1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOPINFO_H
31#define LLVM_ANALYSIS_LOOPINFO_H
32
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/IR/CFG.h"
39#include "llvm/IR/Instruction.h"
40#include "llvm/Pass.h"
41#include <algorithm>
42
43namespace llvm {
44
45template<typename T>
46inline void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55class MDNode;
56class PHINode;
57class raw_ostream;
58template<class N> class DominatorTreeBase;
59template<class N, class M> class LoopInfoBase;
60template<class N, class M> class LoopBase;
61
62//===----------------------------------------------------------------------===//
63/// LoopBase class - Instances of this class are used to represent loops that
64/// are detected in the flow graph
65///
66template<class BlockT, class LoopT>
67class LoopBase {
68  LoopT *ParentLoop;
69  // SubLoops - Loops contained entirely within this one.
70  std::vector<LoopT *> SubLoops;
71
72  // Blocks - The list of blocks in this loop.  First entry is the header node.
73  std::vector<BlockT*> Blocks;
74
75  SmallPtrSet<const BlockT*, 8> DenseBlockSet;
76
77  LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
78  const LoopBase<BlockT, LoopT>&
79    operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
80public:
81  /// Loop ctor - This creates an empty loop.
82  LoopBase() : ParentLoop(nullptr) {}
83  ~LoopBase() {
84    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
85      delete SubLoops[i];
86  }
87
88  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
89  /// loop has depth 1, for consistency with loop depth values used for basic
90  /// blocks, where depth 0 is used for blocks not inside any loops.
91  unsigned getLoopDepth() const {
92    unsigned D = 1;
93    for (const LoopT *CurLoop = ParentLoop; CurLoop;
94         CurLoop = CurLoop->ParentLoop)
95      ++D;
96    return D;
97  }
98  BlockT *getHeader() const { return Blocks.front(); }
99  LoopT *getParentLoop() const { return ParentLoop; }
100
101  /// setParentLoop is a raw interface for bypassing addChildLoop.
102  void setParentLoop(LoopT *L) { ParentLoop = L; }
103
104  /// contains - Return true if the specified loop is contained within in
105  /// this loop.
106  ///
107  bool contains(const LoopT *L) const {
108    if (L == this) return true;
109    if (!L)        return false;
110    return contains(L->getParentLoop());
111  }
112
113  /// contains - Return true if the specified basic block is in this loop.
114  ///
115  bool contains(const BlockT *BB) const {
116    return DenseBlockSet.count(BB);
117  }
118
119  /// contains - Return true if the specified instruction is in this loop.
120  ///
121  template<class InstT>
122  bool contains(const InstT *Inst) const {
123    return contains(Inst->getParent());
124  }
125
126  /// iterator/begin/end - Return the loops contained entirely within this loop.
127  ///
128  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
129  std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
130  typedef typename std::vector<LoopT *>::const_iterator iterator;
131  typedef typename std::vector<LoopT *>::const_reverse_iterator
132    reverse_iterator;
133  iterator begin() const { return SubLoops.begin(); }
134  iterator end() const { return SubLoops.end(); }
135  reverse_iterator rbegin() const { return SubLoops.rbegin(); }
136  reverse_iterator rend() const { return SubLoops.rend(); }
137  bool empty() const { return SubLoops.empty(); }
138
139  /// getBlocks - Get a list of the basic blocks which make up this loop.
140  ///
141  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
142  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
143  block_iterator block_begin() const { return Blocks.begin(); }
144  block_iterator block_end() const { return Blocks.end(); }
145
146  /// getNumBlocks - Get the number of blocks in this loop in constant time.
147  unsigned getNumBlocks() const {
148    return Blocks.size();
149  }
150
151  /// isLoopExiting - True if terminator in the block can branch to another
152  /// block that is outside of the current loop.
153  ///
154  bool isLoopExiting(const BlockT *BB) const {
155    typedef GraphTraits<const BlockT*> BlockTraits;
156    for (typename BlockTraits::ChildIteratorType SI =
157         BlockTraits::child_begin(BB),
158         SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
159      if (!contains(*SI))
160        return true;
161    }
162    return false;
163  }
164
165  /// getNumBackEdges - Calculate the number of back edges to the loop header
166  ///
167  unsigned getNumBackEdges() const {
168    unsigned NumBackEdges = 0;
169    BlockT *H = getHeader();
170
171    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
172    for (typename InvBlockTraits::ChildIteratorType I =
173         InvBlockTraits::child_begin(H),
174         E = InvBlockTraits::child_end(H); I != E; ++I)
175      if (contains(*I))
176        ++NumBackEdges;
177
178    return NumBackEdges;
179  }
180
181  //===--------------------------------------------------------------------===//
182  // APIs for simple analysis of the loop.
183  //
184  // Note that all of these methods can fail on general loops (ie, there may not
185  // be a preheader, etc).  For best success, the loop simplification and
186  // induction variable canonicalization pass should be used to normalize loops
187  // for easy analysis.  These methods assume canonical loops.
188
189  /// getExitingBlocks - Return all blocks inside the loop that have successors
190  /// outside of the loop.  These are the blocks _inside of the current loop_
191  /// which branch out.  The returned list is always unique.
192  ///
193  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
194
195  /// getExitingBlock - If getExitingBlocks would return exactly one block,
196  /// return that block. Otherwise return null.
197  BlockT *getExitingBlock() const;
198
199  /// getExitBlocks - Return all of the successor blocks of this loop.  These
200  /// are the blocks _outside of the current loop_ which are branched to.
201  ///
202  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
203
204  /// getExitBlock - If getExitBlocks would return exactly one block,
205  /// return that block. Otherwise return null.
206  BlockT *getExitBlock() const;
207
208  /// Edge type.
209  typedef std::pair<const BlockT*, const BlockT*> Edge;
210
211  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
212  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
213
214  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
215  /// loop has a preheader if there is only one edge to the header of the loop
216  /// from outside of the loop.  If this is the case, the block branching to the
217  /// header of the loop is the preheader node.
218  ///
219  /// This method returns null if there is no preheader for the loop.
220  ///
221  BlockT *getLoopPreheader() const;
222
223  /// getLoopPredecessor - If the given loop's header has exactly one unique
224  /// predecessor outside the loop, return it. Otherwise return null.
225  /// This is less strict that the loop "preheader" concept, which requires
226  /// the predecessor to have exactly one successor.
227  ///
228  BlockT *getLoopPredecessor() const;
229
230  /// getLoopLatch - If there is a single latch block for this loop, return it.
231  /// A latch block is a block that contains a branch back to the header.
232  BlockT *getLoopLatch() const;
233
234  /// getLoopLatches - Return all loop latch blocks of this loop. A latch block
235  /// is a block that contains a branch back to the header.
236  void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
237    BlockT *H = getHeader();
238    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
239    for (typename InvBlockTraits::ChildIteratorType I =
240         InvBlockTraits::child_begin(H),
241         E = InvBlockTraits::child_end(H); I != E; ++I)
242      if (contains(*I))
243        LoopLatches.push_back(*I);
244  }
245
246  //===--------------------------------------------------------------------===//
247  // APIs for updating loop information after changing the CFG
248  //
249
250  /// addBasicBlockToLoop - This method is used by other analyses to update loop
251  /// information.  NewBB is set to be a new member of the current loop.
252  /// Because of this, it is added as a member of all parent loops, and is added
253  /// to the specified LoopInfo object as being in the current basic block.  It
254  /// is not valid to replace the loop header with this method.
255  ///
256  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
257
258  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
259  /// the OldChild entry in our children list with NewChild, and updates the
260  /// parent pointer of OldChild to be null and the NewChild to be this loop.
261  /// This updates the loop depth of the new child.
262  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
263
264  /// addChildLoop - Add the specified loop to be a child of this loop.  This
265  /// updates the loop depth of the new child.
266  ///
267  void addChildLoop(LoopT *NewChild) {
268    assert(!NewChild->ParentLoop && "NewChild already has a parent!");
269    NewChild->ParentLoop = static_cast<LoopT *>(this);
270    SubLoops.push_back(NewChild);
271  }
272
273  /// removeChildLoop - This removes the specified child from being a subloop of
274  /// this loop.  The loop is not deleted, as it will presumably be inserted
275  /// into another loop.
276  LoopT *removeChildLoop(iterator I) {
277    assert(I != SubLoops.end() && "Cannot remove end iterator!");
278    LoopT *Child = *I;
279    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
280    SubLoops.erase(SubLoops.begin()+(I-begin()));
281    Child->ParentLoop = nullptr;
282    return Child;
283  }
284
285  /// addBlockEntry - This adds a basic block directly to the basic block list.
286  /// This should only be used by transformations that create new loops.  Other
287  /// transformations should use addBasicBlockToLoop.
288  void addBlockEntry(BlockT *BB) {
289    Blocks.push_back(BB);
290    DenseBlockSet.insert(BB);
291  }
292
293  /// reverseBlocks - interface to reverse Blocks[from, end of loop] in this loop
294  void reverseBlock(unsigned from) {
295    std::reverse(Blocks.begin() + from, Blocks.end());
296  }
297
298  /// reserveBlocks- interface to do reserve() for Blocks
299  void reserveBlocks(unsigned size) {
300    Blocks.reserve(size);
301  }
302
303  /// moveToHeader - This method is used to move BB (which must be part of this
304  /// loop) to be the loop header of the loop (the block that dominates all
305  /// others).
306  void moveToHeader(BlockT *BB) {
307    if (Blocks[0] == BB) return;
308    for (unsigned i = 0; ; ++i) {
309      assert(i != Blocks.size() && "Loop does not contain BB!");
310      if (Blocks[i] == BB) {
311        Blocks[i] = Blocks[0];
312        Blocks[0] = BB;
313        return;
314      }
315    }
316  }
317
318  /// removeBlockFromLoop - This removes the specified basic block from the
319  /// current loop, updating the Blocks as appropriate.  This does not update
320  /// the mapping in the LoopInfo class.
321  void removeBlockFromLoop(BlockT *BB) {
322    RemoveFromVector(Blocks, BB);
323    DenseBlockSet.erase(BB);
324  }
325
326  /// verifyLoop - Verify loop structure
327  void verifyLoop() const;
328
329  /// verifyLoop - Verify loop structure of this loop and all nested loops.
330  void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
331
332  void print(raw_ostream &OS, unsigned Depth = 0) const;
333
334protected:
335  friend class LoopInfoBase<BlockT, LoopT>;
336  explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
337    Blocks.push_back(BB);
338    DenseBlockSet.insert(BB);
339  }
340};
341
342template<class BlockT, class LoopT>
343raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
344  Loop.print(OS);
345  return OS;
346}
347
348// Implementation in LoopInfoImpl.h
349#ifdef __GNUC__
350__extension__ extern template class LoopBase<BasicBlock, Loop>;
351#endif
352
353class Loop : public LoopBase<BasicBlock, Loop> {
354public:
355  Loop() {}
356
357  /// isLoopInvariant - Return true if the specified value is loop invariant
358  ///
359  bool isLoopInvariant(Value *V) const;
360
361  /// hasLoopInvariantOperands - Return true if all the operands of the
362  /// specified instruction are loop invariant.
363  bool hasLoopInvariantOperands(Instruction *I) const;
364
365  /// makeLoopInvariant - If the given value is an instruction inside of the
366  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
367  /// Return true if the value after any hoisting is loop invariant. This
368  /// function can be used as a slightly more aggressive replacement for
369  /// isLoopInvariant.
370  ///
371  /// If InsertPt is specified, it is the point to hoist instructions to.
372  /// If null, the terminator of the loop preheader is used.
373  ///
374  bool makeLoopInvariant(Value *V, bool &Changed,
375                         Instruction *InsertPt = nullptr) const;
376
377  /// makeLoopInvariant - If the given instruction is inside of the
378  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
379  /// Return true if the instruction after any hoisting is loop invariant. This
380  /// function can be used as a slightly more aggressive replacement for
381  /// isLoopInvariant.
382  ///
383  /// If InsertPt is specified, it is the point to hoist instructions to.
384  /// If null, the terminator of the loop preheader is used.
385  ///
386  bool makeLoopInvariant(Instruction *I, bool &Changed,
387                         Instruction *InsertPt = nullptr) const;
388
389  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
390  /// induction variable: an integer recurrence that starts at 0 and increments
391  /// by one each time through the loop.  If so, return the phi node that
392  /// corresponds to it.
393  ///
394  /// The IndVarSimplify pass transforms loops to have a canonical induction
395  /// variable.
396  ///
397  PHINode *getCanonicalInductionVariable() const;
398
399  /// isLCSSAForm - Return true if the Loop is in LCSSA form
400  bool isLCSSAForm(DominatorTree &DT) const;
401
402  /// isLoopSimplifyForm - Return true if the Loop is in the form that
403  /// the LoopSimplify form transforms loops to, which is sometimes called
404  /// normal form.
405  bool isLoopSimplifyForm() const;
406
407  /// isSafeToClone - Return true if the loop body is safe to clone in practice.
408  bool isSafeToClone() const;
409
410  /// Returns true if the loop is annotated parallel.
411  ///
412  /// A parallel loop can be assumed to not contain any dependencies between
413  /// iterations by the compiler. That is, any loop-carried dependency checking
414  /// can be skipped completely when parallelizing the loop on the target
415  /// machine. Thus, if the parallel loop information originates from the
416  /// programmer, e.g. via the OpenMP parallel for pragma, it is the
417  /// programmer's responsibility to ensure there are no loop-carried
418  /// dependencies. The final execution order of the instructions across
419  /// iterations is not guaranteed, thus, the end result might or might not
420  /// implement actual concurrent execution of instructions across multiple
421  /// iterations.
422  bool isAnnotatedParallel() const;
423
424  /// Return the llvm.loop loop id metadata node for this loop if it is present.
425  ///
426  /// If this loop contains the same llvm.loop metadata on each branch to the
427  /// header then the node is returned. If any latch instruction does not
428  /// contain llvm.loop or or if multiple latches contain different nodes then
429  /// 0 is returned.
430  MDNode *getLoopID() const;
431  /// Set the llvm.loop loop id metadata for this loop.
432  ///
433  /// The LoopID metadata node will be added to each terminator instruction in
434  /// the loop that branches to the loop header.
435  ///
436  /// The LoopID metadata node should have one or more operands and the first
437  /// operand should should be the node itself.
438  void setLoopID(MDNode *LoopID) const;
439
440  /// hasDedicatedExits - Return true if no exit block for the loop
441  /// has a predecessor that is outside the loop.
442  bool hasDedicatedExits() const;
443
444  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
445  /// These are the blocks _outside of the current loop_ which are branched to.
446  /// This assumes that loop exits are in canonical form.
447  ///
448  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
449
450  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
451  /// block, return that block. Otherwise return null.
452  BasicBlock *getUniqueExitBlock() const;
453
454  void dump() const;
455
456  /// \brief Return the debug location of the start of this loop.
457  /// This looks for a BB terminating instruction with a known debug
458  /// location by looking at the preheader and header blocks. If it
459  /// cannot find a terminating instruction with location information,
460  /// it returns an unknown location.
461  DebugLoc getStartLoc() const {
462    DebugLoc StartLoc;
463    BasicBlock *HeadBB;
464
465    // Try the pre-header first.
466    if ((HeadBB = getLoopPreheader()) != nullptr) {
467      StartLoc = HeadBB->getTerminator()->getDebugLoc();
468      if (!StartLoc.isUnknown())
469        return StartLoc;
470    }
471
472    // If we have no pre-header or there are no instructions with debug
473    // info in it, try the header.
474    HeadBB = getHeader();
475    if (HeadBB)
476      StartLoc = HeadBB->getTerminator()->getDebugLoc();
477
478    return StartLoc;
479  }
480
481private:
482  friend class LoopInfoBase<BasicBlock, Loop>;
483  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
484};
485
486//===----------------------------------------------------------------------===//
487/// LoopInfo - This class builds and contains all of the top level loop
488/// structures in the specified function.
489///
490
491template<class BlockT, class LoopT>
492class LoopInfoBase {
493  // BBMap - Mapping of basic blocks to the inner most loop they occur in
494  DenseMap<BlockT *, LoopT *> BBMap;
495  std::vector<LoopT *> TopLevelLoops;
496  friend class LoopBase<BlockT, LoopT>;
497  friend class LoopInfo;
498
499  void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
500  LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
501public:
502  LoopInfoBase() { }
503  ~LoopInfoBase() { releaseMemory(); }
504
505  void releaseMemory() {
506    for (typename std::vector<LoopT *>::iterator I =
507         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
508      delete *I;   // Delete all of the loops...
509
510    BBMap.clear();                           // Reset internal state of analysis
511    TopLevelLoops.clear();
512  }
513
514  /// iterator/begin/end - The interface to the top-level loops in the current
515  /// function.
516  ///
517  typedef typename std::vector<LoopT *>::const_iterator iterator;
518  typedef typename std::vector<LoopT *>::const_reverse_iterator
519    reverse_iterator;
520  iterator begin() const { return TopLevelLoops.begin(); }
521  iterator end() const { return TopLevelLoops.end(); }
522  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
523  reverse_iterator rend() const { return TopLevelLoops.rend(); }
524  bool empty() const { return TopLevelLoops.empty(); }
525
526  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
527  /// block is in no loop (for example the entry node), null is returned.
528  ///
529  LoopT *getLoopFor(const BlockT *BB) const {
530    return BBMap.lookup(const_cast<BlockT*>(BB));
531  }
532
533  /// operator[] - same as getLoopFor...
534  ///
535  const LoopT *operator[](const BlockT *BB) const {
536    return getLoopFor(BB);
537  }
538
539  /// getLoopDepth - Return the loop nesting level of the specified block.  A
540  /// depth of 0 means the block is not inside any loop.
541  ///
542  unsigned getLoopDepth(const BlockT *BB) const {
543    const LoopT *L = getLoopFor(BB);
544    return L ? L->getLoopDepth() : 0;
545  }
546
547  // isLoopHeader - True if the block is a loop header node
548  bool isLoopHeader(BlockT *BB) const {
549    const LoopT *L = getLoopFor(BB);
550    return L && L->getHeader() == BB;
551  }
552
553  /// removeLoop - This removes the specified top-level loop from this loop info
554  /// object.  The loop is not deleted, as it will presumably be inserted into
555  /// another loop.
556  LoopT *removeLoop(iterator I) {
557    assert(I != end() && "Cannot remove end iterator!");
558    LoopT *L = *I;
559    assert(!L->getParentLoop() && "Not a top-level loop!");
560    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
561    return L;
562  }
563
564  /// changeLoopFor - Change the top-level loop that contains BB to the
565  /// specified loop.  This should be used by transformations that restructure
566  /// the loop hierarchy tree.
567  void changeLoopFor(BlockT *BB, LoopT *L) {
568    if (!L) {
569      BBMap.erase(BB);
570      return;
571    }
572    BBMap[BB] = L;
573  }
574
575  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
576  /// list with the indicated loop.
577  void changeTopLevelLoop(LoopT *OldLoop,
578                          LoopT *NewLoop) {
579    typename std::vector<LoopT *>::iterator I =
580                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
581    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
582    *I = NewLoop;
583    assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
584           "Loops already embedded into a subloop!");
585  }
586
587  /// addTopLevelLoop - This adds the specified loop to the collection of
588  /// top-level loops.
589  void addTopLevelLoop(LoopT *New) {
590    assert(!New->getParentLoop() && "Loop already in subloop!");
591    TopLevelLoops.push_back(New);
592  }
593
594  /// removeBlock - This method completely removes BB from all data structures,
595  /// including all of the Loop objects it is nested in and our mapping from
596  /// BasicBlocks to loops.
597  void removeBlock(BlockT *BB) {
598    typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
599    if (I != BBMap.end()) {
600      for (LoopT *L = I->second; L; L = L->getParentLoop())
601        L->removeBlockFromLoop(BB);
602
603      BBMap.erase(I);
604    }
605  }
606
607  // Internals
608
609  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
610                                      const LoopT *ParentLoop) {
611    if (!SubLoop) return true;
612    if (SubLoop == ParentLoop) return false;
613    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
614  }
615
616  /// Create the loop forest using a stable algorithm.
617  void Analyze(DominatorTreeBase<BlockT> &DomTree);
618
619  // Debugging
620
621  void print(raw_ostream &OS) const;
622};
623
624// Implementation in LoopInfoImpl.h
625#ifdef __GNUC__
626__extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
627#endif
628
629class LoopInfo : public FunctionPass {
630  LoopInfoBase<BasicBlock, Loop> LI;
631  friend class LoopBase<BasicBlock, Loop>;
632
633  void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
634  LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
635public:
636  static char ID; // Pass identification, replacement for typeid
637
638  LoopInfo() : FunctionPass(ID) {
639    initializeLoopInfoPass(*PassRegistry::getPassRegistry());
640  }
641
642  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
643
644  /// iterator/begin/end - The interface to the top-level loops in the current
645  /// function.
646  ///
647  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
648  typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
649  inline iterator begin() const { return LI.begin(); }
650  inline iterator end() const { return LI.end(); }
651  inline reverse_iterator rbegin() const { return LI.rbegin(); }
652  inline reverse_iterator rend() const { return LI.rend(); }
653  bool empty() const { return LI.empty(); }
654
655  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
656  /// block is in no loop (for example the entry node), null is returned.
657  ///
658  inline Loop *getLoopFor(const BasicBlock *BB) const {
659    return LI.getLoopFor(BB);
660  }
661
662  /// operator[] - same as getLoopFor...
663  ///
664  inline const Loop *operator[](const BasicBlock *BB) const {
665    return LI.getLoopFor(BB);
666  }
667
668  /// getLoopDepth - Return the loop nesting level of the specified block.  A
669  /// depth of 0 means the block is not inside any loop.
670  ///
671  inline unsigned getLoopDepth(const BasicBlock *BB) const {
672    return LI.getLoopDepth(BB);
673  }
674
675  // isLoopHeader - True if the block is a loop header node
676  inline bool isLoopHeader(BasicBlock *BB) const {
677    return LI.isLoopHeader(BB);
678  }
679
680  /// runOnFunction - Calculate the natural loop information.
681  ///
682  bool runOnFunction(Function &F) override;
683
684  void verifyAnalysis() const override;
685
686  void releaseMemory() override { LI.releaseMemory(); }
687
688  void print(raw_ostream &O, const Module* M = nullptr) const override;
689
690  void getAnalysisUsage(AnalysisUsage &AU) const override;
691
692  /// removeLoop - This removes the specified top-level loop from this loop info
693  /// object.  The loop is not deleted, as it will presumably be inserted into
694  /// another loop.
695  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
696
697  /// changeLoopFor - Change the top-level loop that contains BB to the
698  /// specified loop.  This should be used by transformations that restructure
699  /// the loop hierarchy tree.
700  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
701    LI.changeLoopFor(BB, L);
702  }
703
704  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
705  /// list with the indicated loop.
706  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
707    LI.changeTopLevelLoop(OldLoop, NewLoop);
708  }
709
710  /// addTopLevelLoop - This adds the specified loop to the collection of
711  /// top-level loops.
712  inline void addTopLevelLoop(Loop *New) {
713    LI.addTopLevelLoop(New);
714  }
715
716  /// removeBlock - This method completely removes BB from all data structures,
717  /// including all of the Loop objects it is nested in and our mapping from
718  /// BasicBlocks to loops.
719  void removeBlock(BasicBlock *BB) {
720    LI.removeBlock(BB);
721  }
722
723  /// updateUnloop - Update LoopInfo after removing the last backedge from a
724  /// loop--now the "unloop". This updates the loop forest and parent loops for
725  /// each block so that Unloop is no longer referenced, but the caller must
726  /// actually delete the Unloop object.
727  void updateUnloop(Loop *Unloop);
728
729  /// replacementPreservesLCSSAForm - Returns true if replacing From with To
730  /// everywhere is guaranteed to preserve LCSSA form.
731  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
732    // Preserving LCSSA form is only problematic if the replacing value is an
733    // instruction.
734    Instruction *I = dyn_cast<Instruction>(To);
735    if (!I) return true;
736    // If both instructions are defined in the same basic block then replacement
737    // cannot break LCSSA form.
738    if (I->getParent() == From->getParent())
739      return true;
740    // If the instruction is not defined in a loop then it can safely replace
741    // anything.
742    Loop *ToLoop = getLoopFor(I->getParent());
743    if (!ToLoop) return true;
744    // If the replacing instruction is defined in the same loop as the original
745    // instruction, or in a loop that contains it as an inner loop, then using
746    // it as a replacement will not break LCSSA form.
747    return ToLoop->contains(getLoopFor(From->getParent()));
748  }
749};
750
751
752// Allow clients to walk the list of nested loops...
753template <> struct GraphTraits<const Loop*> {
754  typedef const Loop NodeType;
755  typedef LoopInfo::iterator ChildIteratorType;
756
757  static NodeType *getEntryNode(const Loop *L) { return L; }
758  static inline ChildIteratorType child_begin(NodeType *N) {
759    return N->begin();
760  }
761  static inline ChildIteratorType child_end(NodeType *N) {
762    return N->end();
763  }
764};
765
766template <> struct GraphTraits<Loop*> {
767  typedef Loop NodeType;
768  typedef LoopInfo::iterator ChildIteratorType;
769
770  static NodeType *getEntryNode(Loop *L) { return L; }
771  static inline ChildIteratorType child_begin(NodeType *N) {
772    return N->begin();
773  }
774  static inline ChildIteratorType child_end(NodeType *N) {
775    return N->end();
776  }
777};
778
779} // End llvm namespace
780
781#endif
782