1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SmallVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_SMALLVECTOR_H
15#define LLVM_ADT_SMALLVECTOR_H
16
17#include "llvm/ADT/iterator_range.h"
18#include "llvm/Support/AlignOf.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Support/type_traits.h"
22#include <algorithm>
23#include <cassert>
24#include <cstddef>
25#include <cstdlib>
26#include <cstring>
27#include <iterator>
28#include <memory>
29
30namespace llvm {
31
32/// SmallVectorBase - This is all the non-templated stuff common to all
33/// SmallVectors.
34class SmallVectorBase {
35protected:
36  void *BeginX, *EndX, *CapacityX;
37
38protected:
39  SmallVectorBase(void *FirstEl, size_t Size)
40    : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
41
42  /// grow_pod - This is an implementation of the grow() method which only works
43  /// on POD-like data types and is out of line to reduce code duplication.
44  void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
45
46public:
47  /// size_in_bytes - This returns size()*sizeof(T).
48  size_t size_in_bytes() const {
49    return size_t((char*)EndX - (char*)BeginX);
50  }
51
52  /// capacity_in_bytes - This returns capacity()*sizeof(T).
53  size_t capacity_in_bytes() const {
54    return size_t((char*)CapacityX - (char*)BeginX);
55  }
56
57  bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; }
58};
59
60template <typename T, unsigned N> struct SmallVectorStorage;
61
62/// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
63/// which does not depend on whether the type T is a POD. The extra dummy
64/// template argument is used by ArrayRef to avoid unnecessarily requiring T
65/// to be complete.
66template <typename T, typename = void>
67class SmallVectorTemplateCommon : public SmallVectorBase {
68private:
69  template <typename, unsigned> friend struct SmallVectorStorage;
70
71  // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
72  // don't want it to be automatically run, so we need to represent the space as
73  // something else.  Use an array of char of sufficient alignment.
74  typedef llvm::AlignedCharArrayUnion<T> U;
75  U FirstEl;
76  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
77
78protected:
79  SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
80
81  void grow_pod(size_t MinSizeInBytes, size_t TSize) {
82    SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
83  }
84
85  /// isSmall - Return true if this is a smallvector which has not had dynamic
86  /// memory allocated for it.
87  bool isSmall() const {
88    return BeginX == static_cast<const void*>(&FirstEl);
89  }
90
91  /// resetToSmall - Put this vector in a state of being small.
92  void resetToSmall() {
93    BeginX = EndX = CapacityX = &FirstEl;
94  }
95
96  void setEnd(T *P) { this->EndX = P; }
97public:
98  typedef size_t size_type;
99  typedef ptrdiff_t difference_type;
100  typedef T value_type;
101  typedef T *iterator;
102  typedef const T *const_iterator;
103
104  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
105  typedef std::reverse_iterator<iterator> reverse_iterator;
106
107  typedef T &reference;
108  typedef const T &const_reference;
109  typedef T *pointer;
110  typedef const T *const_pointer;
111
112  // forward iterator creation methods.
113  iterator begin() { return (iterator)this->BeginX; }
114  const_iterator begin() const { return (const_iterator)this->BeginX; }
115  iterator end() { return (iterator)this->EndX; }
116  const_iterator end() const { return (const_iterator)this->EndX; }
117protected:
118  iterator capacity_ptr() { return (iterator)this->CapacityX; }
119  const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
120public:
121
122  // reverse iterator creation methods.
123  reverse_iterator rbegin()            { return reverse_iterator(end()); }
124  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
125  reverse_iterator rend()              { return reverse_iterator(begin()); }
126  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
127
128  size_type size() const { return end()-begin(); }
129  size_type max_size() const { return size_type(-1) / sizeof(T); }
130
131  /// capacity - Return the total number of elements in the currently allocated
132  /// buffer.
133  size_t capacity() const { return capacity_ptr() - begin(); }
134
135  /// data - Return a pointer to the vector's buffer, even if empty().
136  pointer data() { return pointer(begin()); }
137  /// data - Return a pointer to the vector's buffer, even if empty().
138  const_pointer data() const { return const_pointer(begin()); }
139
140  reference operator[](unsigned idx) {
141    assert(begin() + idx < end());
142    return begin()[idx];
143  }
144  const_reference operator[](unsigned idx) const {
145    assert(begin() + idx < end());
146    return begin()[idx];
147  }
148
149  reference front() {
150    assert(!empty());
151    return begin()[0];
152  }
153  const_reference front() const {
154    assert(!empty());
155    return begin()[0];
156  }
157
158  reference back() {
159    assert(!empty());
160    return end()[-1];
161  }
162  const_reference back() const {
163    assert(!empty());
164    return end()[-1];
165  }
166};
167
168/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
169/// implementations that are designed to work with non-POD-like T's.
170template <typename T, bool isPodLike>
171class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
172protected:
173  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
174
175  static void destroy_range(T *S, T *E) {
176    while (S != E) {
177      --E;
178      E->~T();
179    }
180  }
181
182  /// move - Use move-assignment to move the range [I, E) onto the
183  /// objects starting with "Dest".  This is just <memory>'s
184  /// std::move, but not all stdlibs actually provide that.
185  template<typename It1, typename It2>
186  static It2 move(It1 I, It1 E, It2 Dest) {
187    for (; I != E; ++I, ++Dest)
188      *Dest = ::std::move(*I);
189    return Dest;
190  }
191
192  /// move_backward - Use move-assignment to move the range
193  /// [I, E) onto the objects ending at "Dest", moving objects
194  /// in reverse order.  This is just <algorithm>'s
195  /// std::move_backward, but not all stdlibs actually provide that.
196  template<typename It1, typename It2>
197  static It2 move_backward(It1 I, It1 E, It2 Dest) {
198    while (I != E)
199      *--Dest = ::std::move(*--E);
200    return Dest;
201  }
202
203  /// uninitialized_move - Move the range [I, E) into the uninitialized
204  /// memory starting with "Dest", constructing elements as needed.
205  template<typename It1, typename It2>
206  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
207    for (; I != E; ++I, ++Dest)
208      ::new ((void*) &*Dest) T(::std::move(*I));
209  }
210
211  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized
212  /// memory starting with "Dest", constructing elements as needed.
213  template<typename It1, typename It2>
214  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
215    std::uninitialized_copy(I, E, Dest);
216  }
217
218  /// grow - Grow the allocated memory (without initializing new
219  /// elements), doubling the size of the allocated memory.
220  /// Guarantees space for at least one more element, or MinSize more
221  /// elements if specified.
222  void grow(size_t MinSize = 0);
223
224public:
225  void push_back(const T &Elt) {
226    if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
227      this->grow();
228    ::new ((void*) this->end()) T(Elt);
229    this->setEnd(this->end()+1);
230  }
231
232  void push_back(T &&Elt) {
233    if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
234      this->grow();
235    ::new ((void*) this->end()) T(::std::move(Elt));
236    this->setEnd(this->end()+1);
237  }
238
239  void pop_back() {
240    this->setEnd(this->end()-1);
241    this->end()->~T();
242  }
243};
244
245// Define this out-of-line to dissuade the C++ compiler from inlining it.
246template <typename T, bool isPodLike>
247void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
248  size_t CurCapacity = this->capacity();
249  size_t CurSize = this->size();
250  // Always grow, even from zero.
251  size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
252  if (NewCapacity < MinSize)
253    NewCapacity = MinSize;
254  T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
255
256  // Move the elements over.
257  this->uninitialized_move(this->begin(), this->end(), NewElts);
258
259  // Destroy the original elements.
260  destroy_range(this->begin(), this->end());
261
262  // If this wasn't grown from the inline copy, deallocate the old space.
263  if (!this->isSmall())
264    free(this->begin());
265
266  this->setEnd(NewElts+CurSize);
267  this->BeginX = NewElts;
268  this->CapacityX = this->begin()+NewCapacity;
269}
270
271
272/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
273/// implementations that are designed to work with POD-like T's.
274template <typename T>
275class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
276protected:
277  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
278
279  // No need to do a destroy loop for POD's.
280  static void destroy_range(T *, T *) {}
281
282  /// move - Use move-assignment to move the range [I, E) onto the
283  /// objects starting with "Dest".  For PODs, this is just memcpy.
284  template<typename It1, typename It2>
285  static It2 move(It1 I, It1 E, It2 Dest) {
286    return ::std::copy(I, E, Dest);
287  }
288
289  /// move_backward - Use move-assignment to move the range
290  /// [I, E) onto the objects ending at "Dest", moving objects
291  /// in reverse order.
292  template<typename It1, typename It2>
293  static It2 move_backward(It1 I, It1 E, It2 Dest) {
294    return ::std::copy_backward(I, E, Dest);
295  }
296
297  /// uninitialized_move - Move the range [I, E) onto the uninitialized memory
298  /// starting with "Dest", constructing elements into it as needed.
299  template<typename It1, typename It2>
300  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
301    // Just do a copy.
302    uninitialized_copy(I, E, Dest);
303  }
304
305  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
306  /// starting with "Dest", constructing elements into it as needed.
307  template<typename It1, typename It2>
308  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
309    // Arbitrary iterator types; just use the basic implementation.
310    std::uninitialized_copy(I, E, Dest);
311  }
312
313  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
314  /// starting with "Dest", constructing elements into it as needed.
315  template<typename T1, typename T2>
316  static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
317    // Use memcpy for PODs iterated by pointers (which includes SmallVector
318    // iterators): std::uninitialized_copy optimizes to memmove, but we can
319    // use memcpy here.
320    memcpy(Dest, I, (E-I)*sizeof(T));
321  }
322
323  /// grow - double the size of the allocated memory, guaranteeing space for at
324  /// least one more element or MinSize if specified.
325  void grow(size_t MinSize = 0) {
326    this->grow_pod(MinSize*sizeof(T), sizeof(T));
327  }
328public:
329  void push_back(const T &Elt) {
330    if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
331      this->grow();
332    memcpy(this->end(), &Elt, sizeof(T));
333    this->setEnd(this->end()+1);
334  }
335
336  void pop_back() {
337    this->setEnd(this->end()-1);
338  }
339};
340
341
342/// SmallVectorImpl - This class consists of common code factored out of the
343/// SmallVector class to reduce code duplication based on the SmallVector 'N'
344/// template parameter.
345template <typename T>
346class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
347  typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
348
349  SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
350public:
351  typedef typename SuperClass::iterator iterator;
352  typedef typename SuperClass::size_type size_type;
353
354protected:
355  // Default ctor - Initialize to empty.
356  explicit SmallVectorImpl(unsigned N)
357    : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
358  }
359
360public:
361  ~SmallVectorImpl() {
362    // Destroy the constructed elements in the vector.
363    this->destroy_range(this->begin(), this->end());
364
365    // If this wasn't grown from the inline copy, deallocate the old space.
366    if (!this->isSmall())
367      free(this->begin());
368  }
369
370
371  void clear() {
372    this->destroy_range(this->begin(), this->end());
373    this->EndX = this->BeginX;
374  }
375
376  void resize(unsigned N) {
377    if (N < this->size()) {
378      this->destroy_range(this->begin()+N, this->end());
379      this->setEnd(this->begin()+N);
380    } else if (N > this->size()) {
381      if (this->capacity() < N)
382        this->grow(N);
383      for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
384        new (&*I) T();
385      this->setEnd(this->begin()+N);
386    }
387  }
388
389  void resize(unsigned N, const T &NV) {
390    if (N < this->size()) {
391      this->destroy_range(this->begin()+N, this->end());
392      this->setEnd(this->begin()+N);
393    } else if (N > this->size()) {
394      if (this->capacity() < N)
395        this->grow(N);
396      std::uninitialized_fill(this->end(), this->begin()+N, NV);
397      this->setEnd(this->begin()+N);
398    }
399  }
400
401  void reserve(unsigned N) {
402    if (this->capacity() < N)
403      this->grow(N);
404  }
405
406  T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() {
407    T Result = ::std::move(this->back());
408    this->pop_back();
409    return Result;
410  }
411
412  void swap(SmallVectorImpl &RHS);
413
414  /// append - Add the specified range to the end of the SmallVector.
415  ///
416  template<typename in_iter>
417  void append(in_iter in_start, in_iter in_end) {
418    size_type NumInputs = std::distance(in_start, in_end);
419    // Grow allocated space if needed.
420    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
421      this->grow(this->size()+NumInputs);
422
423    // Copy the new elements over.
424    // TODO: NEED To compile time dispatch on whether in_iter is a random access
425    // iterator to use the fast uninitialized_copy.
426    std::uninitialized_copy(in_start, in_end, this->end());
427    this->setEnd(this->end() + NumInputs);
428  }
429
430  /// append - Add the specified range to the end of the SmallVector.
431  ///
432  void append(size_type NumInputs, const T &Elt) {
433    // Grow allocated space if needed.
434    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
435      this->grow(this->size()+NumInputs);
436
437    // Copy the new elements over.
438    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
439    this->setEnd(this->end() + NumInputs);
440  }
441
442  void assign(unsigned NumElts, const T &Elt) {
443    clear();
444    if (this->capacity() < NumElts)
445      this->grow(NumElts);
446    this->setEnd(this->begin()+NumElts);
447    std::uninitialized_fill(this->begin(), this->end(), Elt);
448  }
449
450  iterator erase(iterator I) {
451    assert(I >= this->begin() && "Iterator to erase is out of bounds.");
452    assert(I < this->end() && "Erasing at past-the-end iterator.");
453
454    iterator N = I;
455    // Shift all elts down one.
456    this->move(I+1, this->end(), I);
457    // Drop the last elt.
458    this->pop_back();
459    return(N);
460  }
461
462  iterator erase(iterator S, iterator E) {
463    assert(S >= this->begin() && "Range to erase is out of bounds.");
464    assert(S <= E && "Trying to erase invalid range.");
465    assert(E <= this->end() && "Trying to erase past the end.");
466
467    iterator N = S;
468    // Shift all elts down.
469    iterator I = this->move(E, this->end(), S);
470    // Drop the last elts.
471    this->destroy_range(I, this->end());
472    this->setEnd(I);
473    return(N);
474  }
475
476  iterator insert(iterator I, T &&Elt) {
477    if (I == this->end()) {  // Important special case for empty vector.
478      this->push_back(::std::move(Elt));
479      return this->end()-1;
480    }
481
482    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
483    assert(I <= this->end() && "Inserting past the end of the vector.");
484
485    if (this->EndX >= this->CapacityX) {
486      size_t EltNo = I-this->begin();
487      this->grow();
488      I = this->begin()+EltNo;
489    }
490
491    ::new ((void*) this->end()) T(::std::move(this->back()));
492    // Push everything else over.
493    this->move_backward(I, this->end()-1, this->end());
494    this->setEnd(this->end()+1);
495
496    // If we just moved the element we're inserting, be sure to update
497    // the reference.
498    T *EltPtr = &Elt;
499    if (I <= EltPtr && EltPtr < this->EndX)
500      ++EltPtr;
501
502    *I = ::std::move(*EltPtr);
503    return I;
504  }
505
506  iterator insert(iterator I, const T &Elt) {
507    if (I == this->end()) {  // Important special case for empty vector.
508      this->push_back(Elt);
509      return this->end()-1;
510    }
511
512    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
513    assert(I <= this->end() && "Inserting past the end of the vector.");
514
515    if (this->EndX >= this->CapacityX) {
516      size_t EltNo = I-this->begin();
517      this->grow();
518      I = this->begin()+EltNo;
519    }
520    ::new ((void*) this->end()) T(std::move(this->back()));
521    // Push everything else over.
522    this->move_backward(I, this->end()-1, this->end());
523    this->setEnd(this->end()+1);
524
525    // If we just moved the element we're inserting, be sure to update
526    // the reference.
527    const T *EltPtr = &Elt;
528    if (I <= EltPtr && EltPtr < this->EndX)
529      ++EltPtr;
530
531    *I = *EltPtr;
532    return I;
533  }
534
535  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
536    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
537    size_t InsertElt = I - this->begin();
538
539    if (I == this->end()) {  // Important special case for empty vector.
540      append(NumToInsert, Elt);
541      return this->begin()+InsertElt;
542    }
543
544    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
545    assert(I <= this->end() && "Inserting past the end of the vector.");
546
547    // Ensure there is enough space.
548    reserve(static_cast<unsigned>(this->size() + NumToInsert));
549
550    // Uninvalidate the iterator.
551    I = this->begin()+InsertElt;
552
553    // If there are more elements between the insertion point and the end of the
554    // range than there are being inserted, we can use a simple approach to
555    // insertion.  Since we already reserved space, we know that this won't
556    // reallocate the vector.
557    if (size_t(this->end()-I) >= NumToInsert) {
558      T *OldEnd = this->end();
559      append(std::move_iterator<iterator>(this->end() - NumToInsert),
560             std::move_iterator<iterator>(this->end()));
561
562      // Copy the existing elements that get replaced.
563      this->move_backward(I, OldEnd-NumToInsert, OldEnd);
564
565      std::fill_n(I, NumToInsert, Elt);
566      return I;
567    }
568
569    // Otherwise, we're inserting more elements than exist already, and we're
570    // not inserting at the end.
571
572    // Move over the elements that we're about to overwrite.
573    T *OldEnd = this->end();
574    this->setEnd(this->end() + NumToInsert);
575    size_t NumOverwritten = OldEnd-I;
576    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
577
578    // Replace the overwritten part.
579    std::fill_n(I, NumOverwritten, Elt);
580
581    // Insert the non-overwritten middle part.
582    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
583    return I;
584  }
585
586  template<typename ItTy>
587  iterator insert(iterator I, ItTy From, ItTy To) {
588    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
589    size_t InsertElt = I - this->begin();
590
591    if (I == this->end()) {  // Important special case for empty vector.
592      append(From, To);
593      return this->begin()+InsertElt;
594    }
595
596    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
597    assert(I <= this->end() && "Inserting past the end of the vector.");
598
599    size_t NumToInsert = std::distance(From, To);
600
601    // Ensure there is enough space.
602    reserve(static_cast<unsigned>(this->size() + NumToInsert));
603
604    // Uninvalidate the iterator.
605    I = this->begin()+InsertElt;
606
607    // If there are more elements between the insertion point and the end of the
608    // range than there are being inserted, we can use a simple approach to
609    // insertion.  Since we already reserved space, we know that this won't
610    // reallocate the vector.
611    if (size_t(this->end()-I) >= NumToInsert) {
612      T *OldEnd = this->end();
613      append(std::move_iterator<iterator>(this->end() - NumToInsert),
614             std::move_iterator<iterator>(this->end()));
615
616      // Copy the existing elements that get replaced.
617      this->move_backward(I, OldEnd-NumToInsert, OldEnd);
618
619      std::copy(From, To, I);
620      return I;
621    }
622
623    // Otherwise, we're inserting more elements than exist already, and we're
624    // not inserting at the end.
625
626    // Move over the elements that we're about to overwrite.
627    T *OldEnd = this->end();
628    this->setEnd(this->end() + NumToInsert);
629    size_t NumOverwritten = OldEnd-I;
630    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
631
632    // Replace the overwritten part.
633    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
634      *J = *From;
635      ++J; ++From;
636    }
637
638    // Insert the non-overwritten middle part.
639    this->uninitialized_copy(From, To, OldEnd);
640    return I;
641  }
642
643  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
644
645  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
646
647  bool operator==(const SmallVectorImpl &RHS) const {
648    if (this->size() != RHS.size()) return false;
649    return std::equal(this->begin(), this->end(), RHS.begin());
650  }
651  bool operator!=(const SmallVectorImpl &RHS) const {
652    return !(*this == RHS);
653  }
654
655  bool operator<(const SmallVectorImpl &RHS) const {
656    return std::lexicographical_compare(this->begin(), this->end(),
657                                        RHS.begin(), RHS.end());
658  }
659
660  /// Set the array size to \p N, which the current array must have enough
661  /// capacity for.
662  ///
663  /// This does not construct or destroy any elements in the vector.
664  ///
665  /// Clients can use this in conjunction with capacity() to write past the end
666  /// of the buffer when they know that more elements are available, and only
667  /// update the size later. This avoids the cost of value initializing elements
668  /// which will only be overwritten.
669  void set_size(unsigned N) {
670    assert(N <= this->capacity());
671    this->setEnd(this->begin() + N);
672  }
673};
674
675
676template <typename T>
677void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
678  if (this == &RHS) return;
679
680  // We can only avoid copying elements if neither vector is small.
681  if (!this->isSmall() && !RHS.isSmall()) {
682    std::swap(this->BeginX, RHS.BeginX);
683    std::swap(this->EndX, RHS.EndX);
684    std::swap(this->CapacityX, RHS.CapacityX);
685    return;
686  }
687  if (RHS.size() > this->capacity())
688    this->grow(RHS.size());
689  if (this->size() > RHS.capacity())
690    RHS.grow(this->size());
691
692  // Swap the shared elements.
693  size_t NumShared = this->size();
694  if (NumShared > RHS.size()) NumShared = RHS.size();
695  for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
696    std::swap((*this)[i], RHS[i]);
697
698  // Copy over the extra elts.
699  if (this->size() > RHS.size()) {
700    size_t EltDiff = this->size() - RHS.size();
701    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
702    RHS.setEnd(RHS.end()+EltDiff);
703    this->destroy_range(this->begin()+NumShared, this->end());
704    this->setEnd(this->begin()+NumShared);
705  } else if (RHS.size() > this->size()) {
706    size_t EltDiff = RHS.size() - this->size();
707    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
708    this->setEnd(this->end() + EltDiff);
709    this->destroy_range(RHS.begin()+NumShared, RHS.end());
710    RHS.setEnd(RHS.begin()+NumShared);
711  }
712}
713
714template <typename T>
715SmallVectorImpl<T> &SmallVectorImpl<T>::
716  operator=(const SmallVectorImpl<T> &RHS) {
717  // Avoid self-assignment.
718  if (this == &RHS) return *this;
719
720  // If we already have sufficient space, assign the common elements, then
721  // destroy any excess.
722  size_t RHSSize = RHS.size();
723  size_t CurSize = this->size();
724  if (CurSize >= RHSSize) {
725    // Assign common elements.
726    iterator NewEnd;
727    if (RHSSize)
728      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
729    else
730      NewEnd = this->begin();
731
732    // Destroy excess elements.
733    this->destroy_range(NewEnd, this->end());
734
735    // Trim.
736    this->setEnd(NewEnd);
737    return *this;
738  }
739
740  // If we have to grow to have enough elements, destroy the current elements.
741  // This allows us to avoid copying them during the grow.
742  // FIXME: don't do this if they're efficiently moveable.
743  if (this->capacity() < RHSSize) {
744    // Destroy current elements.
745    this->destroy_range(this->begin(), this->end());
746    this->setEnd(this->begin());
747    CurSize = 0;
748    this->grow(RHSSize);
749  } else if (CurSize) {
750    // Otherwise, use assignment for the already-constructed elements.
751    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
752  }
753
754  // Copy construct the new elements in place.
755  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
756                           this->begin()+CurSize);
757
758  // Set end.
759  this->setEnd(this->begin()+RHSSize);
760  return *this;
761}
762
763template <typename T>
764SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
765  // Avoid self-assignment.
766  if (this == &RHS) return *this;
767
768  // If the RHS isn't small, clear this vector and then steal its buffer.
769  if (!RHS.isSmall()) {
770    this->destroy_range(this->begin(), this->end());
771    if (!this->isSmall()) free(this->begin());
772    this->BeginX = RHS.BeginX;
773    this->EndX = RHS.EndX;
774    this->CapacityX = RHS.CapacityX;
775    RHS.resetToSmall();
776    return *this;
777  }
778
779  // If we already have sufficient space, assign the common elements, then
780  // destroy any excess.
781  size_t RHSSize = RHS.size();
782  size_t CurSize = this->size();
783  if (CurSize >= RHSSize) {
784    // Assign common elements.
785    iterator NewEnd = this->begin();
786    if (RHSSize)
787      NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
788
789    // Destroy excess elements and trim the bounds.
790    this->destroy_range(NewEnd, this->end());
791    this->setEnd(NewEnd);
792
793    // Clear the RHS.
794    RHS.clear();
795
796    return *this;
797  }
798
799  // If we have to grow to have enough elements, destroy the current elements.
800  // This allows us to avoid copying them during the grow.
801  // FIXME: this may not actually make any sense if we can efficiently move
802  // elements.
803  if (this->capacity() < RHSSize) {
804    // Destroy current elements.
805    this->destroy_range(this->begin(), this->end());
806    this->setEnd(this->begin());
807    CurSize = 0;
808    this->grow(RHSSize);
809  } else if (CurSize) {
810    // Otherwise, use assignment for the already-constructed elements.
811    this->move(RHS.begin(), RHS.begin()+CurSize, this->begin());
812  }
813
814  // Move-construct the new elements in place.
815  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
816                           this->begin()+CurSize);
817
818  // Set end.
819  this->setEnd(this->begin()+RHSSize);
820
821  RHS.clear();
822  return *this;
823}
824
825/// Storage for the SmallVector elements which aren't contained in
826/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
827/// element is in the base class. This is specialized for the N=1 and N=0 cases
828/// to avoid allocating unnecessary storage.
829template <typename T, unsigned N>
830struct SmallVectorStorage {
831  typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
832};
833template <typename T> struct SmallVectorStorage<T, 1> {};
834template <typename T> struct SmallVectorStorage<T, 0> {};
835
836/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
837/// for the case when the array is small.  It contains some number of elements
838/// in-place, which allows it to avoid heap allocation when the actual number of
839/// elements is below that threshold.  This allows normal "small" cases to be
840/// fast without losing generality for large inputs.
841///
842/// Note that this does not attempt to be exception safe.
843///
844template <typename T, unsigned N>
845class SmallVector : public SmallVectorImpl<T> {
846  /// Storage - Inline space for elements which aren't stored in the base class.
847  SmallVectorStorage<T, N> Storage;
848public:
849  SmallVector() : SmallVectorImpl<T>(N) {
850  }
851
852  explicit SmallVector(unsigned Size, const T &Value = T())
853    : SmallVectorImpl<T>(N) {
854    this->assign(Size, Value);
855  }
856
857  template<typename ItTy>
858  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
859    this->append(S, E);
860  }
861
862  template <typename RangeTy>
863  explicit SmallVector(const llvm::iterator_range<RangeTy> R)
864      : SmallVectorImpl<T>(N) {
865    this->append(R.begin(), R.end());
866  }
867
868  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
869    if (!RHS.empty())
870      SmallVectorImpl<T>::operator=(RHS);
871  }
872
873  const SmallVector &operator=(const SmallVector &RHS) {
874    SmallVectorImpl<T>::operator=(RHS);
875    return *this;
876  }
877
878  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
879    if (!RHS.empty())
880      SmallVectorImpl<T>::operator=(::std::move(RHS));
881  }
882
883  const SmallVector &operator=(SmallVector &&RHS) {
884    SmallVectorImpl<T>::operator=(::std::move(RHS));
885    return *this;
886  }
887};
888
889template<typename T, unsigned N>
890static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
891  return X.capacity_in_bytes();
892}
893
894} // End llvm namespace
895
896namespace std {
897  /// Implement std::swap in terms of SmallVector swap.
898  template<typename T>
899  inline void
900  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
901    LHS.swap(RHS);
902  }
903
904  /// Implement std::swap in terms of SmallVector swap.
905  template<typename T, unsigned N>
906  inline void
907  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
908    LHS.swap(RHS);
909  }
910}
911
912#endif
913