APInt.h revision 187784996c1bdf8aafb5f8719bcbde9260465865
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values and operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_APINT_H
16#define LLVM_APINT_H
17
18#include "llvm/Support/DataTypes.h"
19#include <cassert>
20#include <string>
21
22#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
23
24namespace llvm {
25  class Serializer;
26  class Deserializer;
27  class FoldingSetNodeID;
28
29  /* An unsigned host type used as a single part of a multi-part
30     bignum.  */
31  typedef uint64_t integerPart;
32
33  const unsigned int host_char_bit = 8;
34  const unsigned int integerPartWidth = host_char_bit * sizeof(integerPart);
35
36//===----------------------------------------------------------------------===//
37//                              APInt Class
38//===----------------------------------------------------------------------===//
39
40/// APInt - This class represents arbitrary precision constant integral values.
41/// It is a functional replacement for common case unsigned integer type like
42/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
43/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
44/// than 64-bits of precision. APInt provides a variety of arithmetic operators
45/// and methods to manipulate integer values of any bit-width. It supports both
46/// the typical integer arithmetic and comparison operations as well as bitwise
47/// manipulation.
48///
49/// The class has several invariants worth noting:
50///   * All bit, byte, and word positions are zero-based.
51///   * Once the bit width is set, it doesn't change except by the Truncate,
52///     SignExtend, or ZeroExtend operations.
53///   * All binary operators must be on APInt instances of the same bit width.
54///     Attempting to use these operators on instances with different bit
55///     widths will yield an assertion.
56///   * The value is stored canonically as an unsigned value. For operations
57///     where it makes a difference, there are both signed and unsigned variants
58///     of the operation. For example, sdiv and udiv. However, because the bit
59///     widths must be the same, operations such as Mul and Add produce the same
60///     results regardless of whether the values are interpreted as signed or
61///     not.
62///   * In general, the class tries to follow the style of computation that LLVM
63///     uses in its IR. This simplifies its use for LLVM.
64///
65/// @brief Class for arbitrary precision integers.
66class APInt {
67
68  uint32_t BitWidth;      ///< The number of bits in this APInt.
69
70  /// This union is used to store the integer value. When the
71  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
72  union {
73    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
74    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
75  };
76
77  /// This enum is used to hold the constants we needed for APInt.
78  enum {
79    APINT_BITS_PER_WORD = sizeof(uint64_t) * 8, ///< Bits in a word
80    APINT_WORD_SIZE = sizeof(uint64_t)          ///< Byte size of a word
81  };
82
83  /// This constructor is used only internally for speed of construction of
84  /// temporaries. It is unsafe for general use so it is not public.
85  /// @brief Fast internal constructor
86  APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { }
87
88  /// @returns true if the number of bits <= 64, false otherwise.
89  /// @brief Determine if this APInt just has one word to store value.
90  inline bool isSingleWord() const {
91    return BitWidth <= APINT_BITS_PER_WORD;
92  }
93
94  /// @returns the word position for the specified bit position.
95  /// @brief Determine which word a bit is in.
96  static inline uint32_t whichWord(uint32_t bitPosition) {
97    return bitPosition / APINT_BITS_PER_WORD;
98  }
99
100  /// @returns the bit position in a word for the specified bit position
101  /// in the APInt.
102  /// @brief Determine which bit in a word a bit is in.
103  static inline uint32_t whichBit(uint32_t bitPosition) {
104    return bitPosition % APINT_BITS_PER_WORD;
105  }
106
107  /// This method generates and returns a uint64_t (word) mask for a single
108  /// bit at a specific bit position. This is used to mask the bit in the
109  /// corresponding word.
110  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
111  /// @brief Get a single bit mask.
112  static inline uint64_t maskBit(uint32_t bitPosition) {
113    return 1ULL << whichBit(bitPosition);
114  }
115
116  /// This method is used internally to clear the to "N" bits in the high order
117  /// word that are not used by the APInt. This is needed after the most
118  /// significant word is assigned a value to ensure that those bits are
119  /// zero'd out.
120  /// @brief Clear unused high order bits
121  inline APInt& clearUnusedBits() {
122    // Compute how many bits are used in the final word
123    uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
124    if (wordBits == 0)
125      // If all bits are used, we want to leave the value alone. This also
126      // avoids the undefined behavior of >> when the shfit is the same size as
127      // the word size (64).
128      return *this;
129
130    // Mask out the hight bits.
131    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
132    if (isSingleWord())
133      VAL &= mask;
134    else
135      pVal[getNumWords() - 1] &= mask;
136    return *this;
137  }
138
139  /// @returns the corresponding word for the specified bit position.
140  /// @brief Get the word corresponding to a bit position
141  inline uint64_t getWord(uint32_t bitPosition) const {
142    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
143  }
144
145  /// This is used by the constructors that take string arguments.
146  /// @brief Convert a char array into an APInt
147  void fromString(uint32_t numBits, const char *strStart, uint32_t slen,
148                  uint8_t radix);
149
150  /// This is used by the toString method to divide by the radix. It simply
151  /// provides a more convenient form of divide for internal use since KnuthDiv
152  /// has specific constraints on its inputs. If those constraints are not met
153  /// then it provides a simpler form of divide.
154  /// @brief An internal division function for dividing APInts.
155  static void divide(const APInt LHS, uint32_t lhsWords,
156                     const APInt &RHS, uint32_t rhsWords,
157                     APInt *Quotient, APInt *Remainder);
158
159public:
160  /// @name Constructors
161  /// @{
162  /// If isSigned is true then val is treated as if it were a signed value
163  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
164  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
165  /// the range of val are zero filled).
166  /// @param numBits the bit width of the constructed APInt
167  /// @param val the initial value of the APInt
168  /// @param isSigned how to treat signedness of val
169  /// @brief Create a new APInt of numBits width, initialized as val.
170  APInt(uint32_t numBits, uint64_t val, bool isSigned = false);
171
172  /// Note that numWords can be smaller or larger than the corresponding bit
173  /// width but any extraneous bits will be dropped.
174  /// @param numBits the bit width of the constructed APInt
175  /// @param numWords the number of words in bigVal
176  /// @param bigVal a sequence of words to form the initial value of the APInt
177  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
178  APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]);
179
180  /// This constructor interprets Val as a string in the given radix. The
181  /// interpretation stops when the first charater that is not suitable for the
182  /// radix is encountered. Acceptable radix values are 2, 8, 10 and 16. It is
183  /// an error for the value implied by the string to require more bits than
184  /// numBits.
185  /// @param numBits the bit width of the constructed APInt
186  /// @param val the string to be interpreted
187  /// @param radix the radix of Val to use for the intepretation
188  /// @brief Construct an APInt from a string representation.
189  APInt(uint32_t numBits, const std::string& val, uint8_t radix);
190
191  /// This constructor interprets the slen characters starting at StrStart as
192  /// a string in the given radix. The interpretation stops when the first
193  /// character that is not suitable for the radix is encountered. Acceptable
194  /// radix values are 2, 8, 10 and 16. It is an error for the value implied by
195  /// the string to require more bits than numBits.
196  /// @param numBits the bit width of the constructed APInt
197  /// @param strStart the start of the string to be interpreted
198  /// @param slen the maximum number of characters to interpret
199  /// @param radix the radix to use for the conversion
200  /// @brief Construct an APInt from a string representation.
201  APInt(uint32_t numBits, const char strStart[], uint32_t slen, uint8_t radix);
202
203  /// Simply makes *this a copy of that.
204  /// @brief Copy Constructor.
205  APInt(const APInt& that);
206
207  /// @brief Destructor.
208  ~APInt();
209
210  /// Default constructor that creates an uninitialized APInt.  This is useful
211  ///  for object deserialization (pair this with the static method Read).
212  explicit APInt() : BitWidth(1) {}
213
214  /// Profile - Used to insert APInt objects, or objects that contain APInt
215  ///  objects, into FoldingSets.
216  void Profile(FoldingSetNodeID& id) const;
217
218  /// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
219  void Emit(Serializer& S) const;
220
221  /// @brief Used by the Bitcode deserializer to deserialize APInts.
222  void Read(Deserializer& D);
223
224  /// @}
225  /// @name Value Tests
226  /// @{
227  /// This tests the high bit of this APInt to determine if it is set.
228  /// @returns true if this APInt is negative, false otherwise
229  /// @brief Determine sign of this APInt.
230  bool isNegative() const {
231    return (*this)[BitWidth - 1];
232  }
233
234  /// This tests the high bit of the APInt to determine if it is unset.
235  /// @brief Determine if this APInt Value is positive (not negative).
236  bool isPositive() const {
237    return !isNegative();
238  }
239
240  /// This tests if the value of this APInt is strictly positive (> 0).
241  /// @returns true if this APInt is Positive and not zero.
242  /// @brief Determine if this APInt Value is strictly positive.
243  inline bool isStrictlyPositive() const {
244    return isPositive() && (*this) != 0;
245  }
246
247  /// This checks to see if the value has all bits of the APInt are set or not.
248  /// @brief Determine if all bits are set
249  inline bool isAllOnesValue() const {
250    return countPopulation() == BitWidth;
251  }
252
253  /// This checks to see if the value of this APInt is the maximum unsigned
254  /// value for the APInt's bit width.
255  /// @brief Determine if this is the largest unsigned value.
256  bool isMaxValue() const {
257    return countPopulation() == BitWidth;
258  }
259
260  /// This checks to see if the value of this APInt is the maximum signed
261  /// value for the APInt's bit width.
262  /// @brief Determine if this is the largest signed value.
263  bool isMaxSignedValue() const {
264    return BitWidth == 1 ? VAL == 0 :
265                          !isNegative() && countPopulation() == BitWidth - 1;
266  }
267
268  /// This checks to see if the value of this APInt is the minimum unsigned
269  /// value for the APInt's bit width.
270  /// @brief Determine if this is the smallest unsigned value.
271  bool isMinValue() const {
272    return countPopulation() == 0;
273  }
274
275  /// This checks to see if the value of this APInt is the minimum signed
276  /// value for the APInt's bit width.
277  /// @brief Determine if this is the smallest signed value.
278  bool isMinSignedValue() const {
279    return BitWidth == 1 ? VAL == 1 :
280                           isNegative() && countPopulation() == 1;
281  }
282
283  /// @brief Check if this APInt has an N-bits integer value.
284  inline bool isIntN(uint32_t N) const {
285    assert(N && "N == 0 ???");
286    if (isSingleWord()) {
287      return VAL == (VAL & (~0ULL >> (64 - N)));
288    } else {
289      APInt Tmp(N, getNumWords(), pVal);
290      return Tmp == (*this);
291    }
292  }
293
294  /// @returns true if the argument APInt value is a power of two > 0.
295  bool isPowerOf2() const;
296
297  /// isSignBit - Return true if this is the value returned by getSignBit.
298  bool isSignBit() const { return isMinSignedValue(); }
299
300  /// This converts the APInt to a boolean value as a test against zero.
301  /// @brief Boolean conversion function.
302  inline bool getBoolValue() const {
303    return *this != 0;
304  }
305
306  /// getLimitedValue - If this value is smaller than the specified limit,
307  /// return it, otherwise return the limit value.  This causes the value
308  /// to saturate to the limit.
309  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
310    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
311      Limit :  getZExtValue();
312  }
313
314  /// @}
315  /// @name Value Generators
316  /// @{
317  /// @brief Gets maximum unsigned value of APInt for specific bit width.
318  static APInt getMaxValue(uint32_t numBits) {
319    return APInt(numBits, 0).set();
320  }
321
322  /// @brief Gets maximum signed value of APInt for a specific bit width.
323  static APInt getSignedMaxValue(uint32_t numBits) {
324    return APInt(numBits, 0).set().clear(numBits - 1);
325  }
326
327  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
328  static APInt getMinValue(uint32_t numBits) {
329    return APInt(numBits, 0);
330  }
331
332  /// @brief Gets minimum signed value of APInt for a specific bit width.
333  static APInt getSignedMinValue(uint32_t numBits) {
334    return APInt(numBits, 0).set(numBits - 1);
335  }
336
337  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
338  /// it helps code readability when we want to get a SignBit.
339  /// @brief Get the SignBit for a specific bit width.
340  inline static APInt getSignBit(uint32_t BitWidth) {
341    return getSignedMinValue(BitWidth);
342  }
343
344  /// @returns the all-ones value for an APInt of the specified bit-width.
345  /// @brief Get the all-ones value.
346  static APInt getAllOnesValue(uint32_t numBits) {
347    return APInt(numBits, 0).set();
348  }
349
350  /// @returns the '0' value for an APInt of the specified bit-width.
351  /// @brief Get the '0' value.
352  static APInt getNullValue(uint32_t numBits) {
353    return APInt(numBits, 0);
354  }
355
356  /// Get an APInt with the same BitWidth as this APInt, just zero mask
357  /// the low bits and right shift to the least significant bit.
358  /// @returns the high "numBits" bits of this APInt.
359  APInt getHiBits(uint32_t numBits) const;
360
361  /// Get an APInt with the same BitWidth as this APInt, just zero mask
362  /// the high bits.
363  /// @returns the low "numBits" bits of this APInt.
364  APInt getLoBits(uint32_t numBits) const;
365
366  /// Constructs an APInt value that has a contiguous range of bits set. The
367  /// bits from loBit to hiBit will be set. All other bits will be zero. For
368  /// example, with parameters(32, 15, 0) you would get 0x0000FFFF. If hiBit is
369  /// less than loBit then the set bits "wrap". For example, with
370  /// parameters (32, 3, 28), you would get 0xF000000F.
371  /// @param numBits the intended bit width of the result
372  /// @param loBit the index of the lowest bit set.
373  /// @param hiBit the index of the highest bit set.
374  /// @returns An APInt value with the requested bits set.
375  /// @brief Get a value with a block of bits set.
376  static APInt getBitsSet(uint32_t numBits, uint32_t loBit, uint32_t hiBit) {
377    assert(hiBit < numBits && "hiBit out of range");
378    assert(loBit < numBits && "loBit out of range");
379    if (hiBit < loBit)
380      return getLowBitsSet(numBits, hiBit+1) |
381             getHighBitsSet(numBits, numBits-loBit+1);
382    return getLowBitsSet(numBits, hiBit-loBit+1).shl(loBit);
383  }
384
385  /// Constructs an APInt value that has the top hiBitsSet bits set.
386  /// @param numBits the bitwidth of the result
387  /// @param hiBitsSet the number of high-order bits set in the result.
388  /// @brief Get a value with high bits set
389  static APInt getHighBitsSet(uint32_t numBits, uint32_t hiBitsSet) {
390    assert(hiBitsSet <= numBits && "Too many bits to set!");
391    // Handle a degenerate case, to avoid shifting by word size
392    if (hiBitsSet == 0)
393      return APInt(numBits, 0);
394    uint32_t shiftAmt = numBits - hiBitsSet;
395    // For small values, return quickly
396    if (numBits <= APINT_BITS_PER_WORD)
397      return APInt(numBits, ~0ULL << shiftAmt);
398    return (~APInt(numBits, 0)).shl(shiftAmt);
399  }
400
401  /// Constructs an APInt value that has the bottom loBitsSet bits set.
402  /// @param numBits the bitwidth of the result
403  /// @param loBitsSet the number of low-order bits set in the result.
404  /// @brief Get a value with low bits set
405  static APInt getLowBitsSet(uint32_t numBits, uint32_t loBitsSet) {
406    assert(loBitsSet <= numBits && "Too many bits to set!");
407    // Handle a degenerate case, to avoid shifting by word size
408    if (loBitsSet == 0)
409      return APInt(numBits, 0);
410    if (loBitsSet == APINT_BITS_PER_WORD)
411      return APInt(numBits, -1ULL);
412    // For small values, return quickly
413    if (numBits < APINT_BITS_PER_WORD)
414      return APInt(numBits, (1ULL << loBitsSet) - 1);
415    return (~APInt(numBits, 0)).lshr(numBits - loBitsSet);
416  }
417
418  /// The hash value is computed as the sum of the words and the bit width.
419  /// @returns A hash value computed from the sum of the APInt words.
420  /// @brief Get a hash value based on this APInt
421  uint64_t getHashValue() const;
422
423  /// This function returns a pointer to the internal storage of the APInt.
424  /// This is useful for writing out the APInt in binary form without any
425  /// conversions.
426  inline const uint64_t* getRawData() const {
427    if (isSingleWord())
428      return &VAL;
429    return &pVal[0];
430  }
431
432  /// @}
433  /// @name Unary Operators
434  /// @{
435  /// @returns a new APInt value representing *this incremented by one
436  /// @brief Postfix increment operator.
437  inline const APInt operator++(int) {
438    APInt API(*this);
439    ++(*this);
440    return API;
441  }
442
443  /// @returns *this incremented by one
444  /// @brief Prefix increment operator.
445  APInt& operator++();
446
447  /// @returns a new APInt representing *this decremented by one.
448  /// @brief Postfix decrement operator.
449  inline const APInt operator--(int) {
450    APInt API(*this);
451    --(*this);
452    return API;
453  }
454
455  /// @returns *this decremented by one.
456  /// @brief Prefix decrement operator.
457  APInt& operator--();
458
459  /// Performs a bitwise complement operation on this APInt.
460  /// @returns an APInt that is the bitwise complement of *this
461  /// @brief Unary bitwise complement operator.
462  APInt operator~() const;
463
464  /// Negates *this using two's complement logic.
465  /// @returns An APInt value representing the negation of *this.
466  /// @brief Unary negation operator
467  inline APInt operator-() const {
468    return APInt(BitWidth, 0) - (*this);
469  }
470
471  /// Performs logical negation operation on this APInt.
472  /// @returns true if *this is zero, false otherwise.
473  /// @brief Logical negation operator.
474  bool operator !() const;
475
476  /// @}
477  /// @name Assignment Operators
478  /// @{
479  /// @returns *this after assignment of RHS.
480  /// @brief Copy assignment operator.
481  APInt& operator=(const APInt& RHS);
482
483  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
484  /// the bit width, the excess bits are truncated. If the bit width is larger
485  /// than 64, the value is zero filled in the unspecified high order bits.
486  /// @returns *this after assignment of RHS value.
487  /// @brief Assignment operator.
488  APInt& operator=(uint64_t RHS);
489
490  /// Performs a bitwise AND operation on this APInt and RHS. The result is
491  /// assigned to *this.
492  /// @returns *this after ANDing with RHS.
493  /// @brief Bitwise AND assignment operator.
494  APInt& operator&=(const APInt& RHS);
495
496  /// Performs a bitwise OR operation on this APInt and RHS. The result is
497  /// assigned *this;
498  /// @returns *this after ORing with RHS.
499  /// @brief Bitwise OR assignment operator.
500  APInt& operator|=(const APInt& RHS);
501
502  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
503  /// assigned to *this.
504  /// @returns *this after XORing with RHS.
505  /// @brief Bitwise XOR assignment operator.
506  APInt& operator^=(const APInt& RHS);
507
508  /// Multiplies this APInt by RHS and assigns the result to *this.
509  /// @returns *this
510  /// @brief Multiplication assignment operator.
511  APInt& operator*=(const APInt& RHS);
512
513  /// Adds RHS to *this and assigns the result to *this.
514  /// @returns *this
515  /// @brief Addition assignment operator.
516  APInt& operator+=(const APInt& RHS);
517
518  /// Subtracts RHS from *this and assigns the result to *this.
519  /// @returns *this
520  /// @brief Subtraction assignment operator.
521  APInt& operator-=(const APInt& RHS);
522
523  /// Shifts *this left by shiftAmt and assigns the result to *this.
524  /// @returns *this after shifting left by shiftAmt
525  /// @brief Left-shift assignment function.
526  inline APInt& operator<<=(uint32_t shiftAmt) {
527    *this = shl(shiftAmt);
528    return *this;
529  }
530
531  /// @}
532  /// @name Binary Operators
533  /// @{
534  /// Performs a bitwise AND operation on *this and RHS.
535  /// @returns An APInt value representing the bitwise AND of *this and RHS.
536  /// @brief Bitwise AND operator.
537  APInt operator&(const APInt& RHS) const;
538  APInt And(const APInt& RHS) const {
539    return this->operator&(RHS);
540  }
541
542  /// Performs a bitwise OR operation on *this and RHS.
543  /// @returns An APInt value representing the bitwise OR of *this and RHS.
544  /// @brief Bitwise OR operator.
545  APInt operator|(const APInt& RHS) const;
546  APInt Or(const APInt& RHS) const {
547    return this->operator|(RHS);
548  }
549
550  /// Performs a bitwise XOR operation on *this and RHS.
551  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
552  /// @brief Bitwise XOR operator.
553  APInt operator^(const APInt& RHS) const;
554  APInt Xor(const APInt& RHS) const {
555    return this->operator^(RHS);
556  }
557
558  /// Multiplies this APInt by RHS and returns the result.
559  /// @brief Multiplication operator.
560  APInt operator*(const APInt& RHS) const;
561
562  /// Adds RHS to this APInt and returns the result.
563  /// @brief Addition operator.
564  APInt operator+(const APInt& RHS) const;
565  APInt operator+(uint64_t RHS) const {
566    return (*this) + APInt(BitWidth, RHS);
567  }
568
569  /// Subtracts RHS from this APInt and returns the result.
570  /// @brief Subtraction operator.
571  APInt operator-(const APInt& RHS) const;
572  APInt operator-(uint64_t RHS) const {
573    return (*this) - APInt(BitWidth, RHS);
574  }
575
576  APInt operator<<(unsigned Bits) const {
577    return shl(Bits);
578  }
579
580  /// Arithmetic right-shift this APInt by shiftAmt.
581  /// @brief Arithmetic right-shift function.
582  APInt ashr(uint32_t shiftAmt) const;
583
584  /// Logical right-shift this APInt by shiftAmt.
585  /// @brief Logical right-shift function.
586  APInt lshr(uint32_t shiftAmt) const;
587
588  /// Left-shift this APInt by shiftAmt.
589  /// @brief Left-shift function.
590  APInt shl(uint32_t shiftAmt) const;
591
592  /// @brief Rotate left by rotateAmt.
593  APInt rotl(uint32_t rotateAmt) const;
594
595  /// @brief Rotate right by rotateAmt.
596  APInt rotr(uint32_t rotateAmt) const;
597
598  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
599  /// RHS are treated as unsigned quantities for purposes of this division.
600  /// @returns a new APInt value containing the division result
601  /// @brief Unsigned division operation.
602  APInt udiv(const APInt& RHS) const;
603
604  /// Signed divide this APInt by APInt RHS.
605  /// @brief Signed division function for APInt.
606  inline APInt sdiv(const APInt& RHS) const {
607    if (isNegative())
608      if (RHS.isNegative())
609        return (-(*this)).udiv(-RHS);
610      else
611        return -((-(*this)).udiv(RHS));
612    else if (RHS.isNegative())
613      return -(this->udiv(-RHS));
614    return this->udiv(RHS);
615  }
616
617  /// Perform an unsigned remainder operation on this APInt with RHS being the
618  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
619  /// of this operation. Note that this is a true remainder operation and not
620  /// a modulo operation because the sign follows the sign of the dividend
621  /// which is *this.
622  /// @returns a new APInt value containing the remainder result
623  /// @brief Unsigned remainder operation.
624  APInt urem(const APInt& RHS) const;
625
626  /// Signed remainder operation on APInt.
627  /// @brief Function for signed remainder operation.
628  inline APInt srem(const APInt& RHS) const {
629    if (isNegative())
630      if (RHS.isNegative())
631        return -((-(*this)).urem(-RHS));
632      else
633        return -((-(*this)).urem(RHS));
634    else if (RHS.isNegative())
635      return this->urem(-RHS);
636    return this->urem(RHS);
637  }
638
639  /// Sometimes it is convenient to divide two APInt values and obtain both
640  /// the quotient and remainder. This function does both operations in the
641  /// same computation making it a little more efficient.
642  /// @brief Dual division/remainder interface.
643  static void udivrem(const APInt &LHS, const APInt &RHS,
644                      APInt &Quotient, APInt &Remainder);
645
646  static void sdivrem(const APInt &LHS, const APInt &RHS,
647                      APInt &Quotient, APInt &Remainder)
648  {
649    if (LHS.isNegative()) {
650      if (RHS.isNegative())
651        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
652      else
653        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
654      Quotient = -Quotient;
655      Remainder = -Remainder;
656    } else if (RHS.isNegative()) {
657      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
658      Quotient = -Quotient;
659    } else {
660      APInt::udivrem(LHS, RHS, Quotient, Remainder);
661    }
662  }
663
664  /// @returns the bit value at bitPosition
665  /// @brief Array-indexing support.
666  bool operator[](uint32_t bitPosition) const;
667
668  /// @}
669  /// @name Comparison Operators
670  /// @{
671  /// Compares this APInt with RHS for the validity of the equality
672  /// relationship.
673  /// @brief Equality operator.
674  bool operator==(const APInt& RHS) const;
675
676  /// Compares this APInt with a uint64_t for the validity of the equality
677  /// relationship.
678  /// @returns true if *this == Val
679  /// @brief Equality operator.
680  bool operator==(uint64_t Val) const;
681
682  /// Compares this APInt with RHS for the validity of the equality
683  /// relationship.
684  /// @returns true if *this == Val
685  /// @brief Equality comparison.
686  bool eq(const APInt &RHS) const {
687    return (*this) == RHS;
688  }
689
690  /// Compares this APInt with RHS for the validity of the inequality
691  /// relationship.
692  /// @returns true if *this != Val
693  /// @brief Inequality operator.
694  inline bool operator!=(const APInt& RHS) const {
695    return !((*this) == RHS);
696  }
697
698  /// Compares this APInt with a uint64_t for the validity of the inequality
699  /// relationship.
700  /// @returns true if *this != Val
701  /// @brief Inequality operator.
702  inline bool operator!=(uint64_t Val) const {
703    return !((*this) == Val);
704  }
705
706  /// Compares this APInt with RHS for the validity of the inequality
707  /// relationship.
708  /// @returns true if *this != Val
709  /// @brief Inequality comparison
710  bool ne(const APInt &RHS) const {
711    return !((*this) == RHS);
712  }
713
714  /// Regards both *this and RHS as unsigned quantities and compares them for
715  /// the validity of the less-than relationship.
716  /// @returns true if *this < RHS when both are considered unsigned.
717  /// @brief Unsigned less than comparison
718  bool ult(const APInt& RHS) const;
719
720  /// Regards both *this and RHS as signed quantities and compares them for
721  /// validity of the less-than relationship.
722  /// @returns true if *this < RHS when both are considered signed.
723  /// @brief Signed less than comparison
724  bool slt(const APInt& RHS) const;
725
726  /// Regards both *this and RHS as unsigned quantities and compares them for
727  /// validity of the less-or-equal relationship.
728  /// @returns true if *this <= RHS when both are considered unsigned.
729  /// @brief Unsigned less or equal comparison
730  bool ule(const APInt& RHS) const {
731    return ult(RHS) || eq(RHS);
732  }
733
734  /// Regards both *this and RHS as signed quantities and compares them for
735  /// validity of the less-or-equal relationship.
736  /// @returns true if *this <= RHS when both are considered signed.
737  /// @brief Signed less or equal comparison
738  bool sle(const APInt& RHS) const {
739    return slt(RHS) || eq(RHS);
740  }
741
742  /// Regards both *this and RHS as unsigned quantities and compares them for
743  /// the validity of the greater-than relationship.
744  /// @returns true if *this > RHS when both are considered unsigned.
745  /// @brief Unsigned greather than comparison
746  bool ugt(const APInt& RHS) const {
747    return !ult(RHS) && !eq(RHS);
748  }
749
750  /// Regards both *this and RHS as signed quantities and compares them for
751  /// the validity of the greater-than relationship.
752  /// @returns true if *this > RHS when both are considered signed.
753  /// @brief Signed greather than comparison
754  bool sgt(const APInt& RHS) const {
755    return !slt(RHS) && !eq(RHS);
756  }
757
758  /// Regards both *this and RHS as unsigned quantities and compares them for
759  /// validity of the greater-or-equal relationship.
760  /// @returns true if *this >= RHS when both are considered unsigned.
761  /// @brief Unsigned greater or equal comparison
762  bool uge(const APInt& RHS) const {
763    return !ult(RHS);
764  }
765
766  /// Regards both *this and RHS as signed quantities and compares them for
767  /// validity of the greater-or-equal relationship.
768  /// @returns true if *this >= RHS when both are considered signed.
769  /// @brief Signed greather or equal comparison
770  bool sge(const APInt& RHS) const {
771    return !slt(RHS);
772  }
773
774  /// @}
775  /// @name Resizing Operators
776  /// @{
777  /// Truncate the APInt to a specified width. It is an error to specify a width
778  /// that is greater than or equal to the current width.
779  /// @brief Truncate to new width.
780  APInt &trunc(uint32_t width);
781
782  /// This operation sign extends the APInt to a new width. If the high order
783  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
784  /// It is an error to specify a width that is less than or equal to the
785  /// current width.
786  /// @brief Sign extend to a new width.
787  APInt &sext(uint32_t width);
788
789  /// This operation zero extends the APInt to a new width. The high order bits
790  /// are filled with 0 bits.  It is an error to specify a width that is less
791  /// than or equal to the current width.
792  /// @brief Zero extend to a new width.
793  APInt &zext(uint32_t width);
794
795  /// Make this APInt have the bit width given by \p width. The value is sign
796  /// extended, truncated, or left alone to make it that width.
797  /// @brief Sign extend or truncate to width
798  APInt &sextOrTrunc(uint32_t width);
799
800  /// Make this APInt have the bit width given by \p width. The value is zero
801  /// extended, truncated, or left alone to make it that width.
802  /// @brief Zero extend or truncate to width
803  APInt &zextOrTrunc(uint32_t width);
804
805  /// @}
806  /// @name Bit Manipulation Operators
807  /// @{
808  /// @brief Set every bit to 1.
809  APInt& set();
810
811  /// Set the given bit to 1 whose position is given as "bitPosition".
812  /// @brief Set a given bit to 1.
813  APInt& set(uint32_t bitPosition);
814
815  /// @brief Set every bit to 0.
816  APInt& clear();
817
818  /// Set the given bit to 0 whose position is given as "bitPosition".
819  /// @brief Set a given bit to 0.
820  APInt& clear(uint32_t bitPosition);
821
822  /// @brief Toggle every bit to its opposite value.
823  APInt& flip();
824
825  /// Toggle a given bit to its opposite value whose position is given
826  /// as "bitPosition".
827  /// @brief Toggles a given bit to its opposite value.
828  APInt& flip(uint32_t bitPosition);
829
830  /// @}
831  /// @name Value Characterization Functions
832  /// @{
833
834  /// @returns the total number of bits.
835  inline uint32_t getBitWidth() const {
836    return BitWidth;
837  }
838
839  /// Here one word's bitwidth equals to that of uint64_t.
840  /// @returns the number of words to hold the integer value of this APInt.
841  /// @brief Get the number of words.
842  inline uint32_t getNumWords() const {
843    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
844  }
845
846  /// This function returns the number of active bits which is defined as the
847  /// bit width minus the number of leading zeros. This is used in several
848  /// computations to see how "wide" the value is.
849  /// @brief Compute the number of active bits in the value
850  inline uint32_t getActiveBits() const {
851    return BitWidth - countLeadingZeros();
852  }
853
854  /// This function returns the number of active words in the value of this
855  /// APInt. This is used in conjunction with getActiveData to extract the raw
856  /// value of the APInt.
857  inline uint32_t getActiveWords() const {
858    return whichWord(getActiveBits()-1) + 1;
859  }
860
861  /// Computes the minimum bit width for this APInt while considering it to be
862  /// a signed (and probably negative) value. If the value is not negative,
863  /// this function returns the same value as getActiveBits(). Otherwise, it
864  /// returns the smallest bit width that will retain the negative value. For
865  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
866  /// for -1, this function will always return 1.
867  /// @brief Get the minimum bit size for this signed APInt
868  inline uint32_t getMinSignedBits() const {
869    if (isNegative())
870      return BitWidth - countLeadingOnes() + 1;
871    return getActiveBits()+1;
872  }
873
874  /// This method attempts to return the value of this APInt as a zero extended
875  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
876  /// uint64_t. Otherwise an assertion will result.
877  /// @brief Get zero extended value
878  inline uint64_t getZExtValue() const {
879    if (isSingleWord())
880      return VAL;
881    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
882    return pVal[0];
883  }
884
885  /// This method attempts to return the value of this APInt as a sign extended
886  /// int64_t. The bit width must be <= 64 or the value must fit within an
887  /// int64_t. Otherwise an assertion will result.
888  /// @brief Get sign extended value
889  inline int64_t getSExtValue() const {
890    if (isSingleWord())
891      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
892                     (APINT_BITS_PER_WORD - BitWidth);
893    assert(getActiveBits() <= 64 && "Too many bits for int64_t");
894    return int64_t(pVal[0]);
895  }
896
897  /// This method determines how many bits are required to hold the APInt
898  /// equivalent of the string given by \p str of length \p slen.
899  /// @brief Get bits required for string value.
900  static uint32_t getBitsNeeded(const char* str, uint32_t slen, uint8_t radix);
901
902  /// countLeadingZeros - This function is an APInt version of the
903  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
904  /// of zeros from the most significant bit to the first one bit.
905  /// @returns BitWidth if the value is zero.
906  /// @returns the number of zeros from the most significant bit to the first
907  /// one bits.
908  uint32_t countLeadingZeros() const;
909
910  /// countLeadingOnes - This function counts the number of contiguous 1 bits
911  /// in the high order bits. The count stops when the first 0 bit is reached.
912  /// @returns 0 if the high order bit is not set
913  /// @returns the number of 1 bits from the most significant to the least
914  /// @brief Count the number of leading one bits.
915  uint32_t countLeadingOnes() const;
916
917  /// countTrailingZeros - This function is an APInt version of the
918  /// countTrailingZoers_{32,64} functions in MathExtras.h. It counts
919  /// the number of zeros from the least significant bit to the first set bit.
920  /// @returns BitWidth if the value is zero.
921  /// @returns the number of zeros from the least significant bit to the first
922  /// one bit.
923  /// @brief Count the number of trailing zero bits.
924  uint32_t countTrailingZeros() const;
925
926  /// countPopulation - This function is an APInt version of the
927  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
928  /// of 1 bits in the APInt value.
929  /// @returns 0 if the value is zero.
930  /// @returns the number of set bits.
931  /// @brief Count the number of bits set.
932  uint32_t countPopulation() const;
933
934  /// @}
935  /// @name Conversion Functions
936  /// @{
937
938  /// This is used internally to convert an APInt to a string.
939  /// @brief Converts an APInt to a std::string
940  std::string toString(uint8_t radix, bool wantSigned) const;
941
942  /// Considers the APInt to be unsigned and converts it into a string in the
943  /// radix given. The radix can be 2, 8, 10 or 16.
944  /// @returns a character interpretation of the APInt
945  /// @brief Convert unsigned APInt to string representation.
946  inline std::string toStringUnsigned(uint8_t radix = 10) const {
947    return toString(radix, false);
948  }
949
950  /// Considers the APInt to be unsigned and converts it into a string in the
951  /// radix given. The radix can be 2, 8, 10 or 16.
952  /// @returns a character interpretation of the APInt
953  /// @brief Convert unsigned APInt to string representation.
954  inline std::string toStringSigned(uint8_t radix = 10) const {
955    return toString(radix, true);
956  }
957
958  /// @returns a byte-swapped representation of this APInt Value.
959  APInt byteSwap() const;
960
961  /// @brief Converts this APInt to a double value.
962  double roundToDouble(bool isSigned) const;
963
964  /// @brief Converts this unsigned APInt to a double value.
965  double roundToDouble() const {
966    return roundToDouble(false);
967  }
968
969  /// @brief Converts this signed APInt to a double value.
970  double signedRoundToDouble() const {
971    return roundToDouble(true);
972  }
973
974  /// The conversion does not do a translation from integer to double, it just
975  /// re-interprets the bits as a double. Note that it is valid to do this on
976  /// any bit width. Exactly 64 bits will be translated.
977  /// @brief Converts APInt bits to a double
978  double bitsToDouble() const {
979    union {
980      uint64_t I;
981      double D;
982    } T;
983    T.I = (isSingleWord() ? VAL : pVal[0]);
984    return T.D;
985  }
986
987  /// The conversion does not do a translation from integer to float, it just
988  /// re-interprets the bits as a float. Note that it is valid to do this on
989  /// any bit width. Exactly 32 bits will be translated.
990  /// @brief Converts APInt bits to a double
991  float bitsToFloat() const {
992    union {
993      uint32_t I;
994      float F;
995    } T;
996    T.I = uint32_t((isSingleWord() ? VAL : pVal[0]));
997    return T.F;
998  }
999
1000  /// The conversion does not do a translation from double to integer, it just
1001  /// re-interprets the bits of the double. Note that it is valid to do this on
1002  /// any bit width but bits from V may get truncated.
1003  /// @brief Converts a double to APInt bits.
1004  APInt& doubleToBits(double V) {
1005    union {
1006      uint64_t I;
1007      double D;
1008    } T;
1009    T.D = V;
1010    if (isSingleWord())
1011      VAL = T.I;
1012    else
1013      pVal[0] = T.I;
1014    return clearUnusedBits();
1015  }
1016
1017  /// The conversion does not do a translation from float to integer, it just
1018  /// re-interprets the bits of the float. Note that it is valid to do this on
1019  /// any bit width but bits from V may get truncated.
1020  /// @brief Converts a float to APInt bits.
1021  APInt& floatToBits(float V) {
1022    union {
1023      uint32_t I;
1024      float F;
1025    } T;
1026    T.F = V;
1027    if (isSingleWord())
1028      VAL = T.I;
1029    else
1030      pVal[0] = T.I;
1031    return clearUnusedBits();
1032  }
1033
1034  /// @}
1035  /// @name Mathematics Operations
1036  /// @{
1037
1038  /// @returns the floor log base 2 of this APInt.
1039  inline uint32_t logBase2() const {
1040    return BitWidth - 1 - countLeadingZeros();
1041  }
1042
1043  /// @returns the log base 2 of this APInt if its an exact power of two, -1
1044  /// otherwise
1045  inline int32_t exactLogBase2() const {
1046    if (!isPowerOf2())
1047      return -1;
1048    return logBase2();
1049  }
1050
1051  /// @brief Compute the square root
1052  APInt sqrt() const;
1053
1054  /// If *this is < 0 then return -(*this), otherwise *this;
1055  /// @brief Get the absolute value;
1056  APInt abs() const {
1057    if (isNegative())
1058      return -(*this);
1059    return *this;
1060  }
1061
1062  /// @}
1063
1064  /// @}
1065  /// @name Building-block Operations for APInt and APFloat
1066  /// @{
1067
1068  // These building block operations operate on a representation of
1069  // arbitrary precision, two's-complement, bignum integer values.
1070  // They should be sufficient to implement APInt and APFloat bignum
1071  // requirements.  Inputs are generally a pointer to the base of an
1072  // array of integer parts, representing an unsigned bignum, and a
1073  // count of how many parts there are.
1074
1075  /// Sets the least significant part of a bignum to the input value,
1076  /// and zeroes out higher parts.  */
1077  static void tcSet(integerPart *, integerPart, unsigned int);
1078
1079  /// Assign one bignum to another.
1080  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1081
1082  /// Returns true if a bignum is zero, false otherwise.
1083  static bool tcIsZero(const integerPart *, unsigned int);
1084
1085  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1086  static int tcExtractBit(const integerPart *, unsigned int bit);
1087
1088  /// Copy the bit vector of width srcBITS from SRC, starting at bit
1089  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1090  /// becomes the least significant bit of DST.  All high bits above
1091  /// srcBITS in DST are zero-filled.
1092  static void tcExtract(integerPart *, unsigned int dstCount, const integerPart *,
1093                        unsigned int srcBits, unsigned int srcLSB);
1094
1095  /// Set the given bit of a bignum.  Zero-based.
1096  static void tcSetBit(integerPart *, unsigned int bit);
1097
1098  /// Returns the bit number of the least or most significant set bit
1099  /// of a number.  If the input number has no bits set -1U is
1100  /// returned.
1101  static unsigned int tcLSB(const integerPart *, unsigned int);
1102  static unsigned int tcMSB(const integerPart *, unsigned int);
1103
1104  /// Negate a bignum in-place.
1105  static void tcNegate(integerPart *, unsigned int);
1106
1107  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1108  /// carry flag.
1109  static integerPart tcAdd(integerPart *, const integerPart *,
1110			   integerPart carry, unsigned);
1111
1112  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1113  /// carry flag.
1114  static integerPart tcSubtract(integerPart *, const integerPart *,
1115				integerPart carry, unsigned);
1116
1117  ///  DST += SRC * MULTIPLIER + PART   if add is true
1118  ///  DST  = SRC * MULTIPLIER + PART   if add is false
1119  ///
1120  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1121  ///  they must start at the same point, i.e. DST == SRC.
1122  ///
1123  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1124  ///  returned.  Otherwise DST is filled with the least significant
1125  ///  DSTPARTS parts of the result, and if all of the omitted higher
1126  ///  parts were zero return zero, otherwise overflow occurred and
1127  ///  return one.
1128  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1129			    integerPart multiplier, integerPart carry,
1130			    unsigned int srcParts, unsigned int dstParts,
1131			    bool add);
1132
1133  /// DST = LHS * RHS, where DST has the same width as the operands
1134  /// and is filled with the least significant parts of the result.
1135  /// Returns one if overflow occurred, otherwise zero.  DST must be
1136  /// disjoint from both operands.
1137  static int tcMultiply(integerPart *, const integerPart *,
1138			const integerPart *, unsigned);
1139
1140  /// DST = LHS * RHS, where DST has width the sum of the widths of
1141  /// the operands.  No overflow occurs.  DST must be disjoint from
1142  /// both operands. Returns the number of parts required to hold the
1143  /// result.
1144  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1145				     const integerPart *, unsigned, unsigned);
1146
1147  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1148  /// Otherwise set LHS to LHS / RHS with the fractional part
1149  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1150  ///
1151  ///  OLD_LHS = RHS * LHS + REMAINDER
1152  ///
1153  ///  SCRATCH is a bignum of the same size as the operands and result
1154  ///  for use by the routine; its contents need not be initialized
1155  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1156  ///  distinct.
1157  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1158		      integerPart *remainder, integerPart *scratch,
1159		      unsigned int parts);
1160
1161  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1162  /// There are no restrictions on COUNT.
1163  static void tcShiftLeft(integerPart *, unsigned int parts,
1164			  unsigned int count);
1165
1166  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1167  /// There are no restrictions on COUNT.
1168  static void tcShiftRight(integerPart *, unsigned int parts,
1169			   unsigned int count);
1170
1171  /// The obvious AND, OR and XOR and complement operations.
1172  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1173  static void tcOr(integerPart *, const integerPart *, unsigned int);
1174  static void tcXor(integerPart *, const integerPart *, unsigned int);
1175  static void tcComplement(integerPart *, unsigned int);
1176
1177  /// Comparison (unsigned) of two bignums.
1178  static int tcCompare(const integerPart *, const integerPart *,
1179		       unsigned int);
1180
1181  /// Increment a bignum in-place.  Return the carry flag.
1182  static integerPart tcIncrement(integerPart *, unsigned int);
1183
1184  /// Set the least significant BITS and clear the rest.
1185  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1186					unsigned int bits);
1187
1188  /// @brief debug method
1189  void dump() const;
1190
1191  /// @}
1192};
1193
1194inline bool operator==(uint64_t V1, const APInt& V2) {
1195  return V2 == V1;
1196}
1197
1198inline bool operator!=(uint64_t V1, const APInt& V2) {
1199  return V2 != V1;
1200}
1201
1202namespace APIntOps {
1203
1204/// @brief Determine the smaller of two APInts considered to be signed.
1205inline APInt smin(const APInt &A, const APInt &B) {
1206  return A.slt(B) ? A : B;
1207}
1208
1209/// @brief Determine the larger of two APInts considered to be signed.
1210inline APInt smax(const APInt &A, const APInt &B) {
1211  return A.sgt(B) ? A : B;
1212}
1213
1214/// @brief Determine the smaller of two APInts considered to be signed.
1215inline APInt umin(const APInt &A, const APInt &B) {
1216  return A.ult(B) ? A : B;
1217}
1218
1219/// @brief Determine the larger of two APInts considered to be unsigned.
1220inline APInt umax(const APInt &A, const APInt &B) {
1221  return A.ugt(B) ? A : B;
1222}
1223
1224/// @brief Check if the specified APInt has a N-bits integer value.
1225inline bool isIntN(uint32_t N, const APInt& APIVal) {
1226  return APIVal.isIntN(N);
1227}
1228
1229/// @returns true if the argument APInt value is a sequence of ones
1230/// starting at the least significant bit with the remainder zero.
1231inline bool isMask(uint32_t numBits, const APInt& APIVal) {
1232  return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0;
1233}
1234
1235/// @returns true if the argument APInt value contains a sequence of ones
1236/// with the remainder zero.
1237inline bool isShiftedMask(uint32_t numBits, const APInt& APIVal) {
1238  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1239}
1240
1241/// @returns a byte-swapped representation of the specified APInt Value.
1242inline APInt byteSwap(const APInt& APIVal) {
1243  return APIVal.byteSwap();
1244}
1245
1246/// @returns the floor log base 2 of the specified APInt value.
1247inline uint32_t logBase2(const APInt& APIVal) {
1248  return APIVal.logBase2();
1249}
1250
1251/// GreatestCommonDivisor - This function returns the greatest common
1252/// divisor of the two APInt values using Enclid's algorithm.
1253/// @returns the greatest common divisor of Val1 and Val2
1254/// @brief Compute GCD of two APInt values.
1255APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1256
1257/// Treats the APInt as an unsigned value for conversion purposes.
1258/// @brief Converts the given APInt to a double value.
1259inline double RoundAPIntToDouble(const APInt& APIVal) {
1260  return APIVal.roundToDouble();
1261}
1262
1263/// Treats the APInt as a signed value for conversion purposes.
1264/// @brief Converts the given APInt to a double value.
1265inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1266  return APIVal.signedRoundToDouble();
1267}
1268
1269/// @brief Converts the given APInt to a float vlalue.
1270inline float RoundAPIntToFloat(const APInt& APIVal) {
1271  return float(RoundAPIntToDouble(APIVal));
1272}
1273
1274/// Treast the APInt as a signed value for conversion purposes.
1275/// @brief Converts the given APInt to a float value.
1276inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1277  return float(APIVal.signedRoundToDouble());
1278}
1279
1280/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1281/// @brief Converts the given double value into a APInt.
1282APInt RoundDoubleToAPInt(double Double, uint32_t width);
1283
1284/// RoundFloatToAPInt - Converts a float value into an APInt value.
1285/// @brief Converts a float value into a APInt.
1286inline APInt RoundFloatToAPInt(float Float, uint32_t width) {
1287  return RoundDoubleToAPInt(double(Float), width);
1288}
1289
1290/// Arithmetic right-shift the APInt by shiftAmt.
1291/// @brief Arithmetic right-shift function.
1292inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) {
1293  return LHS.ashr(shiftAmt);
1294}
1295
1296/// Logical right-shift the APInt by shiftAmt.
1297/// @brief Logical right-shift function.
1298inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) {
1299  return LHS.lshr(shiftAmt);
1300}
1301
1302/// Left-shift the APInt by shiftAmt.
1303/// @brief Left-shift function.
1304inline APInt shl(const APInt& LHS, uint32_t shiftAmt) {
1305  return LHS.shl(shiftAmt);
1306}
1307
1308/// Signed divide APInt LHS by APInt RHS.
1309/// @brief Signed division function for APInt.
1310inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1311  return LHS.sdiv(RHS);
1312}
1313
1314/// Unsigned divide APInt LHS by APInt RHS.
1315/// @brief Unsigned division function for APInt.
1316inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1317  return LHS.udiv(RHS);
1318}
1319
1320/// Signed remainder operation on APInt.
1321/// @brief Function for signed remainder operation.
1322inline APInt srem(const APInt& LHS, const APInt& RHS) {
1323  return LHS.srem(RHS);
1324}
1325
1326/// Unsigned remainder operation on APInt.
1327/// @brief Function for unsigned remainder operation.
1328inline APInt urem(const APInt& LHS, const APInt& RHS) {
1329  return LHS.urem(RHS);
1330}
1331
1332/// Performs multiplication on APInt values.
1333/// @brief Function for multiplication operation.
1334inline APInt mul(const APInt& LHS, const APInt& RHS) {
1335  return LHS * RHS;
1336}
1337
1338/// Performs addition on APInt values.
1339/// @brief Function for addition operation.
1340inline APInt add(const APInt& LHS, const APInt& RHS) {
1341  return LHS + RHS;
1342}
1343
1344/// Performs subtraction on APInt values.
1345/// @brief Function for subtraction operation.
1346inline APInt sub(const APInt& LHS, const APInt& RHS) {
1347  return LHS - RHS;
1348}
1349
1350/// Performs bitwise AND operation on APInt LHS and
1351/// APInt RHS.
1352/// @brief Bitwise AND function for APInt.
1353inline APInt And(const APInt& LHS, const APInt& RHS) {
1354  return LHS & RHS;
1355}
1356
1357/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1358/// @brief Bitwise OR function for APInt.
1359inline APInt Or(const APInt& LHS, const APInt& RHS) {
1360  return LHS | RHS;
1361}
1362
1363/// Performs bitwise XOR operation on APInt.
1364/// @brief Bitwise XOR function for APInt.
1365inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1366  return LHS ^ RHS;
1367}
1368
1369/// Performs a bitwise complement operation on APInt.
1370/// @brief Bitwise complement function.
1371inline APInt Not(const APInt& APIVal) {
1372  return ~APIVal;
1373}
1374
1375} // End of APIntOps namespace
1376
1377} // End of llvm namespace
1378
1379#endif
1380