LoopInfo.h revision 16a2c927e95c29a316d0271c93e0490ce3bc06ce
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Streams.h"
40#include <algorithm>
41#include <ostream>
42
43namespace llvm {
44
45template<typename T>
46static void RemoveFromVector(std::vector<T*> &V, T *N) {
47  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
48  assert(I != V.end() && "N is not in this list!");
49  V.erase(I);
50}
51
52class DominatorTree;
53class LoopInfo;
54class Loop;
55template<class N, class M> class LoopInfoBase;
56template<class N, class M> class LoopBase;
57
58//===----------------------------------------------------------------------===//
59/// LoopBase class - Instances of this class are used to represent loops that
60/// are detected in the flow graph
61///
62template<class BlockT, class LoopT>
63class LoopBase {
64  LoopT *ParentLoop;
65  // SubLoops - Loops contained entirely within this one.
66  std::vector<LoopT *> SubLoops;
67
68  // Blocks - The list of blocks in this loop.  First entry is the header node.
69  std::vector<BlockT*> Blocks;
70
71  // DO NOT IMPLEMENT
72  LoopBase(const LoopBase<BlockT, LoopT> &);
73  // DO NOT IMPLEMENT
74  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
75public:
76  /// Loop ctor - This creates an empty loop.
77  LoopBase() : ParentLoop(0) {}
78  ~LoopBase() {
79    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
80      delete SubLoops[i];
81  }
82
83  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
84  /// loop has depth 1, for consistency with loop depth values used for basic
85  /// blocks, where depth 0 is used for blocks not inside any loops.
86  unsigned getLoopDepth() const {
87    unsigned D = 1;
88    for (const LoopT *CurLoop = ParentLoop; CurLoop;
89         CurLoop = CurLoop->ParentLoop)
90      ++D;
91    return D;
92  }
93  BlockT *getHeader() const { return Blocks.front(); }
94  LoopT *getParentLoop() const { return ParentLoop; }
95
96  /// contains - Return true if the specified basic block is in this loop
97  ///
98  bool contains(const BlockT *BB) const {
99    return std::find(block_begin(), block_end(), BB) != block_end();
100  }
101
102  /// iterator/begin/end - Return the loops contained entirely within this loop.
103  ///
104  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
105  typedef typename std::vector<LoopT *>::const_iterator iterator;
106  iterator begin() const { return SubLoops.begin(); }
107  iterator end() const { return SubLoops.end(); }
108  bool empty() const { return SubLoops.empty(); }
109
110  /// getBlocks - Get a list of the basic blocks which make up this loop.
111  ///
112  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
113  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
114  block_iterator block_begin() const { return Blocks.begin(); }
115  block_iterator block_end() const { return Blocks.end(); }
116
117  /// isLoopExit - True if terminator in the block can branch to another block
118  /// that is outside of the current loop.
119  ///
120  bool isLoopExit(const BlockT *BB) const {
121    typedef GraphTraits<BlockT*> BlockTraits;
122    for (typename BlockTraits::ChildIteratorType SI =
123         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
124         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
125      if (!contains(*SI))
126        return true;
127    }
128    return false;
129  }
130
131  /// getNumBackEdges - Calculate the number of back edges to the loop header
132  ///
133  unsigned getNumBackEdges() const {
134    unsigned NumBackEdges = 0;
135    BlockT *H = getHeader();
136
137    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
138    for (typename InvBlockTraits::ChildIteratorType I =
139         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
140         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
141      if (contains(*I))
142        ++NumBackEdges;
143
144    return NumBackEdges;
145  }
146
147  //===--------------------------------------------------------------------===//
148  // APIs for simple analysis of the loop.
149  //
150  // Note that all of these methods can fail on general loops (ie, there may not
151  // be a preheader, etc).  For best success, the loop simplification and
152  // induction variable canonicalization pass should be used to normalize loops
153  // for easy analysis.  These methods assume canonical loops.
154
155  /// getExitingBlocks - Return all blocks inside the loop that have successors
156  /// outside of the loop.  These are the blocks _inside of the current loop_
157  /// which branch out.  The returned list is always unique.
158  ///
159  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
160    // Sort the blocks vector so that we can use binary search to do quick
161    // lookups.
162    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
163    std::sort(LoopBBs.begin(), LoopBBs.end());
164
165    typedef GraphTraits<BlockT*> BlockTraits;
166    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
167      for (typename BlockTraits::ChildIteratorType I =
168          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
169          I != E; ++I)
170        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
171          // Not in current loop? It must be an exit block.
172          ExitingBlocks.push_back(*BI);
173          break;
174        }
175  }
176
177  /// getExitingBlock - If getExitingBlocks would return exactly one block,
178  /// return that block. Otherwise return null.
179  BlockT *getExitingBlock() const {
180    SmallVector<BlockT*, 8> ExitingBlocks;
181    getExitingBlocks(ExitingBlocks);
182    if (ExitingBlocks.size() == 1)
183      return ExitingBlocks[0];
184    return 0;
185  }
186
187  /// getExitBlocks - Return all of the successor blocks of this loop.  These
188  /// are the blocks _outside of the current loop_ which are branched to.
189  ///
190  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
191    // Sort the blocks vector so that we can use binary search to do quick
192    // lookups.
193    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
194    std::sort(LoopBBs.begin(), LoopBBs.end());
195
196    typedef GraphTraits<BlockT*> BlockTraits;
197    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
198      for (typename BlockTraits::ChildIteratorType I =
199           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
200           I != E; ++I)
201        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
202          // Not in current loop? It must be an exit block.
203          ExitBlocks.push_back(*I);
204  }
205
206  /// getExitBlock - If getExitBlocks would return exactly one block,
207  /// return that block. Otherwise return null.
208  BlockT *getExitBlock() const {
209    SmallVector<BlockT*, 8> ExitBlocks;
210    getExitBlocks(ExitBlocks);
211    if (ExitBlocks.size() == 1)
212      return ExitBlocks[0];
213    return 0;
214  }
215
216  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
217  /// These are the blocks _outside of the current loop_ which are branched to.
218  /// This assumes that loop is in canonical form.
219  ///
220  void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
221    // Sort the blocks vector so that we can use binary search to do quick
222    // lookups.
223    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
224    std::sort(LoopBBs.begin(), LoopBBs.end());
225
226    std::vector<BlockT*> switchExitBlocks;
227
228    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
229
230      BlockT *current = *BI;
231      switchExitBlocks.clear();
232
233      typedef GraphTraits<BlockT*> BlockTraits;
234      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
235      for (typename BlockTraits::ChildIteratorType I =
236           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
237           I != E; ++I) {
238        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
239      // If block is inside the loop then it is not a exit block.
240          continue;
241
242        typename InvBlockTraits::ChildIteratorType PI =
243                                                InvBlockTraits::child_begin(*I);
244        BlockT *firstPred = *PI;
245
246        // If current basic block is this exit block's first predecessor
247        // then only insert exit block in to the output ExitBlocks vector.
248        // This ensures that same exit block is not inserted twice into
249        // ExitBlocks vector.
250        if (current != firstPred)
251          continue;
252
253        // If a terminator has more then two successors, for example SwitchInst,
254        // then it is possible that there are multiple edges from current block
255        // to one exit block.
256        if (std::distance(BlockTraits::child_begin(current),
257                          BlockTraits::child_end(current)) <= 2) {
258          ExitBlocks.push_back(*I);
259          continue;
260        }
261
262        // In case of multiple edges from current block to exit block, collect
263        // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
264        // duplicate edges.
265        if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
266            == switchExitBlocks.end()) {
267          switchExitBlocks.push_back(*I);
268          ExitBlocks.push_back(*I);
269        }
270      }
271    }
272  }
273
274  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
275  /// block, return that block. Otherwise return null.
276  BlockT *getUniqueExitBlock() const {
277    SmallVector<BlockT*, 8> UniqueExitBlocks;
278    getUniqueExitBlocks(UniqueExitBlocks);
279    if (UniqueExitBlocks.size() == 1)
280      return UniqueExitBlocks[0];
281    return 0;
282  }
283
284  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
285  /// loop has a preheader if there is only one edge to the header of the loop
286  /// from outside of the loop.  If this is the case, the block branching to the
287  /// header of the loop is the preheader node.
288  ///
289  /// This method returns null if there is no preheader for the loop.
290  ///
291  BlockT *getLoopPreheader() const {
292    // Keep track of nodes outside the loop branching to the header...
293    BlockT *Out = 0;
294
295    // Loop over the predecessors of the header node...
296    BlockT *Header = getHeader();
297    typedef GraphTraits<BlockT*> BlockTraits;
298    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
299    for (typename InvBlockTraits::ChildIteratorType PI =
300         InvBlockTraits::child_begin(Header),
301         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
302      if (!contains(*PI)) {     // If the block is not in the loop...
303        if (Out && Out != *PI)
304          return 0;             // Multiple predecessors outside the loop
305        Out = *PI;
306      }
307
308    // Make sure there is only one exit out of the preheader.
309    assert(Out && "Header of loop has no predecessors from outside loop?");
310    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
311    ++SI;
312    if (SI != BlockTraits::child_end(Out))
313      return 0;  // Multiple exits from the block, must not be a preheader.
314
315    // If there is exactly one preheader, return it.  If there was zero, then
316    // Out is still null.
317    return Out;
318  }
319
320  /// getLoopLatch - If there is a single latch block for this loop, return it.
321  /// A latch block is a block that contains a branch back to the header.
322  /// A loop header in normal form has two edges into it: one from a preheader
323  /// and one from a latch block.
324  BlockT *getLoopLatch() const {
325    BlockT *Header = getHeader();
326    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
327    typename InvBlockTraits::ChildIteratorType PI =
328                                            InvBlockTraits::child_begin(Header);
329    typename InvBlockTraits::ChildIteratorType PE =
330                                              InvBlockTraits::child_end(Header);
331    if (PI == PE) return 0;  // no preds?
332
333    BlockT *Latch = 0;
334    if (contains(*PI))
335      Latch = *PI;
336    ++PI;
337    if (PI == PE) return 0;  // only one pred?
338
339    if (contains(*PI)) {
340      if (Latch) return 0;  // multiple backedges
341      Latch = *PI;
342    }
343    ++PI;
344    if (PI != PE) return 0;  // more than two preds
345
346    return Latch;
347  }
348
349  //===--------------------------------------------------------------------===//
350  // APIs for updating loop information after changing the CFG
351  //
352
353  /// addBasicBlockToLoop - This method is used by other analyses to update loop
354  /// information.  NewBB is set to be a new member of the current loop.
355  /// Because of this, it is added as a member of all parent loops, and is added
356  /// to the specified LoopInfo object as being in the current basic block.  It
357  /// is not valid to replace the loop header with this method.
358  ///
359  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
360
361  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
362  /// the OldChild entry in our children list with NewChild, and updates the
363  /// parent pointer of OldChild to be null and the NewChild to be this loop.
364  /// This updates the loop depth of the new child.
365  void replaceChildLoopWith(LoopT *OldChild,
366                            LoopT *NewChild) {
367    assert(OldChild->ParentLoop == this && "This loop is already broken!");
368    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
369    typename std::vector<LoopT *>::iterator I =
370                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
371    assert(I != SubLoops.end() && "OldChild not in loop!");
372    *I = NewChild;
373    OldChild->ParentLoop = 0;
374    NewChild->ParentLoop = static_cast<LoopT *>(this);
375  }
376
377  /// addChildLoop - Add the specified loop to be a child of this loop.  This
378  /// updates the loop depth of the new child.
379  ///
380  void addChildLoop(LoopT *NewChild) {
381    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
382    NewChild->ParentLoop = static_cast<LoopT *>(this);
383    SubLoops.push_back(NewChild);
384  }
385
386  /// removeChildLoop - This removes the specified child from being a subloop of
387  /// this loop.  The loop is not deleted, as it will presumably be inserted
388  /// into another loop.
389  LoopT *removeChildLoop(iterator I) {
390    assert(I != SubLoops.end() && "Cannot remove end iterator!");
391    LoopT *Child = *I;
392    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
393    SubLoops.erase(SubLoops.begin()+(I-begin()));
394    Child->ParentLoop = 0;
395    return Child;
396  }
397
398  /// addBlockEntry - This adds a basic block directly to the basic block list.
399  /// This should only be used by transformations that create new loops.  Other
400  /// transformations should use addBasicBlockToLoop.
401  void addBlockEntry(BlockT *BB) {
402    Blocks.push_back(BB);
403  }
404
405  /// moveToHeader - This method is used to move BB (which must be part of this
406  /// loop) to be the loop header of the loop (the block that dominates all
407  /// others).
408  void moveToHeader(BlockT *BB) {
409    if (Blocks[0] == BB) return;
410    for (unsigned i = 0; ; ++i) {
411      assert(i != Blocks.size() && "Loop does not contain BB!");
412      if (Blocks[i] == BB) {
413        Blocks[i] = Blocks[0];
414        Blocks[0] = BB;
415        return;
416      }
417    }
418  }
419
420  /// removeBlockFromLoop - This removes the specified basic block from the
421  /// current loop, updating the Blocks as appropriate.  This does not update
422  /// the mapping in the LoopInfo class.
423  void removeBlockFromLoop(BlockT *BB) {
424    RemoveFromVector(Blocks, BB);
425  }
426
427  /// verifyLoop - Verify loop structure
428  void verifyLoop() const {
429#ifndef NDEBUG
430    assert (getHeader() && "Loop header is missing");
431    assert (getLoopPreheader() && "Loop preheader is missing");
432    assert (getLoopLatch() && "Loop latch is missing");
433    for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
434      (*I)->verifyLoop();
435#endif
436  }
437
438  void print(std::ostream &OS, unsigned Depth = 0) const {
439    OS << std::string(Depth*2, ' ') << "Loop at depth " << getLoopDepth()
440       << " containing: ";
441
442    for (unsigned i = 0; i < getBlocks().size(); ++i) {
443      if (i) OS << ",";
444      BlockT *BB = getBlocks()[i];
445      WriteAsOperand(OS, BB, false);
446      if (BB == getHeader())    OS << "<header>";
447      if (BB == getLoopLatch()) OS << "<latch>";
448      if (isLoopExit(BB))       OS << "<exit>";
449    }
450    OS << "\n";
451
452    for (iterator I = begin(), E = end(); I != E; ++I)
453      (*I)->print(OS, Depth+2);
454  }
455
456  void print(std::ostream *O, unsigned Depth = 0) const {
457    if (O) print(*O, Depth);
458  }
459
460  void dump() const {
461    print(cerr);
462  }
463
464protected:
465  friend class LoopInfoBase<BlockT, LoopT>;
466  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
467    Blocks.push_back(BB);
468  }
469};
470
471class Loop : public LoopBase<BasicBlock, Loop> {
472public:
473  Loop() {}
474
475  /// isLoopInvariant - Return true if the specified value is loop invariant
476  ///
477  bool isLoopInvariant(Value *V) const;
478
479  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
480  /// induction variable: an integer recurrence that starts at 0 and increments
481  /// by one each time through the loop.  If so, return the phi node that
482  /// corresponds to it.
483  ///
484  /// The IndVarSimplify pass transforms loops to have a canonical induction
485  /// variable.
486  ///
487  PHINode *getCanonicalInductionVariable() const;
488
489  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
490  /// the canonical induction variable value for the "next" iteration of the
491  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
492  ///
493  Instruction *getCanonicalInductionVariableIncrement() const;
494
495  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
496  /// times the loop will be executed.  Note that this means that the backedge
497  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
498  /// this returns null.
499  ///
500  /// The IndVarSimplify pass transforms loops to have a form that this
501  /// function easily understands.
502  ///
503  Value *getTripCount() const;
504
505  /// getSmallConstantTripCount - Returns the trip count of this loop as a
506  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
507  /// of not constant. Will also return 0 if the trip count is very large
508  /// (>= 2^32)
509  unsigned getSmallConstantTripCount() const;
510
511  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
512  /// trip count of this loop as a normal unsigned value, if possible. This
513  /// means that the actual trip count is always a multiple of the returned
514  /// value (don't forget the trip count could very well be zero as well!).
515  ///
516  /// Returns 1 if the trip count is unknown or not guaranteed to be the
517  /// multiple of a constant (which is also the case if the trip count is simply
518  /// constant, use getSmallConstantTripCount for that case), Will also return 1
519  /// if the trip count is very large (>= 2^32).
520  unsigned getSmallConstantTripMultiple() const;
521
522  /// isLCSSAForm - Return true if the Loop is in LCSSA form
523  bool isLCSSAForm() const;
524
525private:
526  friend class LoopInfoBase<BasicBlock, Loop>;
527  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
528};
529
530//===----------------------------------------------------------------------===//
531/// LoopInfo - This class builds and contains all of the top level loop
532/// structures in the specified function.
533///
534
535template<class BlockT, class LoopT>
536class LoopInfoBase {
537  // BBMap - Mapping of basic blocks to the inner most loop they occur in
538  std::map<BlockT *, LoopT *> BBMap;
539  std::vector<LoopT *> TopLevelLoops;
540  friend class LoopBase<BlockT, LoopT>;
541
542  void operator=(const LoopInfoBase &); // do not implement
543  LoopInfoBase(const LoopInfo &);       // do not implement
544public:
545  LoopInfoBase() { }
546  ~LoopInfoBase() { releaseMemory(); }
547
548  void releaseMemory() {
549    for (typename std::vector<LoopT *>::iterator I =
550         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
551      delete *I;   // Delete all of the loops...
552
553    BBMap.clear();                           // Reset internal state of analysis
554    TopLevelLoops.clear();
555  }
556
557  /// iterator/begin/end - The interface to the top-level loops in the current
558  /// function.
559  ///
560  typedef typename std::vector<LoopT *>::const_iterator iterator;
561  iterator begin() const { return TopLevelLoops.begin(); }
562  iterator end() const { return TopLevelLoops.end(); }
563  bool empty() const { return TopLevelLoops.empty(); }
564
565  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
566  /// block is in no loop (for example the entry node), null is returned.
567  ///
568  LoopT *getLoopFor(const BlockT *BB) const {
569    typename std::map<BlockT *, LoopT *>::const_iterator I=
570      BBMap.find(const_cast<BlockT*>(BB));
571    return I != BBMap.end() ? I->second : 0;
572  }
573
574  /// operator[] - same as getLoopFor...
575  ///
576  const LoopT *operator[](const BlockT *BB) const {
577    return getLoopFor(BB);
578  }
579
580  /// getLoopDepth - Return the loop nesting level of the specified block.  A
581  /// depth of 0 means the block is not inside any loop.
582  ///
583  unsigned getLoopDepth(const BlockT *BB) const {
584    const LoopT *L = getLoopFor(BB);
585    return L ? L->getLoopDepth() : 0;
586  }
587
588  // isLoopHeader - True if the block is a loop header node
589  bool isLoopHeader(BlockT *BB) const {
590    const LoopT *L = getLoopFor(BB);
591    return L && L->getHeader() == BB;
592  }
593
594  /// removeLoop - This removes the specified top-level loop from this loop info
595  /// object.  The loop is not deleted, as it will presumably be inserted into
596  /// another loop.
597  LoopT *removeLoop(iterator I) {
598    assert(I != end() && "Cannot remove end iterator!");
599    LoopT *L = *I;
600    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
601    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
602    return L;
603  }
604
605  /// changeLoopFor - Change the top-level loop that contains BB to the
606  /// specified loop.  This should be used by transformations that restructure
607  /// the loop hierarchy tree.
608  void changeLoopFor(BlockT *BB, LoopT *L) {
609    LoopT *&OldLoop = BBMap[BB];
610    assert(OldLoop && "Block not in a loop yet!");
611    OldLoop = L;
612  }
613
614  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
615  /// list with the indicated loop.
616  void changeTopLevelLoop(LoopT *OldLoop,
617                          LoopT *NewLoop) {
618    typename std::vector<LoopT *>::iterator I =
619                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
620    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
621    *I = NewLoop;
622    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
623           "Loops already embedded into a subloop!");
624  }
625
626  /// addTopLevelLoop - This adds the specified loop to the collection of
627  /// top-level loops.
628  void addTopLevelLoop(LoopT *New) {
629    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
630    TopLevelLoops.push_back(New);
631  }
632
633  /// removeBlock - This method completely removes BB from all data structures,
634  /// including all of the Loop objects it is nested in and our mapping from
635  /// BasicBlocks to loops.
636  void removeBlock(BlockT *BB) {
637    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
638    if (I != BBMap.end()) {
639      for (LoopT *L = I->second; L; L = L->getParentLoop())
640        L->removeBlockFromLoop(BB);
641
642      BBMap.erase(I);
643    }
644  }
645
646  // Internals
647
648  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
649                                      const LoopT *ParentLoop) {
650    if (SubLoop == 0) return true;
651    if (SubLoop == ParentLoop) return false;
652    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
653  }
654
655  void Calculate(DominatorTreeBase<BlockT> &DT) {
656    BlockT *RootNode = DT.getRootNode()->getBlock();
657
658    for (df_iterator<BlockT*> NI = df_begin(RootNode),
659           NE = df_end(RootNode); NI != NE; ++NI)
660      if (LoopT *L = ConsiderForLoop(*NI, DT))
661        TopLevelLoops.push_back(L);
662  }
663
664  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
665    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
666
667    std::vector<BlockT *> TodoStack;
668
669    // Scan the predecessors of BB, checking to see if BB dominates any of
670    // them.  This identifies backedges which target this node...
671    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
672    for (typename InvBlockTraits::ChildIteratorType I =
673         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
674         I != E; ++I)
675      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
676        TodoStack.push_back(*I);
677
678    if (TodoStack.empty()) return 0;  // No backedges to this block...
679
680    // Create a new loop to represent this basic block...
681    LoopT *L = new LoopT(BB);
682    BBMap[BB] = L;
683
684    BlockT *EntryBlock = BB->getParent()->begin();
685
686    while (!TodoStack.empty()) {  // Process all the nodes in the loop
687      BlockT *X = TodoStack.back();
688      TodoStack.pop_back();
689
690      if (!L->contains(X) &&         // As of yet unprocessed??
691          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
692        // Check to see if this block already belongs to a loop.  If this occurs
693        // then we have a case where a loop that is supposed to be a child of
694        // the current loop was processed before the current loop.  When this
695        // occurs, this child loop gets added to a part of the current loop,
696        // making it a sibling to the current loop.  We have to reparent this
697        // loop.
698        if (LoopT *SubLoop =
699            const_cast<LoopT *>(getLoopFor(X)))
700          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
701            // Remove the subloop from it's current parent...
702            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
703            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
704            typename std::vector<LoopT *>::iterator I =
705              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
706            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
707            SLP->SubLoops.erase(I);   // Remove from parent...
708
709            // Add the subloop to THIS loop...
710            SubLoop->ParentLoop = L;
711            L->SubLoops.push_back(SubLoop);
712          }
713
714        // Normal case, add the block to our loop...
715        L->Blocks.push_back(X);
716
717        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
718
719        // Add all of the predecessors of X to the end of the work stack...
720        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
721                         InvBlockTraits::child_end(X));
722      }
723    }
724
725    // If there are any loops nested within this loop, create them now!
726    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
727         E = L->Blocks.end(); I != E; ++I)
728      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
729        L->SubLoops.push_back(NewLoop);
730        NewLoop->ParentLoop = L;
731      }
732
733    // Add the basic blocks that comprise this loop to the BBMap so that this
734    // loop can be found for them.
735    //
736    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
737           E = L->Blocks.end(); I != E; ++I) {
738      typename std::map<BlockT*, LoopT *>::iterator BBMI = BBMap.find(*I);
739      if (BBMI == BBMap.end())                       // Not in map yet...
740        BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
741    }
742
743    // Now that we have a list of all of the child loops of this loop, check to
744    // see if any of them should actually be nested inside of each other.  We
745    // can accidentally pull loops our of their parents, so we must make sure to
746    // organize the loop nests correctly now.
747    {
748      std::map<BlockT *, LoopT *> ContainingLoops;
749      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
750        LoopT *Child = L->SubLoops[i];
751        assert(Child->getParentLoop() == L && "Not proper child loop?");
752
753        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
754          // If there is already a loop which contains this loop, move this loop
755          // into the containing loop.
756          MoveSiblingLoopInto(Child, ContainingLoop);
757          --i;  // The loop got removed from the SubLoops list.
758        } else {
759          // This is currently considered to be a top-level loop.  Check to see
760          // if any of the contained blocks are loop headers for subloops we
761          // have already processed.
762          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
763            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
764            if (BlockLoop == 0) {   // Child block not processed yet...
765              BlockLoop = Child;
766            } else if (BlockLoop != Child) {
767              LoopT *SubLoop = BlockLoop;
768              // Reparent all of the blocks which used to belong to BlockLoops
769              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
770                ContainingLoops[SubLoop->Blocks[j]] = Child;
771
772              // There is already a loop which contains this block, that means
773              // that we should reparent the loop which the block is currently
774              // considered to belong to to be a child of this loop.
775              MoveSiblingLoopInto(SubLoop, Child);
776              --i;  // We just shrunk the SubLoops list.
777            }
778          }
779        }
780      }
781    }
782
783    return L;
784  }
785
786  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
787  /// of the NewParent Loop, instead of being a sibling of it.
788  void MoveSiblingLoopInto(LoopT *NewChild,
789                           LoopT *NewParent) {
790    LoopT *OldParent = NewChild->getParentLoop();
791    assert(OldParent && OldParent == NewParent->getParentLoop() &&
792           NewChild != NewParent && "Not sibling loops!");
793
794    // Remove NewChild from being a child of OldParent
795    typename std::vector<LoopT *>::iterator I =
796      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
797                NewChild);
798    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
799    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
800    NewChild->ParentLoop = 0;
801
802    InsertLoopInto(NewChild, NewParent);
803  }
804
805  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
806  /// the parent loop contains a loop which should contain L, the loop gets
807  /// inserted into L instead.
808  void InsertLoopInto(LoopT *L, LoopT *Parent) {
809    BlockT *LHeader = L->getHeader();
810    assert(Parent->contains(LHeader) &&
811           "This loop should not be inserted here!");
812
813    // Check to see if it belongs in a child loop...
814    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
815         i != e; ++i)
816      if (Parent->SubLoops[i]->contains(LHeader)) {
817        InsertLoopInto(L, Parent->SubLoops[i]);
818        return;
819      }
820
821    // If not, insert it here!
822    Parent->SubLoops.push_back(L);
823    L->ParentLoop = Parent;
824  }
825
826  // Debugging
827
828  void print(std::ostream &OS, const Module* ) const {
829    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
830      TopLevelLoops[i]->print(OS);
831  #if 0
832    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
833           E = BBMap.end(); I != E; ++I)
834      OS << "BB '" << I->first->getName() << "' level = "
835         << I->second->getLoopDepth() << "\n";
836  #endif
837  }
838};
839
840class LoopInfo : public FunctionPass {
841  LoopInfoBase<BasicBlock, Loop> LI;
842  friend class LoopBase<BasicBlock, Loop>;
843
844  void operator=(const LoopInfo &); // do not implement
845  LoopInfo(const LoopInfo &);       // do not implement
846public:
847  static char ID; // Pass identification, replacement for typeid
848
849  LoopInfo() : FunctionPass(&ID) {}
850
851  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
852
853  /// iterator/begin/end - The interface to the top-level loops in the current
854  /// function.
855  ///
856  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
857  inline iterator begin() const { return LI.begin(); }
858  inline iterator end() const { return LI.end(); }
859  bool empty() const { return LI.empty(); }
860
861  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
862  /// block is in no loop (for example the entry node), null is returned.
863  ///
864  inline Loop *getLoopFor(const BasicBlock *BB) const {
865    return LI.getLoopFor(BB);
866  }
867
868  /// operator[] - same as getLoopFor...
869  ///
870  inline const Loop *operator[](const BasicBlock *BB) const {
871    return LI.getLoopFor(BB);
872  }
873
874  /// getLoopDepth - Return the loop nesting level of the specified block.  A
875  /// depth of 0 means the block is not inside any loop.
876  ///
877  inline unsigned getLoopDepth(const BasicBlock *BB) const {
878    return LI.getLoopDepth(BB);
879  }
880
881  // isLoopHeader - True if the block is a loop header node
882  inline bool isLoopHeader(BasicBlock *BB) const {
883    return LI.isLoopHeader(BB);
884  }
885
886  /// runOnFunction - Calculate the natural loop information.
887  ///
888  virtual bool runOnFunction(Function &F);
889
890  virtual void releaseMemory() { LI.releaseMemory(); }
891
892  virtual void print(std::ostream &O, const Module* M = 0) const {
893    LI.print(O, M);
894  }
895
896  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
897
898  /// removeLoop - This removes the specified top-level loop from this loop info
899  /// object.  The loop is not deleted, as it will presumably be inserted into
900  /// another loop.
901  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
902
903  /// changeLoopFor - Change the top-level loop that contains BB to the
904  /// specified loop.  This should be used by transformations that restructure
905  /// the loop hierarchy tree.
906  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
907    LI.changeLoopFor(BB, L);
908  }
909
910  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
911  /// list with the indicated loop.
912  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
913    LI.changeTopLevelLoop(OldLoop, NewLoop);
914  }
915
916  /// addTopLevelLoop - This adds the specified loop to the collection of
917  /// top-level loops.
918  inline void addTopLevelLoop(Loop *New) {
919    LI.addTopLevelLoop(New);
920  }
921
922  /// removeBlock - This method completely removes BB from all data structures,
923  /// including all of the Loop objects it is nested in and our mapping from
924  /// BasicBlocks to loops.
925  void removeBlock(BasicBlock *BB) {
926    LI.removeBlock(BB);
927  }
928
929  static bool isNotAlreadyContainedIn(const Loop *SubLoop,
930                                      const Loop *ParentLoop) {
931    return
932      LoopInfoBase<BasicBlock, Loop>::isNotAlreadyContainedIn(SubLoop,
933                                                              ParentLoop);
934  }
935};
936
937
938// Allow clients to walk the list of nested loops...
939template <> struct GraphTraits<const Loop*> {
940  typedef const Loop NodeType;
941  typedef LoopInfo::iterator ChildIteratorType;
942
943  static NodeType *getEntryNode(const Loop *L) { return L; }
944  static inline ChildIteratorType child_begin(NodeType *N) {
945    return N->begin();
946  }
947  static inline ChildIteratorType child_end(NodeType *N) {
948    return N->end();
949  }
950};
951
952template <> struct GraphTraits<Loop*> {
953  typedef Loop NodeType;
954  typedef LoopInfo::iterator ChildIteratorType;
955
956  static NodeType *getEntryNode(Loop *L) { return L; }
957  static inline ChildIteratorType child_begin(NodeType *N) {
958    return N->begin();
959  }
960  static inline ChildIteratorType child_end(NodeType *N) {
961    return N->end();
962  }
963};
964
965template<class BlockT, class LoopT>
966void
967LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
968                                             LoopInfoBase<BlockT, LoopT> &LIB) {
969  assert((Blocks.empty() || LIB[getHeader()] == this) &&
970         "Incorrect LI specified for this loop!");
971  assert(NewBB && "Cannot add a null basic block to the loop!");
972  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
973
974  LoopT *L = static_cast<LoopT *>(this);
975
976  // Add the loop mapping to the LoopInfo object...
977  LIB.BBMap[NewBB] = L;
978
979  // Add the basic block to this loop and all parent loops...
980  while (L) {
981    L->Blocks.push_back(NewBB);
982    L = L->getParentLoop();
983  }
984}
985
986} // End llvm namespace
987
988#endif
989