1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/MathExtras.h"
22#include <cassert>
23#include <climits>
24#include <cstring>
25#include <string>
26
27namespace llvm {
28class Deserializer;
29class FoldingSetNodeID;
30class Serializer;
31class StringRef;
32class hash_code;
33class raw_ostream;
34
35template <typename T> class SmallVectorImpl;
36
37// An unsigned host type used as a single part of a multi-part
38// bignum.
39typedef uint64_t integerPart;
40
41const unsigned int host_char_bit = 8;
42const unsigned int integerPartWidth =
43    host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
44
45//===----------------------------------------------------------------------===//
46//                              APInt Class
47//===----------------------------------------------------------------------===//
48
49/// \brief Class for arbitrary precision integers.
50///
51/// APInt is a functional replacement for common case unsigned integer type like
52/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
53/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
54/// than 64-bits of precision. APInt provides a variety of arithmetic operators
55/// and methods to manipulate integer values of any bit-width. It supports both
56/// the typical integer arithmetic and comparison operations as well as bitwise
57/// manipulation.
58///
59/// The class has several invariants worth noting:
60///   * All bit, byte, and word positions are zero-based.
61///   * Once the bit width is set, it doesn't change except by the Truncate,
62///     SignExtend, or ZeroExtend operations.
63///   * All binary operators must be on APInt instances of the same bit width.
64///     Attempting to use these operators on instances with different bit
65///     widths will yield an assertion.
66///   * The value is stored canonically as an unsigned value. For operations
67///     where it makes a difference, there are both signed and unsigned variants
68///     of the operation. For example, sdiv and udiv. However, because the bit
69///     widths must be the same, operations such as Mul and Add produce the same
70///     results regardless of whether the values are interpreted as signed or
71///     not.
72///   * In general, the class tries to follow the style of computation that LLVM
73///     uses in its IR. This simplifies its use for LLVM.
74///
75class APInt {
76  unsigned BitWidth; ///< The number of bits in this APInt.
77
78  /// This union is used to store the integer value. When the
79  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80  union {
81    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
82    uint64_t *pVal; ///< Used to store the >64 bits integer value.
83  };
84
85  /// This enum is used to hold the constants we needed for APInt.
86  enum {
87    /// Bits in a word
88    APINT_BITS_PER_WORD =
89        static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
90    /// Byte size of a word
91    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92  };
93
94  /// \brief Fast internal constructor
95  ///
96  /// This constructor is used only internally for speed of construction of
97  /// temporaries. It is unsafe for general use so it is not public.
98  APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99
100  /// \brief Determine if this APInt just has one word to store value.
101  ///
102  /// \returns true if the number of bits <= 64, false otherwise.
103  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104
105  /// \brief Determine which word a bit is in.
106  ///
107  /// \returns the word position for the specified bit position.
108  static unsigned whichWord(unsigned bitPosition) {
109    return bitPosition / APINT_BITS_PER_WORD;
110  }
111
112  /// \brief Determine which bit in a word a bit is in.
113  ///
114  /// \returns the bit position in a word for the specified bit position
115  /// in the APInt.
116  static unsigned whichBit(unsigned bitPosition) {
117    return bitPosition % APINT_BITS_PER_WORD;
118  }
119
120  /// \brief Get a single bit mask.
121  ///
122  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123  /// This method generates and returns a uint64_t (word) mask for a single
124  /// bit at a specific bit position. This is used to mask the bit in the
125  /// corresponding word.
126  static uint64_t maskBit(unsigned bitPosition) {
127    return 1ULL << whichBit(bitPosition);
128  }
129
130  /// \brief Clear unused high order bits
131  ///
132  /// This method is used internally to clear the to "N" bits in the high order
133  /// word that are not used by the APInt. This is needed after the most
134  /// significant word is assigned a value to ensure that those bits are
135  /// zero'd out.
136  APInt &clearUnusedBits() {
137    // Compute how many bits are used in the final word
138    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139    if (wordBits == 0)
140      // If all bits are used, we want to leave the value alone. This also
141      // avoids the undefined behavior of >> when the shift is the same size as
142      // the word size (64).
143      return *this;
144
145    // Mask out the high bits.
146    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147    if (isSingleWord())
148      VAL &= mask;
149    else
150      pVal[getNumWords() - 1] &= mask;
151    return *this;
152  }
153
154  /// \brief Get the word corresponding to a bit position
155  /// \returns the corresponding word for the specified bit position.
156  uint64_t getWord(unsigned bitPosition) const {
157    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158  }
159
160  /// \brief Convert a char array into an APInt
161  ///
162  /// \param radix 2, 8, 10, 16, or 36
163  /// Converts a string into a number.  The string must be non-empty
164  /// and well-formed as a number of the given base. The bit-width
165  /// must be sufficient to hold the result.
166  ///
167  /// This is used by the constructors that take string arguments.
168  ///
169  /// StringRef::getAsInteger is superficially similar but (1) does
170  /// not assume that the string is well-formed and (2) grows the
171  /// result to hold the input.
172  void fromString(unsigned numBits, StringRef str, uint8_t radix);
173
174  /// \brief An internal division function for dividing APInts.
175  ///
176  /// This is used by the toString method to divide by the radix. It simply
177  /// provides a more convenient form of divide for internal use since KnuthDiv
178  /// has specific constraints on its inputs. If those constraints are not met
179  /// then it provides a simpler form of divide.
180  static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181                     unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182
183  /// out-of-line slow case for inline constructor
184  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185
186  /// shared code between two array constructors
187  void initFromArray(ArrayRef<uint64_t> array);
188
189  /// out-of-line slow case for inline copy constructor
190  void initSlowCase(const APInt &that);
191
192  /// out-of-line slow case for shl
193  APInt shlSlowCase(unsigned shiftAmt) const;
194
195  /// out-of-line slow case for operator&
196  APInt AndSlowCase(const APInt &RHS) const;
197
198  /// out-of-line slow case for operator|
199  APInt OrSlowCase(const APInt &RHS) const;
200
201  /// out-of-line slow case for operator^
202  APInt XorSlowCase(const APInt &RHS) const;
203
204  /// out-of-line slow case for operator=
205  APInt &AssignSlowCase(const APInt &RHS);
206
207  /// out-of-line slow case for operator==
208  bool EqualSlowCase(const APInt &RHS) const;
209
210  /// out-of-line slow case for operator==
211  bool EqualSlowCase(uint64_t Val) const;
212
213  /// out-of-line slow case for countLeadingZeros
214  unsigned countLeadingZerosSlowCase() const;
215
216  /// out-of-line slow case for countTrailingOnes
217  unsigned countTrailingOnesSlowCase() const;
218
219  /// out-of-line slow case for countPopulation
220  unsigned countPopulationSlowCase() const;
221
222public:
223  /// \name Constructors
224  /// @{
225
226  /// \brief Create a new APInt of numBits width, initialized as val.
227  ///
228  /// If isSigned is true then val is treated as if it were a signed value
229  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231  /// the range of val are zero filled).
232  ///
233  /// \param numBits the bit width of the constructed APInt
234  /// \param val the initial value of the APInt
235  /// \param isSigned how to treat signedness of val
236  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
237      : BitWidth(numBits), VAL(0) {
238    assert(BitWidth && "bitwidth too small");
239    if (isSingleWord())
240      VAL = val;
241    else
242      initSlowCase(numBits, val, isSigned);
243    clearUnusedBits();
244  }
245
246  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247  ///
248  /// Note that bigVal.size() can be smaller or larger than the corresponding
249  /// bit width but any extraneous bits will be dropped.
250  ///
251  /// \param numBits the bit width of the constructed APInt
252  /// \param bigVal a sequence of words to form the initial value of the APInt
253  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254
255  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256  /// deprecated because this constructor is prone to ambiguity with the
257  /// APInt(unsigned, uint64_t, bool) constructor.
258  ///
259  /// If this overload is ever deleted, care should be taken to prevent calls
260  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261  /// constructor.
262  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263
264  /// \brief Construct an APInt from a string representation.
265  ///
266  /// This constructor interprets the string \p str in the given radix. The
267  /// interpretation stops when the first character that is not suitable for the
268  /// radix is encountered, or the end of the string. Acceptable radix values
269  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270  /// string to require more bits than numBits.
271  ///
272  /// \param numBits the bit width of the constructed APInt
273  /// \param str the string to be interpreted
274  /// \param radix the radix to use for the conversion
275  APInt(unsigned numBits, StringRef str, uint8_t radix);
276
277  /// Simply makes *this a copy of that.
278  /// @brief Copy Constructor.
279  APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280    assert(BitWidth && "bitwidth too small");
281    if (isSingleWord())
282      VAL = that.VAL;
283    else
284      initSlowCase(that);
285  }
286
287  /// \brief Move Constructor.
288  APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
289    that.BitWidth = 0;
290  }
291
292  /// \brief Destructor.
293  ~APInt() {
294    if (needsCleanup())
295      delete[] pVal;
296  }
297
298  /// \brief Default constructor that creates an uninitialized APInt.
299  ///
300  /// This is useful for object deserialization (pair this with the static
301  ///  method Read).
302  explicit APInt() : BitWidth(1) {}
303
304  /// \brief Returns whether this instance allocated memory.
305  bool needsCleanup() const { return !isSingleWord(); }
306
307  /// Used to insert APInt objects, or objects that contain APInt objects, into
308  ///  FoldingSets.
309  void Profile(FoldingSetNodeID &id) const;
310
311  /// @}
312  /// \name Value Tests
313  /// @{
314
315  /// \brief Determine sign of this APInt.
316  ///
317  /// This tests the high bit of this APInt to determine if it is set.
318  ///
319  /// \returns true if this APInt is negative, false otherwise
320  bool isNegative() const { return (*this)[BitWidth - 1]; }
321
322  /// \brief Determine if this APInt Value is non-negative (>= 0)
323  ///
324  /// This tests the high bit of the APInt to determine if it is unset.
325  bool isNonNegative() const { return !isNegative(); }
326
327  /// \brief Determine if this APInt Value is positive.
328  ///
329  /// This tests if the value of this APInt is positive (> 0). Note
330  /// that 0 is not a positive value.
331  ///
332  /// \returns true if this APInt is positive.
333  bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
334
335  /// \brief Determine if all bits are set
336  ///
337  /// This checks to see if the value has all bits of the APInt are set or not.
338  bool isAllOnesValue() const {
339    if (isSingleWord())
340      return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
341    return countPopulationSlowCase() == BitWidth;
342  }
343
344  /// \brief Determine if this is the largest unsigned value.
345  ///
346  /// This checks to see if the value of this APInt is the maximum unsigned
347  /// value for the APInt's bit width.
348  bool isMaxValue() const { return isAllOnesValue(); }
349
350  /// \brief Determine if this is the largest signed value.
351  ///
352  /// This checks to see if the value of this APInt is the maximum signed
353  /// value for the APInt's bit width.
354  bool isMaxSignedValue() const {
355    return BitWidth == 1 ? VAL == 0
356                         : !isNegative() && countPopulation() == BitWidth - 1;
357  }
358
359  /// \brief Determine if this is the smallest unsigned value.
360  ///
361  /// This checks to see if the value of this APInt is the minimum unsigned
362  /// value for the APInt's bit width.
363  bool isMinValue() const { return !*this; }
364
365  /// \brief Determine if this is the smallest signed value.
366  ///
367  /// This checks to see if the value of this APInt is the minimum signed
368  /// value for the APInt's bit width.
369  bool isMinSignedValue() const {
370    return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
371  }
372
373  /// \brief Check if this APInt has an N-bits unsigned integer value.
374  bool isIntN(unsigned N) const {
375    assert(N && "N == 0 ???");
376    return getActiveBits() <= N;
377  }
378
379  /// \brief Check if this APInt has an N-bits signed integer value.
380  bool isSignedIntN(unsigned N) const {
381    assert(N && "N == 0 ???");
382    return getMinSignedBits() <= N;
383  }
384
385  /// \brief Check if this APInt's value is a power of two greater than zero.
386  ///
387  /// \returns true if the argument APInt value is a power of two > 0.
388  bool isPowerOf2() const {
389    if (isSingleWord())
390      return isPowerOf2_64(VAL);
391    return countPopulationSlowCase() == 1;
392  }
393
394  /// \brief Check if the APInt's value is returned by getSignBit.
395  ///
396  /// \returns true if this is the value returned by getSignBit.
397  bool isSignBit() const { return isMinSignedValue(); }
398
399  /// \brief Convert APInt to a boolean value.
400  ///
401  /// This converts the APInt to a boolean value as a test against zero.
402  bool getBoolValue() const { return !!*this; }
403
404  /// If this value is smaller than the specified limit, return it, otherwise
405  /// return the limit value.  This causes the value to saturate to the limit.
406  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
407    return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
408                                                            : getZExtValue();
409  }
410
411  /// @}
412  /// \name Value Generators
413  /// @{
414
415  /// \brief Gets maximum unsigned value of APInt for specific bit width.
416  static APInt getMaxValue(unsigned numBits) {
417    return getAllOnesValue(numBits);
418  }
419
420  /// \brief Gets maximum signed value of APInt for a specific bit width.
421  static APInt getSignedMaxValue(unsigned numBits) {
422    APInt API = getAllOnesValue(numBits);
423    API.clearBit(numBits - 1);
424    return API;
425  }
426
427  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
428  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
429
430  /// \brief Gets minimum signed value of APInt for a specific bit width.
431  static APInt getSignedMinValue(unsigned numBits) {
432    APInt API(numBits, 0);
433    API.setBit(numBits - 1);
434    return API;
435  }
436
437  /// \brief Get the SignBit for a specific bit width.
438  ///
439  /// This is just a wrapper function of getSignedMinValue(), and it helps code
440  /// readability when we want to get a SignBit.
441  static APInt getSignBit(unsigned BitWidth) {
442    return getSignedMinValue(BitWidth);
443  }
444
445  /// \brief Get the all-ones value.
446  ///
447  /// \returns the all-ones value for an APInt of the specified bit-width.
448  static APInt getAllOnesValue(unsigned numBits) {
449    return APInt(numBits, UINT64_MAX, true);
450  }
451
452  /// \brief Get the '0' value.
453  ///
454  /// \returns the '0' value for an APInt of the specified bit-width.
455  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
456
457  /// \brief Compute an APInt containing numBits highbits from this APInt.
458  ///
459  /// Get an APInt with the same BitWidth as this APInt, just zero mask
460  /// the low bits and right shift to the least significant bit.
461  ///
462  /// \returns the high "numBits" bits of this APInt.
463  APInt getHiBits(unsigned numBits) const;
464
465  /// \brief Compute an APInt containing numBits lowbits from this APInt.
466  ///
467  /// Get an APInt with the same BitWidth as this APInt, just zero mask
468  /// the high bits.
469  ///
470  /// \returns the low "numBits" bits of this APInt.
471  APInt getLoBits(unsigned numBits) const;
472
473  /// \brief Return an APInt with exactly one bit set in the result.
474  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
475    APInt Res(numBits, 0);
476    Res.setBit(BitNo);
477    return Res;
478  }
479
480  /// \brief Get a value with a block of bits set.
481  ///
482  /// Constructs an APInt value that has a contiguous range of bits set. The
483  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
484  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
485  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
486  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
487  ///
488  /// \param numBits the intended bit width of the result
489  /// \param loBit the index of the lowest bit set.
490  /// \param hiBit the index of the highest bit set.
491  ///
492  /// \returns An APInt value with the requested bits set.
493  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
494    assert(hiBit <= numBits && "hiBit out of range");
495    assert(loBit < numBits && "loBit out of range");
496    if (hiBit < loBit)
497      return getLowBitsSet(numBits, hiBit) |
498             getHighBitsSet(numBits, numBits - loBit);
499    return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
500  }
501
502  /// \brief Get a value with high bits set
503  ///
504  /// Constructs an APInt value that has the top hiBitsSet bits set.
505  ///
506  /// \param numBits the bitwidth of the result
507  /// \param hiBitsSet the number of high-order bits set in the result.
508  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
509    assert(hiBitsSet <= numBits && "Too many bits to set!");
510    // Handle a degenerate case, to avoid shifting by word size
511    if (hiBitsSet == 0)
512      return APInt(numBits, 0);
513    unsigned shiftAmt = numBits - hiBitsSet;
514    // For small values, return quickly
515    if (numBits <= APINT_BITS_PER_WORD)
516      return APInt(numBits, ~0ULL << shiftAmt);
517    return getAllOnesValue(numBits).shl(shiftAmt);
518  }
519
520  /// \brief Get a value with low bits set
521  ///
522  /// Constructs an APInt value that has the bottom loBitsSet bits set.
523  ///
524  /// \param numBits the bitwidth of the result
525  /// \param loBitsSet the number of low-order bits set in the result.
526  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
527    assert(loBitsSet <= numBits && "Too many bits to set!");
528    // Handle a degenerate case, to avoid shifting by word size
529    if (loBitsSet == 0)
530      return APInt(numBits, 0);
531    if (loBitsSet == APINT_BITS_PER_WORD)
532      return APInt(numBits, UINT64_MAX);
533    // For small values, return quickly.
534    if (loBitsSet <= APINT_BITS_PER_WORD)
535      return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
536    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
537  }
538
539  /// \brief Return a value containing V broadcasted over NewLen bits.
540  static APInt getSplat(unsigned NewLen, const APInt &V) {
541    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
542
543    APInt Val = V.zextOrSelf(NewLen);
544    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
545      Val |= Val << I;
546
547    return Val;
548  }
549
550  /// \brief Determine if two APInts have the same value, after zero-extending
551  /// one of them (if needed!) to ensure that the bit-widths match.
552  static bool isSameValue(const APInt &I1, const APInt &I2) {
553    if (I1.getBitWidth() == I2.getBitWidth())
554      return I1 == I2;
555
556    if (I1.getBitWidth() > I2.getBitWidth())
557      return I1 == I2.zext(I1.getBitWidth());
558
559    return I1.zext(I2.getBitWidth()) == I2;
560  }
561
562  /// \brief Overload to compute a hash_code for an APInt value.
563  friend hash_code hash_value(const APInt &Arg);
564
565  /// This function returns a pointer to the internal storage of the APInt.
566  /// This is useful for writing out the APInt in binary form without any
567  /// conversions.
568  const uint64_t *getRawData() const {
569    if (isSingleWord())
570      return &VAL;
571    return &pVal[0];
572  }
573
574  /// @}
575  /// \name Unary Operators
576  /// @{
577
578  /// \brief Postfix increment operator.
579  ///
580  /// \returns a new APInt value representing *this incremented by one
581  const APInt operator++(int) {
582    APInt API(*this);
583    ++(*this);
584    return API;
585  }
586
587  /// \brief Prefix increment operator.
588  ///
589  /// \returns *this incremented by one
590  APInt &operator++();
591
592  /// \brief Postfix decrement operator.
593  ///
594  /// \returns a new APInt representing *this decremented by one.
595  const APInt operator--(int) {
596    APInt API(*this);
597    --(*this);
598    return API;
599  }
600
601  /// \brief Prefix decrement operator.
602  ///
603  /// \returns *this decremented by one.
604  APInt &operator--();
605
606  /// \brief Unary bitwise complement operator.
607  ///
608  /// Performs a bitwise complement operation on this APInt.
609  ///
610  /// \returns an APInt that is the bitwise complement of *this
611  APInt operator~() const {
612    APInt Result(*this);
613    Result.flipAllBits();
614    return Result;
615  }
616
617  /// \brief Unary negation operator
618  ///
619  /// Negates *this using two's complement logic.
620  ///
621  /// \returns An APInt value representing the negation of *this.
622  APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
623
624  /// \brief Logical negation operator.
625  ///
626  /// Performs logical negation operation on this APInt.
627  ///
628  /// \returns true if *this is zero, false otherwise.
629  bool operator!() const {
630    if (isSingleWord())
631      return !VAL;
632
633    for (unsigned i = 0; i != getNumWords(); ++i)
634      if (pVal[i])
635        return false;
636    return true;
637  }
638
639  /// @}
640  /// \name Assignment Operators
641  /// @{
642
643  /// \brief Copy assignment operator.
644  ///
645  /// \returns *this after assignment of RHS.
646  APInt &operator=(const APInt &RHS) {
647    // If the bitwidths are the same, we can avoid mucking with memory
648    if (isSingleWord() && RHS.isSingleWord()) {
649      VAL = RHS.VAL;
650      BitWidth = RHS.BitWidth;
651      return clearUnusedBits();
652    }
653
654    return AssignSlowCase(RHS);
655  }
656
657  /// @brief Move assignment operator.
658  APInt &operator=(APInt &&that) {
659    if (!isSingleWord())
660      delete[] pVal;
661
662    BitWidth = that.BitWidth;
663    VAL = that.VAL;
664
665    that.BitWidth = 0;
666
667    return *this;
668  }
669
670  /// \brief Assignment operator.
671  ///
672  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
673  /// the bit width, the excess bits are truncated. If the bit width is larger
674  /// than 64, the value is zero filled in the unspecified high order bits.
675  ///
676  /// \returns *this after assignment of RHS value.
677  APInt &operator=(uint64_t RHS);
678
679  /// \brief Bitwise AND assignment operator.
680  ///
681  /// Performs a bitwise AND operation on this APInt and RHS. The result is
682  /// assigned to *this.
683  ///
684  /// \returns *this after ANDing with RHS.
685  APInt &operator&=(const APInt &RHS);
686
687  /// \brief Bitwise OR assignment operator.
688  ///
689  /// Performs a bitwise OR operation on this APInt and RHS. The result is
690  /// assigned *this;
691  ///
692  /// \returns *this after ORing with RHS.
693  APInt &operator|=(const APInt &RHS);
694
695  /// \brief Bitwise OR assignment operator.
696  ///
697  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
698  /// logically zero-extended or truncated to match the bit-width of
699  /// the LHS.
700  APInt &operator|=(uint64_t RHS) {
701    if (isSingleWord()) {
702      VAL |= RHS;
703      clearUnusedBits();
704    } else {
705      pVal[0] |= RHS;
706    }
707    return *this;
708  }
709
710  /// \brief Bitwise XOR assignment operator.
711  ///
712  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
713  /// assigned to *this.
714  ///
715  /// \returns *this after XORing with RHS.
716  APInt &operator^=(const APInt &RHS);
717
718  /// \brief Multiplication assignment operator.
719  ///
720  /// Multiplies this APInt by RHS and assigns the result to *this.
721  ///
722  /// \returns *this
723  APInt &operator*=(const APInt &RHS);
724
725  /// \brief Addition assignment operator.
726  ///
727  /// Adds RHS to *this and assigns the result to *this.
728  ///
729  /// \returns *this
730  APInt &operator+=(const APInt &RHS);
731
732  /// \brief Subtraction assignment operator.
733  ///
734  /// Subtracts RHS from *this and assigns the result to *this.
735  ///
736  /// \returns *this
737  APInt &operator-=(const APInt &RHS);
738
739  /// \brief Left-shift assignment function.
740  ///
741  /// Shifts *this left by shiftAmt and assigns the result to *this.
742  ///
743  /// \returns *this after shifting left by shiftAmt
744  APInt &operator<<=(unsigned shiftAmt) {
745    *this = shl(shiftAmt);
746    return *this;
747  }
748
749  /// @}
750  /// \name Binary Operators
751  /// @{
752
753  /// \brief Bitwise AND operator.
754  ///
755  /// Performs a bitwise AND operation on *this and RHS.
756  ///
757  /// \returns An APInt value representing the bitwise AND of *this and RHS.
758  APInt operator&(const APInt &RHS) const {
759    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
760    if (isSingleWord())
761      return APInt(getBitWidth(), VAL & RHS.VAL);
762    return AndSlowCase(RHS);
763  }
764  APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
765    return this->operator&(RHS);
766  }
767
768  /// \brief Bitwise OR operator.
769  ///
770  /// Performs a bitwise OR operation on *this and RHS.
771  ///
772  /// \returns An APInt value representing the bitwise OR of *this and RHS.
773  APInt operator|(const APInt &RHS) const {
774    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
775    if (isSingleWord())
776      return APInt(getBitWidth(), VAL | RHS.VAL);
777    return OrSlowCase(RHS);
778  }
779
780  /// \brief Bitwise OR function.
781  ///
782  /// Performs a bitwise or on *this and RHS. This is implemented bny simply
783  /// calling operator|.
784  ///
785  /// \returns An APInt value representing the bitwise OR of *this and RHS.
786  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
787    return this->operator|(RHS);
788  }
789
790  /// \brief Bitwise XOR operator.
791  ///
792  /// Performs a bitwise XOR operation on *this and RHS.
793  ///
794  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
795  APInt operator^(const APInt &RHS) const {
796    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
797    if (isSingleWord())
798      return APInt(BitWidth, VAL ^ RHS.VAL);
799    return XorSlowCase(RHS);
800  }
801
802  /// \brief Bitwise XOR function.
803  ///
804  /// Performs a bitwise XOR operation on *this and RHS. This is implemented
805  /// through the usage of operator^.
806  ///
807  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
808  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
809    return this->operator^(RHS);
810  }
811
812  /// \brief Multiplication operator.
813  ///
814  /// Multiplies this APInt by RHS and returns the result.
815  APInt operator*(const APInt &RHS) const;
816
817  /// \brief Addition operator.
818  ///
819  /// Adds RHS to this APInt and returns the result.
820  APInt operator+(const APInt &RHS) const;
821  APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
822
823  /// \brief Subtraction operator.
824  ///
825  /// Subtracts RHS from this APInt and returns the result.
826  APInt operator-(const APInt &RHS) const;
827  APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
828
829  /// \brief Left logical shift operator.
830  ///
831  /// Shifts this APInt left by \p Bits and returns the result.
832  APInt operator<<(unsigned Bits) const { return shl(Bits); }
833
834  /// \brief Left logical shift operator.
835  ///
836  /// Shifts this APInt left by \p Bits and returns the result.
837  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
838
839  /// \brief Arithmetic right-shift function.
840  ///
841  /// Arithmetic right-shift this APInt by shiftAmt.
842  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
843
844  /// \brief Logical right-shift function.
845  ///
846  /// Logical right-shift this APInt by shiftAmt.
847  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
848
849  /// \brief Left-shift function.
850  ///
851  /// Left-shift this APInt by shiftAmt.
852  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
853    assert(shiftAmt <= BitWidth && "Invalid shift amount");
854    if (isSingleWord()) {
855      if (shiftAmt >= BitWidth)
856        return APInt(BitWidth, 0); // avoid undefined shift results
857      return APInt(BitWidth, VAL << shiftAmt);
858    }
859    return shlSlowCase(shiftAmt);
860  }
861
862  /// \brief Rotate left by rotateAmt.
863  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
864
865  /// \brief Rotate right by rotateAmt.
866  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
867
868  /// \brief Arithmetic right-shift function.
869  ///
870  /// Arithmetic right-shift this APInt by shiftAmt.
871  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
872
873  /// \brief Logical right-shift function.
874  ///
875  /// Logical right-shift this APInt by shiftAmt.
876  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
877
878  /// \brief Left-shift function.
879  ///
880  /// Left-shift this APInt by shiftAmt.
881  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
882
883  /// \brief Rotate left by rotateAmt.
884  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
885
886  /// \brief Rotate right by rotateAmt.
887  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
888
889  /// \brief Unsigned division operation.
890  ///
891  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
892  /// RHS are treated as unsigned quantities for purposes of this division.
893  ///
894  /// \returns a new APInt value containing the division result
895  APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
896
897  /// \brief Signed division function for APInt.
898  ///
899  /// Signed divide this APInt by APInt RHS.
900  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
901
902  /// \brief Unsigned remainder operation.
903  ///
904  /// Perform an unsigned remainder operation on this APInt with RHS being the
905  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
906  /// of this operation. Note that this is a true remainder operation and not a
907  /// modulo operation because the sign follows the sign of the dividend which
908  /// is *this.
909  ///
910  /// \returns a new APInt value containing the remainder result
911  APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
912
913  /// \brief Function for signed remainder operation.
914  ///
915  /// Signed remainder operation on APInt.
916  APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
917
918  /// \brief Dual division/remainder interface.
919  ///
920  /// Sometimes it is convenient to divide two APInt values and obtain both the
921  /// quotient and remainder. This function does both operations in the same
922  /// computation making it a little more efficient. The pair of input arguments
923  /// may overlap with the pair of output arguments. It is safe to call
924  /// udivrem(X, Y, X, Y), for example.
925  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
926                      APInt &Remainder);
927
928  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
929                      APInt &Remainder);
930
931  // Operations that return overflow indicators.
932  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
933  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
934  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
935  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
936  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
937  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
938  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
939  APInt sshl_ov(unsigned Amt, bool &Overflow) const;
940
941  /// \brief Array-indexing support.
942  ///
943  /// \returns the bit value at bitPosition
944  bool operator[](unsigned bitPosition) const {
945    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
946    return (maskBit(bitPosition) &
947            (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
948           0;
949  }
950
951  /// @}
952  /// \name Comparison Operators
953  /// @{
954
955  /// \brief Equality operator.
956  ///
957  /// Compares this APInt with RHS for the validity of the equality
958  /// relationship.
959  bool operator==(const APInt &RHS) const {
960    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
961    if (isSingleWord())
962      return VAL == RHS.VAL;
963    return EqualSlowCase(RHS);
964  }
965
966  /// \brief Equality operator.
967  ///
968  /// Compares this APInt with a uint64_t for the validity of the equality
969  /// relationship.
970  ///
971  /// \returns true if *this == Val
972  bool operator==(uint64_t Val) const {
973    if (isSingleWord())
974      return VAL == Val;
975    return EqualSlowCase(Val);
976  }
977
978  /// \brief Equality comparison.
979  ///
980  /// Compares this APInt with RHS for the validity of the equality
981  /// relationship.
982  ///
983  /// \returns true if *this == Val
984  bool eq(const APInt &RHS) const { return (*this) == RHS; }
985
986  /// \brief Inequality operator.
987  ///
988  /// Compares this APInt with RHS for the validity of the inequality
989  /// relationship.
990  ///
991  /// \returns true if *this != Val
992  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
993
994  /// \brief Inequality operator.
995  ///
996  /// Compares this APInt with a uint64_t for the validity of the inequality
997  /// relationship.
998  ///
999  /// \returns true if *this != Val
1000  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1001
1002  /// \brief Inequality comparison
1003  ///
1004  /// Compares this APInt with RHS for the validity of the inequality
1005  /// relationship.
1006  ///
1007  /// \returns true if *this != Val
1008  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1009
1010  /// \brief Unsigned less than comparison
1011  ///
1012  /// Regards both *this and RHS as unsigned quantities and compares them for
1013  /// the validity of the less-than relationship.
1014  ///
1015  /// \returns true if *this < RHS when both are considered unsigned.
1016  bool ult(const APInt &RHS) const;
1017
1018  /// \brief Unsigned less than comparison
1019  ///
1020  /// Regards both *this as an unsigned quantity and compares it with RHS for
1021  /// the validity of the less-than relationship.
1022  ///
1023  /// \returns true if *this < RHS when considered unsigned.
1024  bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1025
1026  /// \brief Signed less than comparison
1027  ///
1028  /// Regards both *this and RHS as signed quantities and compares them for
1029  /// validity of the less-than relationship.
1030  ///
1031  /// \returns true if *this < RHS when both are considered signed.
1032  bool slt(const APInt &RHS) const;
1033
1034  /// \brief Signed less than comparison
1035  ///
1036  /// Regards both *this as a signed quantity and compares it with RHS for
1037  /// the validity of the less-than relationship.
1038  ///
1039  /// \returns true if *this < RHS when considered signed.
1040  bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1041
1042  /// \brief Unsigned less or equal comparison
1043  ///
1044  /// Regards both *this and RHS as unsigned quantities and compares them for
1045  /// validity of the less-or-equal relationship.
1046  ///
1047  /// \returns true if *this <= RHS when both are considered unsigned.
1048  bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1049
1050  /// \brief Unsigned less or equal comparison
1051  ///
1052  /// Regards both *this as an unsigned quantity and compares it with RHS for
1053  /// the validity of the less-or-equal relationship.
1054  ///
1055  /// \returns true if *this <= RHS when considered unsigned.
1056  bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1057
1058  /// \brief Signed less or equal comparison
1059  ///
1060  /// Regards both *this and RHS as signed quantities and compares them for
1061  /// validity of the less-or-equal relationship.
1062  ///
1063  /// \returns true if *this <= RHS when both are considered signed.
1064  bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1065
1066  /// \brief Signed less or equal comparison
1067  ///
1068  /// Regards both *this as a signed quantity and compares it with RHS for the
1069  /// validity of the less-or-equal relationship.
1070  ///
1071  /// \returns true if *this <= RHS when considered signed.
1072  bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1073
1074  /// \brief Unsigned greather than comparison
1075  ///
1076  /// Regards both *this and RHS as unsigned quantities and compares them for
1077  /// the validity of the greater-than relationship.
1078  ///
1079  /// \returns true if *this > RHS when both are considered unsigned.
1080  bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1081
1082  /// \brief Unsigned greater than comparison
1083  ///
1084  /// Regards both *this as an unsigned quantity and compares it with RHS for
1085  /// the validity of the greater-than relationship.
1086  ///
1087  /// \returns true if *this > RHS when considered unsigned.
1088  bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1089
1090  /// \brief Signed greather than comparison
1091  ///
1092  /// Regards both *this and RHS as signed quantities and compares them for the
1093  /// validity of the greater-than relationship.
1094  ///
1095  /// \returns true if *this > RHS when both are considered signed.
1096  bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1097
1098  /// \brief Signed greater than comparison
1099  ///
1100  /// Regards both *this as a signed quantity and compares it with RHS for
1101  /// the validity of the greater-than relationship.
1102  ///
1103  /// \returns true if *this > RHS when considered signed.
1104  bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1105
1106  /// \brief Unsigned greater or equal comparison
1107  ///
1108  /// Regards both *this and RHS as unsigned quantities and compares them for
1109  /// validity of the greater-or-equal relationship.
1110  ///
1111  /// \returns true if *this >= RHS when both are considered unsigned.
1112  bool uge(const APInt &RHS) const { return !ult(RHS); }
1113
1114  /// \brief Unsigned greater or equal comparison
1115  ///
1116  /// Regards both *this as an unsigned quantity and compares it with RHS for
1117  /// the validity of the greater-or-equal relationship.
1118  ///
1119  /// \returns true if *this >= RHS when considered unsigned.
1120  bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1121
1122  /// \brief Signed greather or equal comparison
1123  ///
1124  /// Regards both *this and RHS as signed quantities and compares them for
1125  /// validity of the greater-or-equal relationship.
1126  ///
1127  /// \returns true if *this >= RHS when both are considered signed.
1128  bool sge(const APInt &RHS) const { return !slt(RHS); }
1129
1130  /// \brief Signed greater or equal comparison
1131  ///
1132  /// Regards both *this as a signed quantity and compares it with RHS for
1133  /// the validity of the greater-or-equal relationship.
1134  ///
1135  /// \returns true if *this >= RHS when considered signed.
1136  bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1137
1138  /// This operation tests if there are any pairs of corresponding bits
1139  /// between this APInt and RHS that are both set.
1140  bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1141
1142  /// @}
1143  /// \name Resizing Operators
1144  /// @{
1145
1146  /// \brief Truncate to new width.
1147  ///
1148  /// Truncate the APInt to a specified width. It is an error to specify a width
1149  /// that is greater than or equal to the current width.
1150  APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
1151
1152  /// \brief Sign extend to a new width.
1153  ///
1154  /// This operation sign extends the APInt to a new width. If the high order
1155  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1156  /// It is an error to specify a width that is less than or equal to the
1157  /// current width.
1158  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
1159
1160  /// \brief Zero extend to a new width.
1161  ///
1162  /// This operation zero extends the APInt to a new width. The high order bits
1163  /// are filled with 0 bits.  It is an error to specify a width that is less
1164  /// than or equal to the current width.
1165  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
1166
1167  /// \brief Sign extend or truncate to width
1168  ///
1169  /// Make this APInt have the bit width given by \p width. The value is sign
1170  /// extended, truncated, or left alone to make it that width.
1171  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
1172
1173  /// \brief Zero extend or truncate to width
1174  ///
1175  /// Make this APInt have the bit width given by \p width. The value is zero
1176  /// extended, truncated, or left alone to make it that width.
1177  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
1178
1179  /// \brief Sign extend or truncate to width
1180  ///
1181  /// Make this APInt have the bit width given by \p width. The value is sign
1182  /// extended, or left alone to make it that width.
1183  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
1184
1185  /// \brief Zero extend or truncate to width
1186  ///
1187  /// Make this APInt have the bit width given by \p width. The value is zero
1188  /// extended, or left alone to make it that width.
1189  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
1190
1191  /// @}
1192  /// \name Bit Manipulation Operators
1193  /// @{
1194
1195  /// \brief Set every bit to 1.
1196  void setAllBits() {
1197    if (isSingleWord())
1198      VAL = UINT64_MAX;
1199    else {
1200      // Set all the bits in all the words.
1201      for (unsigned i = 0; i < getNumWords(); ++i)
1202        pVal[i] = UINT64_MAX;
1203    }
1204    // Clear the unused ones
1205    clearUnusedBits();
1206  }
1207
1208  /// \brief Set a given bit to 1.
1209  ///
1210  /// Set the given bit to 1 whose position is given as "bitPosition".
1211  void setBit(unsigned bitPosition);
1212
1213  /// \brief Set every bit to 0.
1214  void clearAllBits() {
1215    if (isSingleWord())
1216      VAL = 0;
1217    else
1218      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1219  }
1220
1221  /// \brief Set a given bit to 0.
1222  ///
1223  /// Set the given bit to 0 whose position is given as "bitPosition".
1224  void clearBit(unsigned bitPosition);
1225
1226  /// \brief Toggle every bit to its opposite value.
1227  void flipAllBits() {
1228    if (isSingleWord())
1229      VAL ^= UINT64_MAX;
1230    else {
1231      for (unsigned i = 0; i < getNumWords(); ++i)
1232        pVal[i] ^= UINT64_MAX;
1233    }
1234    clearUnusedBits();
1235  }
1236
1237  /// \brief Toggles a given bit to its opposite value.
1238  ///
1239  /// Toggle a given bit to its opposite value whose position is given
1240  /// as "bitPosition".
1241  void flipBit(unsigned bitPosition);
1242
1243  /// @}
1244  /// \name Value Characterization Functions
1245  /// @{
1246
1247  /// \brief Return the number of bits in the APInt.
1248  unsigned getBitWidth() const { return BitWidth; }
1249
1250  /// \brief Get the number of words.
1251  ///
1252  /// Here one word's bitwidth equals to that of uint64_t.
1253  ///
1254  /// \returns the number of words to hold the integer value of this APInt.
1255  unsigned getNumWords() const { return getNumWords(BitWidth); }
1256
1257  /// \brief Get the number of words.
1258  ///
1259  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1260  ///
1261  /// \returns the number of words to hold the integer value with a given bit
1262  /// width.
1263  static unsigned getNumWords(unsigned BitWidth) {
1264    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1265  }
1266
1267  /// \brief Compute the number of active bits in the value
1268  ///
1269  /// This function returns the number of active bits which is defined as the
1270  /// bit width minus the number of leading zeros. This is used in several
1271  /// computations to see how "wide" the value is.
1272  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1273
1274  /// \brief Compute the number of active words in the value of this APInt.
1275  ///
1276  /// This is used in conjunction with getActiveData to extract the raw value of
1277  /// the APInt.
1278  unsigned getActiveWords() const {
1279    unsigned numActiveBits = getActiveBits();
1280    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1281  }
1282
1283  /// \brief Get the minimum bit size for this signed APInt
1284  ///
1285  /// Computes the minimum bit width for this APInt while considering it to be a
1286  /// signed (and probably negative) value. If the value is not negative, this
1287  /// function returns the same value as getActiveBits()+1. Otherwise, it
1288  /// returns the smallest bit width that will retain the negative value. For
1289  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1290  /// for -1, this function will always return 1.
1291  unsigned getMinSignedBits() const {
1292    if (isNegative())
1293      return BitWidth - countLeadingOnes() + 1;
1294    return getActiveBits() + 1;
1295  }
1296
1297  /// \brief Get zero extended value
1298  ///
1299  /// This method attempts to return the value of this APInt as a zero extended
1300  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1301  /// uint64_t. Otherwise an assertion will result.
1302  uint64_t getZExtValue() const {
1303    if (isSingleWord())
1304      return VAL;
1305    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1306    return pVal[0];
1307  }
1308
1309  /// \brief Get sign extended value
1310  ///
1311  /// This method attempts to return the value of this APInt as a sign extended
1312  /// int64_t. The bit width must be <= 64 or the value must fit within an
1313  /// int64_t. Otherwise an assertion will result.
1314  int64_t getSExtValue() const {
1315    if (isSingleWord())
1316      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1317             (APINT_BITS_PER_WORD - BitWidth);
1318    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1319    return int64_t(pVal[0]);
1320  }
1321
1322  /// \brief Get bits required for string value.
1323  ///
1324  /// This method determines how many bits are required to hold the APInt
1325  /// equivalent of the string given by \p str.
1326  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1327
1328  /// \brief The APInt version of the countLeadingZeros functions in
1329  ///   MathExtras.h.
1330  ///
1331  /// It counts the number of zeros from the most significant bit to the first
1332  /// one bit.
1333  ///
1334  /// \returns BitWidth if the value is zero, otherwise returns the number of
1335  ///   zeros from the most significant bit to the first one bits.
1336  unsigned countLeadingZeros() const {
1337    if (isSingleWord()) {
1338      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1339      return llvm::countLeadingZeros(VAL) - unusedBits;
1340    }
1341    return countLeadingZerosSlowCase();
1342  }
1343
1344  /// \brief Count the number of leading one bits.
1345  ///
1346  /// This function is an APInt version of the countLeadingOnes_{32,64}
1347  /// functions in MathExtras.h. It counts the number of ones from the most
1348  /// significant bit to the first zero bit.
1349  ///
1350  /// \returns 0 if the high order bit is not set, otherwise returns the number
1351  /// of 1 bits from the most significant to the least
1352  unsigned countLeadingOnes() const;
1353
1354  /// Computes the number of leading bits of this APInt that are equal to its
1355  /// sign bit.
1356  unsigned getNumSignBits() const {
1357    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1358  }
1359
1360  /// \brief Count the number of trailing zero bits.
1361  ///
1362  /// This function is an APInt version of the countTrailingZeros_{32,64}
1363  /// functions in MathExtras.h. It counts the number of zeros from the least
1364  /// significant bit to the first set bit.
1365  ///
1366  /// \returns BitWidth if the value is zero, otherwise returns the number of
1367  /// zeros from the least significant bit to the first one bit.
1368  unsigned countTrailingZeros() const;
1369
1370  /// \brief Count the number of trailing one bits.
1371  ///
1372  /// This function is an APInt version of the countTrailingOnes_{32,64}
1373  /// functions in MathExtras.h. It counts the number of ones from the least
1374  /// significant bit to the first zero bit.
1375  ///
1376  /// \returns BitWidth if the value is all ones, otherwise returns the number
1377  /// of ones from the least significant bit to the first zero bit.
1378  unsigned countTrailingOnes() const {
1379    if (isSingleWord())
1380      return CountTrailingOnes_64(VAL);
1381    return countTrailingOnesSlowCase();
1382  }
1383
1384  /// \brief Count the number of bits set.
1385  ///
1386  /// This function is an APInt version of the countPopulation_{32,64} functions
1387  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1388  ///
1389  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1390  unsigned countPopulation() const {
1391    if (isSingleWord())
1392      return CountPopulation_64(VAL);
1393    return countPopulationSlowCase();
1394  }
1395
1396  /// @}
1397  /// \name Conversion Functions
1398  /// @{
1399  void print(raw_ostream &OS, bool isSigned) const;
1400
1401  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1402  /// SmallString.
1403  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1404                bool formatAsCLiteral = false) const;
1405
1406  /// Considers the APInt to be unsigned and converts it into a string in the
1407  /// radix given. The radix can be 2, 8, 10 16, or 36.
1408  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1409    toString(Str, Radix, false, false);
1410  }
1411
1412  /// Considers the APInt to be signed and converts it into a string in the
1413  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1414  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1415    toString(Str, Radix, true, false);
1416  }
1417
1418  /// \brief Return the APInt as a std::string.
1419  ///
1420  /// Note that this is an inefficient method.  It is better to pass in a
1421  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1422  /// for the string.
1423  std::string toString(unsigned Radix, bool Signed) const;
1424
1425  /// \returns a byte-swapped representation of this APInt Value.
1426  APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
1427
1428  /// \brief Converts this APInt to a double value.
1429  double roundToDouble(bool isSigned) const;
1430
1431  /// \brief Converts this unsigned APInt to a double value.
1432  double roundToDouble() const { return roundToDouble(false); }
1433
1434  /// \brief Converts this signed APInt to a double value.
1435  double signedRoundToDouble() const { return roundToDouble(true); }
1436
1437  /// \brief Converts APInt bits to a double
1438  ///
1439  /// The conversion does not do a translation from integer to double, it just
1440  /// re-interprets the bits as a double. Note that it is valid to do this on
1441  /// any bit width. Exactly 64 bits will be translated.
1442  double bitsToDouble() const {
1443    union {
1444      uint64_t I;
1445      double D;
1446    } T;
1447    T.I = (isSingleWord() ? VAL : pVal[0]);
1448    return T.D;
1449  }
1450
1451  /// \brief Converts APInt bits to a double
1452  ///
1453  /// The conversion does not do a translation from integer to float, it just
1454  /// re-interprets the bits as a float. Note that it is valid to do this on
1455  /// any bit width. Exactly 32 bits will be translated.
1456  float bitsToFloat() const {
1457    union {
1458      unsigned I;
1459      float F;
1460    } T;
1461    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1462    return T.F;
1463  }
1464
1465  /// \brief Converts a double to APInt bits.
1466  ///
1467  /// The conversion does not do a translation from double to integer, it just
1468  /// re-interprets the bits of the double.
1469  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
1470    union {
1471      uint64_t I;
1472      double D;
1473    } T;
1474    T.D = V;
1475    return APInt(sizeof T * CHAR_BIT, T.I);
1476  }
1477
1478  /// \brief Converts a float to APInt bits.
1479  ///
1480  /// The conversion does not do a translation from float to integer, it just
1481  /// re-interprets the bits of the float.
1482  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
1483    union {
1484      unsigned I;
1485      float F;
1486    } T;
1487    T.F = V;
1488    return APInt(sizeof T * CHAR_BIT, T.I);
1489  }
1490
1491  /// @}
1492  /// \name Mathematics Operations
1493  /// @{
1494
1495  /// \returns the floor log base 2 of this APInt.
1496  unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1497
1498  /// \returns the ceil log base 2 of this APInt.
1499  unsigned ceilLogBase2() const {
1500    return BitWidth - (*this - 1).countLeadingZeros();
1501  }
1502
1503  /// \returns the nearest log base 2 of this APInt. Ties round up.
1504  ///
1505  /// NOTE: When we have a BitWidth of 1, we define:
1506  ///
1507  ///   log2(0) = UINT32_MAX
1508  ///   log2(1) = 0
1509  ///
1510  /// to get around any mathematical concerns resulting from
1511  /// referencing 2 in a space where 2 does no exist.
1512  unsigned nearestLogBase2() const {
1513    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1514    // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
1515    // UINT32_MAX.
1516    if (BitWidth == 1)
1517      return VAL - 1;
1518
1519    // Handle the zero case.
1520    if (!getBoolValue())
1521      return UINT32_MAX;
1522
1523    // The non-zero case is handled by computing:
1524    //
1525    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1526    //
1527    // where x[i] is referring to the value of the ith bit of x.
1528    unsigned lg = logBase2();
1529    return lg + unsigned((*this)[lg - 1]);
1530  }
1531
1532  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1533  /// otherwise
1534  int32_t exactLogBase2() const {
1535    if (!isPowerOf2())
1536      return -1;
1537    return logBase2();
1538  }
1539
1540  /// \brief Compute the square root
1541  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
1542
1543  /// \brief Get the absolute value;
1544  ///
1545  /// If *this is < 0 then return -(*this), otherwise *this;
1546  APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
1547    if (isNegative())
1548      return -(*this);
1549    return *this;
1550  }
1551
1552  /// \returns the multiplicative inverse for a given modulo.
1553  APInt multiplicativeInverse(const APInt &modulo) const;
1554
1555  /// @}
1556  /// \name Support for division by constant
1557  /// @{
1558
1559  /// Calculate the magic number for signed division by a constant.
1560  struct ms;
1561  ms magic() const;
1562
1563  /// Calculate the magic number for unsigned division by a constant.
1564  struct mu;
1565  mu magicu(unsigned LeadingZeros = 0) const;
1566
1567  /// @}
1568  /// \name Building-block Operations for APInt and APFloat
1569  /// @{
1570
1571  // These building block operations operate on a representation of arbitrary
1572  // precision, two's-complement, bignum integer values. They should be
1573  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1574  // generally a pointer to the base of an array of integer parts, representing
1575  // an unsigned bignum, and a count of how many parts there are.
1576
1577  /// Sets the least significant part of a bignum to the input value, and zeroes
1578  /// out higher parts.
1579  static void tcSet(integerPart *, integerPart, unsigned int);
1580
1581  /// Assign one bignum to another.
1582  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1583
1584  /// Returns true if a bignum is zero, false otherwise.
1585  static bool tcIsZero(const integerPart *, unsigned int);
1586
1587  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1588  static int tcExtractBit(const integerPart *, unsigned int bit);
1589
1590  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1591  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1592  /// significant bit of DST.  All high bits above srcBITS in DST are
1593  /// zero-filled.
1594  static void tcExtract(integerPart *, unsigned int dstCount,
1595                        const integerPart *, unsigned int srcBits,
1596                        unsigned int srcLSB);
1597
1598  /// Set the given bit of a bignum.  Zero-based.
1599  static void tcSetBit(integerPart *, unsigned int bit);
1600
1601  /// Clear the given bit of a bignum.  Zero-based.
1602  static void tcClearBit(integerPart *, unsigned int bit);
1603
1604  /// Returns the bit number of the least or most significant set bit of a
1605  /// number.  If the input number has no bits set -1U is returned.
1606  static unsigned int tcLSB(const integerPart *, unsigned int);
1607  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1608
1609  /// Negate a bignum in-place.
1610  static void tcNegate(integerPart *, unsigned int);
1611
1612  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1613  static integerPart tcAdd(integerPart *, const integerPart *,
1614                           integerPart carry, unsigned);
1615
1616  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1617  static integerPart tcSubtract(integerPart *, const integerPart *,
1618                                integerPart carry, unsigned);
1619
1620  /// DST += SRC * MULTIPLIER + PART   if add is true
1621  /// DST  = SRC * MULTIPLIER + PART   if add is false
1622  ///
1623  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1624  /// start at the same point, i.e. DST == SRC.
1625  ///
1626  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1627  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1628  /// result, and if all of the omitted higher parts were zero return zero,
1629  /// otherwise overflow occurred and return one.
1630  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1631                            integerPart multiplier, integerPart carry,
1632                            unsigned int srcParts, unsigned int dstParts,
1633                            bool add);
1634
1635  /// DST = LHS * RHS, where DST has the same width as the operands and is
1636  /// filled with the least significant parts of the result.  Returns one if
1637  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1638  /// operands.
1639  static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1640                        unsigned);
1641
1642  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1643  /// operands.  No overflow occurs.  DST must be disjoint from both
1644  /// operands. Returns the number of parts required to hold the result.
1645  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1646                                     const integerPart *, unsigned, unsigned);
1647
1648  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1649  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1650  /// REMAINDER to the remainder, return zero.  i.e.
1651  ///
1652  ///  OLD_LHS = RHS * LHS + REMAINDER
1653  ///
1654  /// SCRATCH is a bignum of the same size as the operands and result for use by
1655  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1656  /// REMAINDER and SCRATCH must be distinct.
1657  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1658                      integerPart *remainder, integerPart *scratch,
1659                      unsigned int parts);
1660
1661  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
1662  /// restrictions on COUNT.
1663  static void tcShiftLeft(integerPart *, unsigned int parts,
1664                          unsigned int count);
1665
1666  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
1667  /// restrictions on COUNT.
1668  static void tcShiftRight(integerPart *, unsigned int parts,
1669                           unsigned int count);
1670
1671  /// The obvious AND, OR and XOR and complement operations.
1672  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1673  static void tcOr(integerPart *, const integerPart *, unsigned int);
1674  static void tcXor(integerPart *, const integerPart *, unsigned int);
1675  static void tcComplement(integerPart *, unsigned int);
1676
1677  /// Comparison (unsigned) of two bignums.
1678  static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1679
1680  /// Increment a bignum in-place.  Return the carry flag.
1681  static integerPart tcIncrement(integerPart *, unsigned int);
1682
1683  /// Decrement a bignum in-place.  Return the borrow flag.
1684  static integerPart tcDecrement(integerPart *, unsigned int);
1685
1686  /// Set the least significant BITS and clear the rest.
1687  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1688                                        unsigned int bits);
1689
1690  /// \brief debug method
1691  void dump() const;
1692
1693  /// @}
1694};
1695
1696/// Magic data for optimising signed division by a constant.
1697struct APInt::ms {
1698  APInt m;    ///< magic number
1699  unsigned s; ///< shift amount
1700};
1701
1702/// Magic data for optimising unsigned division by a constant.
1703struct APInt::mu {
1704  APInt m;    ///< magic number
1705  bool a;     ///< add indicator
1706  unsigned s; ///< shift amount
1707};
1708
1709inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1710
1711inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1712
1713inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1714  I.print(OS, true);
1715  return OS;
1716}
1717
1718namespace APIntOps {
1719
1720/// \brief Determine the smaller of two APInts considered to be signed.
1721inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1722
1723/// \brief Determine the larger of two APInts considered to be signed.
1724inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1725
1726/// \brief Determine the smaller of two APInts considered to be signed.
1727inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1728
1729/// \brief Determine the larger of two APInts considered to be unsigned.
1730inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1731
1732/// \brief Check if the specified APInt has a N-bits unsigned integer value.
1733inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1734
1735/// \brief Check if the specified APInt has a N-bits signed integer value.
1736inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1737  return APIVal.isSignedIntN(N);
1738}
1739
1740/// \returns true if the argument APInt value is a sequence of ones starting at
1741/// the least significant bit with the remainder zero.
1742inline bool isMask(unsigned numBits, const APInt &APIVal) {
1743  return numBits <= APIVal.getBitWidth() &&
1744         APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1745}
1746
1747/// \brief Return true if the argument APInt value contains a sequence of ones
1748/// with the remainder zero.
1749inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1750  return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1751}
1752
1753/// \brief Returns a byte-swapped representation of the specified APInt Value.
1754inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1755
1756/// \brief Returns the floor log base 2 of the specified APInt value.
1757inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1758
1759/// \brief Compute GCD of two APInt values.
1760///
1761/// This function returns the greatest common divisor of the two APInt values
1762/// using Euclid's algorithm.
1763///
1764/// \returns the greatest common divisor of Val1 and Val2
1765APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1766
1767/// \brief Converts the given APInt to a double value.
1768///
1769/// Treats the APInt as an unsigned value for conversion purposes.
1770inline double RoundAPIntToDouble(const APInt &APIVal) {
1771  return APIVal.roundToDouble();
1772}
1773
1774/// \brief Converts the given APInt to a double value.
1775///
1776/// Treats the APInt as a signed value for conversion purposes.
1777inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1778  return APIVal.signedRoundToDouble();
1779}
1780
1781/// \brief Converts the given APInt to a float vlalue.
1782inline float RoundAPIntToFloat(const APInt &APIVal) {
1783  return float(RoundAPIntToDouble(APIVal));
1784}
1785
1786/// \brief Converts the given APInt to a float value.
1787///
1788/// Treast the APInt as a signed value for conversion purposes.
1789inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1790  return float(APIVal.signedRoundToDouble());
1791}
1792
1793/// \brief Converts the given double value into a APInt.
1794///
1795/// This function convert a double value to an APInt value.
1796APInt RoundDoubleToAPInt(double Double, unsigned width);
1797
1798/// \brief Converts a float value into a APInt.
1799///
1800/// Converts a float value into an APInt value.
1801inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1802  return RoundDoubleToAPInt(double(Float), width);
1803}
1804
1805/// \brief Arithmetic right-shift function.
1806///
1807/// Arithmetic right-shift the APInt by shiftAmt.
1808inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1809  return LHS.ashr(shiftAmt);
1810}
1811
1812/// \brief Logical right-shift function.
1813///
1814/// Logical right-shift the APInt by shiftAmt.
1815inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1816  return LHS.lshr(shiftAmt);
1817}
1818
1819/// \brief Left-shift function.
1820///
1821/// Left-shift the APInt by shiftAmt.
1822inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1823  return LHS.shl(shiftAmt);
1824}
1825
1826/// \brief Signed division function for APInt.
1827///
1828/// Signed divide APInt LHS by APInt RHS.
1829inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1830
1831/// \brief Unsigned division function for APInt.
1832///
1833/// Unsigned divide APInt LHS by APInt RHS.
1834inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1835
1836/// \brief Function for signed remainder operation.
1837///
1838/// Signed remainder operation on APInt.
1839inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1840
1841/// \brief Function for unsigned remainder operation.
1842///
1843/// Unsigned remainder operation on APInt.
1844inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1845
1846/// \brief Function for multiplication operation.
1847///
1848/// Performs multiplication on APInt values.
1849inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1850
1851/// \brief Function for addition operation.
1852///
1853/// Performs addition on APInt values.
1854inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1855
1856/// \brief Function for subtraction operation.
1857///
1858/// Performs subtraction on APInt values.
1859inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1860
1861/// \brief Bitwise AND function for APInt.
1862///
1863/// Performs bitwise AND operation on APInt LHS and
1864/// APInt RHS.
1865inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1866
1867/// \brief Bitwise OR function for APInt.
1868///
1869/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1870inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1871
1872/// \brief Bitwise XOR function for APInt.
1873///
1874/// Performs bitwise XOR operation on APInt.
1875inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1876
1877/// \brief Bitwise complement function.
1878///
1879/// Performs a bitwise complement operation on APInt.
1880inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1881
1882} // End of APIntOps namespace
1883
1884// See friend declaration above. This additional declaration is required in
1885// order to compile LLVM with IBM xlC compiler.
1886hash_code hash_value(const APInt &Arg);
1887} // End of llvm namespace
1888
1889#endif
1890