>(lldb)</b> frame variable one --summary NamedSummary<br>
957                  (i_am_cool) one = x=3<br>
958                </code> </p>
959
960			<p>When defining a named summmary, binding it to one or more types becomes optional.
961			Even if you bind the named summary to a type, and later change the summary string
962			for that type, the named summary will not be changed by that. You can delete
963			named summaries by using the <code>type summary delete</code> command, as if the
964			summary name was the datatype that the summary is applied to</p>
965			
966			<p>A summary attached to a variable using the </code>--summary</code> option,
967			has the same semantics that a custom format attached using the <code>-f</code>
968			option has: it stays attached till you attach a new one, or till you let
969			your program run again.</p>
970
971            </div>
972        </div>
973
974        <div class="post">
975          <h1 class="postheader">Synthetic children</h1>
976          <div class="postcontent">
977			<p>Summaries work well when one is able to navigate through an expression path.
978				In order for LLDB to do so, appropriate debugging information must be available.</p>
979			<p>Some types are <i>opaque</i>, i.e. no knowledge of their internals is provided.
980				When that's the case, expression paths do not work correctly.</p>
981			<p>In other cases, the internals are available to use in expression paths, but they
982				do not provide a user-friendly representation of the object's value.</p>
983			<p>For instance, consider an STL vector, as implemented by the <a href="http://gcc.gnu.org/onlinedocs/libstdc++/">GNU C++ Library</a>:</p>
984			<code>
985				<b>(lldb)</b> frame variable numbers -T<br/>
986				(std::vector&lt;int&gt;) numbers = {<br/>
987&nbsp;&nbsp;&nbsp;&nbsp;(std::_Vector_base&lt;int, std::allocator&lt;int&gt; &gt;) std::_Vector_base&lt;int, std::allocator&lt;int&gt; &gt; = {<br/>
988&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(std::_Vector_base&lt;int, std::allocator&tl;int&gt; &gt;::_Vector_impl) _M_impl = {<br/>
989&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(int *) _M_start = 0x00000001001008a0<br/>
990&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(int *) _M_finish = 0x00000001001008a8<br/>
991&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(int *) _M_end_of_storage = 0x00000001001008a8<br/>
992&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;}<br/>
993&nbsp;&nbsp;&nbsp;&nbsp;}<br/>
994				}<br/>
995			</code>
996			<p>Here, you can see how the type is implemented, and you can write a summary for that implementation
997				but that is not going to help you infer what items are actually stored in the vector.</p>
998			<p>What you would like to see is probably something like:</p>
999			<code>
1000			<b>(lldb)</b> frame variable numbers -T<br/>
1001				(std::vector&lt;int&gt;) numbers = {<br/>
1002				  &nbsp;&nbsp;&nbsp;&nbsp;(int) [0] = 1<br/>
1003				  &nbsp;&nbsp;&nbsp;&nbsp;(int) [1] = 12<br/>
1004				  &nbsp;&nbsp;&nbsp;&nbsp;(int) [2] = 123<br/>
1005				  &nbsp;&nbsp;&nbsp;&nbsp;(int) [3] = 1234<br/>
1006				}<br/>
1007			</code>
1008		<p>Synthetic children are a way to get that result.</p>
1009		<p>The feature is based upon the idea of providing a new set of children for a variable that replaces the ones
1010			available by default through the debug information. In the example, we can use synthetic children to provide
1011			the vector items as children for the std::vector object.</p>
1012		<p>In order to create synthetic children, you need to provide a Python class that adheres to a given <i>interface</i>
1013			 (the word is italicized because <a href="http://en.wikipedia.org/wiki/Duck_typing">Python has no explicit notion of interface</a>, by that word we mean a given set of methods
1014			  must be implemented by the Python class):</p>
1015		<code>
1016			<font color=blue>class</font> SyntheticChildrenProvider:<br/>
1017			&nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> __init__(self, valobj, internal_dict):<br/>
1018			&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>this call should initialize the Python object using valobj as the variable to provide synthetic children for</i> <br/>
1019			&nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> num_children(self): <br/>
1020			&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>this call should return the number of children that you want your object to have</i> <br/>
1021			&nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> get_child_index(self,name): <br/>
1022			&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>this call should return the index of the synthetic child whose name is given as argument</i> <br/>
1023			&nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> get_child_at_index(self,index): <br/>
1024			&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>this call should return a new LLDB SBValue object representing the child at the index given as argument</i> <br/>
1025			&nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> update(self): <br/>
1026			&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>this call should be used to update the internal state of this Python object whenever the state of the variables in LLDB changes.</i><sup>[1]</sup><br/>
1027			&nbsp;&nbsp;&nbsp;&nbsp;<font color=blue>def</font> has_children(self): <br/>
1028			&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>this call should return True if this object might have children, and False if this object can be guaranteed not to have children.</i><sup>[2]</sup><br/>
1029		</code>
1030<sup>[1]</sup> This method is optional. Also, it may optionally choose to return a value (starting with SVN rev153061/LLDB-134). If it returns a value, and that value is <font color=blue><code>True</code></font>, LLDB will be allowed to cache the children and the children count it previously obtained, and will not return to the provider class to ask. If nothing, <font color=blue><code>None</code></font>, or anything other than <font color=blue><code>True</code></font> is returned, LLDB will discard the cached information and ask. Regardless, whenever necessary LLDB will call <code>update</code>.
1031<br/>
1032<sup>[2]</sup> This method is optional (starting with SVN rev166495/LLDB-175). While implementing it in terms of <code>num_children</code> is acceptable, implementors are encouraged to look for optimized coding alternatives whenever reasonable.
1033		<p>For examples of how synthetic children are created, you are encouraged to look at <a href="http://llvm.org/svn/llvm-project/lldb/trunk/examples/synthetic/">examples/synthetic</a> in the LLDB trunk. Please, be aware that the code in those files (except bitfield/)
1034			is legacy code and is not maintained.
1035			You may especially want to begin looking at <a href="http://llvm.org/svn/llvm-project/lldb/trunk/examples/synthetic/bitfield">this example</a> to get
1036			a feel for this feature, as it is a very easy and well commented example.</p>
1037			The design pattern consistently used in synthetic providers shipping with LLDB
1038				is to use the <code>__init__</code> to store the SBValue instance as a part of <code>self</code>. The <code>update</code> function is then used
1039				to perform the actual initialization.
1040				
1041				
1042		<p>Once a synthetic children provider is written, one must load it into LLDB before it can be used.
1043			Currently, one can use the LLDB <code>script</code> command to type Python code interactively,
1044			or use the <code>command script import <i>fileName </i></code> command to load Python code from a Python module
1045			(ordinary rules apply to importing modules this way). A third option is to type the code for
1046			the provider class interactively while adding it.</p>
1047		
1048		<p>For example, let's pretend we have a class <code>Foo</code> for which a synthetic children provider class
1049			<code>Foo_Provider</code> is available, in a Python module contained in file <code>~/Foo_Tools.py</code>. The following interaction
1050			sets <code>Foo_Provider</code> as a synthetic children provider in LLDB:</p>
1051		
1052		    <table class="stats" width="620" cellspacing="0">
1053                    <td class="content">
1054                        <b>(lldb)</b> command script import ~/Foo_Tools.py<br/>
1055                        <b>(lldb)</b> type synthetic add Foo --python-class Foo_Tools.Foo_Provider
1056                    </td>
1057            <table>
1058            <code> <b>(lldb)</b> frame variable a_foo<br/>
1059              (Foo) a_foo = {<br/>
1060			  &nbsp;&nbsp;&nbsp;&nbsp;x = 1<br/>
1061			  &nbsp;&nbsp;&nbsp;&nbsp;y = "Hello world"<br/>
1062			  }			<br/>
1063            </code> </p>
1064        
1065			<p>LLDB has synthetic children providers for a core subset of STL classes, both in the version provided by <a href="http://gcc.gnu.org/libstdc++/">libstdcpp</a> and by <a href="http://libcxx.llvm.org/">libcxx</a>, as well as for several Foundation classes.</p>
1066
1067			<p>Synthetic children extend summary strings by enabling a new special variable: <code>${svar</code>.<br/>
1068				This symbol tells LLDB to refer expression paths to the
1069				synthetic children instead of the real ones. For instance,</p>
1070
1071				    <table class="stats" width="620" cellspacing="0">
1072		                    <td class="content">
1073		                        <b>(lldb)</b> type summary add --expand -x "std::vector&lt;" --summary-string "${svar%#} items"
1074		                    </td>
1075		            </table>
1076		            <code> <b>(lldb)</b> frame variable numbers<br/>
1077						(std::vector&lt;int&gt;) numbers = 4 items {<br/>
1078						  &nbsp;&nbsp;&nbsp;&nbsp;(int) [0] = 1<br/>
1079						  &nbsp;&nbsp;&nbsp;&nbsp;(int) [1] = 12<br/>
1080						  &nbsp;&nbsp;&nbsp;&nbsp;(int) [2] = 123<br/>
1081						  &nbsp;&nbsp;&nbsp;&nbsp;(int) [3] = 1234<br/>
1082						}<br/>
1083		            </code> </p>
1084			<p>In some cases, if LLDB is unable to use the real object to get a child specified in an expression path, it will automatically refer to the
1085				synthetic children. While in summaries it is best to always use <code>${svar</code> to make your intentions clearer, interactive debugging
1086					can benefit from this behavior, as in:
1087		            <code> <b>(lldb)</b> frame variable numbers[0] numbers[1]<br/>
1088						  (int) numbers[0] = 1<br/>
1089						  (int) numbers[1] = 12<br/>
1090		            </code> </p>
1091			Unlike many other visualization features, however, the access to synthetic children only works when using <code>frame variable</code>, and is
1092			not supported in <code>expression</code>:<br/>
1093            <code> <b>(lldb)</b> expression numbers[0]<br/>
1094				Error [IRForTarget]: Call to a function '_ZNSt33vector&lt;int, std::allocator&lt;int&gt; &gt;ixEm' that is not present in the target<br/>
1095				error: Couldn't convert the expression to DWARF<br/>
1096            </code> </p>
1097				The reason for this is that classes might have an overloaded <code><font color="blue">operator</font> []</code>, or other special provisions
1098				and the <code>expression</code> command chooses to ignore synthetic children in the interest of equivalency with code you asked to have compiled from source.
1099          </div>
1100        </div>
1101
1102        <div class="post">
1103          <h1 class="postheader">Filters</h1>
1104          <div class="postcontent">
1105	          <p>Filters are a solution to the display of complex classes.
1106			  At times, classes have many member variables but not all of these are actually
1107			necessary for the user to see.</p>
1108			 <p>A filter will solve this issue by only letting the user see those member
1109				variables he cares about. Of course, the equivalent of a filter can be implemented easily
1110				using synthetic children, but a filter lets you get the job done without having to write
1111				Python code.</p>
1112			<p>For instance, if your class <code>Foobar</code> has member variables named <code>A</code> thru <code>Z</code>, but you only need to see
1113				the ones named <code>B</code>, <code>H</code> and <code>Q</code>, you can define a filter:
1114			    <table class="stats" width="620" cellspacing="0">
1115	                    <td class="content">
1116	                        <b>(lldb)</b> type filter add Foobar --child B --child H --child Q
1117	                    </td>
1118	            </table>
1119	            <code> <b>(lldb)</b> frame variable a_foobar<br/>
1120					(Foobar) a_foobar = {<br/>
1121					  &nbsp;&nbsp;&nbsp;&nbsp;(int) B = 1<br/>
1122					  &nbsp;&nbsp;&nbsp;&nbsp;(char) H = 'H'<br/>
1123					  &nbsp;&nbsp;&nbsp;&nbsp;(std::string) Q = "Hello world"<br/>
1124					}<br/>
1125	            </code> </p>
1126          </div>
1127        </div>
1128        
1129		<div class="post">
1130          <h1 class="postheader">Objective-C dynamic type discovery</h1>
1131          <div class="postcontent">
1132          <p>When doing Objective-C development, you may notice that some of your variables
1133          come out as of type <code>id</code> (for instance, items extracted from <code>NSArray</code>).
1134By default, LLDB will not show you the real type of the object. it can actually dynamically discover the type of an Objective-C
1135          variable, much like the runtime itself does when invoking a selector. In order
1136          to be shown the result of that discovery that, however, a special option to <code>frame variable</code> or <code>expression</code> is
1137          required: <br/><code>--dynamic-type</code>.</p>
1138          <p><code>--dynamic-type</code> can have one of three values:
1139          <ul>
1140          <li><code>no-dynamic-values</code>: the default, prevents dynamic type discovery</li>
1141          <li><code>no-run-target</code>: enables dynamic type discovery as long as running
1142          code on the target is not required</li>
1143          <li><code>run-target</code>: enables code execution on the target in order to perform
1144          dynamic type discovery</li>
1145          </ul>
1146          </p>
1147          <p>
1148          If you specify a value of either <code>no-run-target</code> or <code>run-target</code>,
1149          LLDB will detect the dynamic type of your variables and show the appropriate formatters
1150          for them. As an example:
1151          </p>
1152          		<p><table class="stats" width="620" cellspacing="0">
1153	                    <td class="content">
1154	                        <b>(lldb)</b> expr @&quot;Hello&quot;
1155	                    </td>
1156	            </table>
1157	            <code>(NSString *) $0 = 0x00000001048000b0 @&quot;Hello&quot;<br/>
1158	            </code>
1159	      		<p><table class="stats" width="620" cellspacing="0">
1160	                    <td class="content">
1161	                        <b>(lldb)</b> expr -d no-run @&quot;Hello&quot;
1162	                    </td>
1163	            </table>
1164	            <code>(__NSCFString *) $1 = 0x00000001048000b0 @&quot;Hello&quot;<br/>
1165	            </code>
1166          <p>
1167          	Because LLDB uses a detection algorithm that does not need to invoke any functions
1168          	on the target process, <code>no-run-target</code> is enough for this to work.</p>
1169          	As a side note, the summary for NSString shown in the example is built right into LLDB.
1170			It was initially implemented through Python (the code is still available for reference at <a href="http://llvm.org/svn/llvm-project/lldb/trunk/examples/summaries/cocoa/CFString.py">CFString.py</a>).
1171			However, this is out of sync with the current implementation of the NSString formatter (which is a C++ function compiled into the LLDB core).
1172			</p>
1173          </div>
1174        </div>
1175
1176        <div class="post">
1177          <h1 class="postheader">Categories</h1>
1178          <div class="postcontent">          
1179	          <p>Categories are a way to group related formatters. For instance, LLDB itself groups
1180		      the formatters for the libstdc++ types in a category named <code>gnu-libstdc++</code>.
1181				Basically, categories act like containers in which to store formatters for a same library
1182			  or OS release.</p>
1183			  <p>By default, several categories are created in LLDB: 
1184				<ul>
1185					<li><code>default</code>: this is the category where every formatter ends up, unless another category is specified
1186		 			<li><code>objc</code>: formatters for basic and common Objective-C types that do not specifically depend on Mac OS X
1187					<li><code>gnu-libstdc++</code>: formatters for std::string, std::vector, std::list and std::map as implemented by libstdcpp
1188					<li><code>libcxx</code>: formatters for std::string, std::vector, std::list and std::map as implemented by <a href="http://libcxx.llvm.org/">libcxx</a>
1189					<li><code>system</code>: truly basic types for which a formatter is required
1190					<li><a href="https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/ObjC_classic/_index.html#//apple_ref/doc/uid/20001091"><code>AppKit</code></a>: Cocoa classes
1191					<li><a href="https://developer.apple.com/corefoundation/"><code>CoreFoundation</code></a>: CF classes
1192					<li><a href="https://developer.apple.com/library/mac/#documentation/CoreGraphics/Reference/CoreGraphicsConstantsRef/Reference/reference.html"><code>CoreGraphics</code></a>: CG classes
1193					<li><a href="http://developer.apple.com/library/mac/#documentation/Carbon/reference/CoreServicesReferenceCollection/_index.html"><code>CoreServices</code></a>: CS classes
1194					<li><code>VectorTypes</code>: compact display for several vector types
1195				</ul>
1196				If you want to use a custom category for your formatters, all the <code>type ... add</code> (except for <code>type format add</code>),
1197				provide a <code>--category</code> (<code>-w</code>) option, that names the category to add the formatter to.
1198				To delete the formatter, you then have to specify the correct category.</p>
1199				<p>Categories can be in one of two states: enabled and disabled. A category is initially disabled,
1200					and can be enabled using the <code>type category enable</code> command. To disable an enabled category,
1201					the command to use is <code>type category disable</code>. 
1202					<p>The order in which categories are enabled or disabled
1203					is significant, in that LLDB uses that order when looking for formatters. Therefore, when you enable a category, it becomes
1204					the second one to be searched (after <code>default</code>, which always stays on top of the list). The default categories are enabled in such a way that the search order is: 
1205					<ul>
1206					<li>default</li>
1207					<li>objc</li>
1208					<li>CoreFoundation</li>
1209					<li>AppKit</li>
1210					<li>CoreServices</li>
1211					<li>CoreGraphics</li>
1212					<li>gnu-libstdc++</li>
1213					<li>libcxx</li>
1214					<li>VectorTypes</li>
1215					<li>system</li>
1216					</ul>
1217					<p>As said, <code>gnu-libstdc++</code> and <code>libcxx</code> contain formatters for C++ STL
1218					data types. <code>system</code> contains formatters for <code>char*</code> and <code>char[]</code>, which reflect the behavior
1219					of older versions of LLDB which had built-in formatters for these types. Because now these are formatters, you can even
1220					replace them with your own if so you wish.</p>
1221				<p>There is no special command to create a category. When you place a formatter in a category, if that category does not
1222					exist, it is automatically created. For instance,</p>
1223					<p><table class="stats" width="620" cellspacing="0">
1224		                    <td class="content">
1225		                        <b>(lldb)</b> type summary add Foobar --summary-string "a foobar" --category newcategory
1226		                    </td>
1227		            </table>
1228				automatically creates a (disabled) category named newcategory.</p>
1229				<p>Another way to create a new (empty) category, is to enable it, as in:</p>
1230				<p><table class="stats" width="620" cellspacing="0">
1231	                    <td class="content">
1232	                        <b>(lldb)</b> type category enable newcategory
1233	                    </td>
1234	            </table>
1235				<p>However, in this case LLDB warns you that enabling an empty category has no effect. If you add formatters to the
1236					category after enabling it, they will be honored. But an empty category <i>per se</i> does not change the way any
1237					type is displayed. The reason the debugger warns you is that enabling an empty category might be a typo, and you
1238					effectively wanted to enable a similarly-named but not-empty category.</p>
1239          </div>
1240        </div>
1241
1242          <div class="post">
1243            <h1 class="postheader">Finding formatters 101</h1>
1244            <div class="postcontent">
1245              <p>While the rules for finding an appropriate format for a
1246                type are relatively simple (just go through typedef
1247                hierarchies), searching other formatters goes through
1248				a rather intricate set of rules. Namely, what happens is that LLDB
1249				starts looking in each enabled category, according to the order in which
1250				they were enabled (latest enabled first). In each category, LLDB does
1251				the following:</p>
1252              <ul>
1253                <li>If there is a formatter for the type of the variable,
1254                  use it</li>
1255                <li>If this object is a pointer, and there is a formatter
1256                  for the pointee type that does not skip pointers, use
1257                  it</li>
1258                <li>If this object is a reference, and there is a
1259                  formatter for the referred type that does not skip
1260                  references, use it</li>
1261                <li>If this object is an Objective-C class and dynamic types are enabled,
1262					look for a formatter for the dynamic type of the object. If dynamic types are disabled,
1263					or the search failed, look for a formatter for the declared type of the object</li>
1264                <li>If this object's type is a typedef, go through
1265                  typedef hierarchy (LLDB might not be able to do this if
1266                  the compiler has not emitted enough information. If the
1267                  required information to traverse typedef hierarchies is
1268                  missing, type cascading will not work. The
1269                  <a href="http://clang.llvm.org/">clang compiler</a>,
1270                  part of the LLVM project, emits the correct debugging
1271                  information for LLDB to cascade). If at any level of the hierarchy
1272				there is a valid formatter that can cascade, use it.</li>
1273                <li>If everything has failed, repeat the above search,
1274                  looking for regular expressions instead of exact
1275                  matches</li>
1276              </ul>
1277              <p>If any of those attempts returned a valid formatter to be used,
1278				  that one is used, and the search is terminated (without going to look
1279				in other categories). If nothing was found in the current category, the next
1280				enabled category is scanned according to the same algorithm. If there are no
1281				more enabled categories, the search has failed.</p>
1282				<p><font color=red>Warning</font>: previous versions of LLDB defined cascading to mean
1283					not only going through typedef chains, but also through inheritance chains.
1284					This feature has been removed since it significantly degrades performance.
1285					You need to set up your formatters for every type in inheritance chains to which
1286					you want the formatter to apply.</p>
1287            </div>
1288          </div>
1289        </div>
1290      </div>
1291    </div>
1292  </body>
1293</html>
1294