LoopInfo.h revision 6a0dc079efe7acf7e71cc4c0948fe814f35ba091
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  A natural loop
12// has exactly one entry-point, which is called the header. Note that natural
13// loops may actually be several loops that share the same header node.
14//
15// This analysis calculates the nesting structure of loops in a function.  For
16// each natural loop identified, this analysis identifies natural loops
17// contained entirely within the loop and the basic blocks the make up the loop.
18//
19// It can calculate on the fly various bits of information, for example:
20//
21//  * whether there is a preheader for the loop
22//  * the number of back edges to the header
23//  * whether or not a particular block branches out of the loop
24//  * the successor blocks of the loop
25//  * the loop depth
26//  * the trip count
27//  * etc...
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_LOOP_INFO_H
32#define LLVM_ANALYSIS_LOOP_INFO_H
33
34#include "llvm/Pass.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/Analysis/Dominators.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/raw_ostream.h"
42#include <algorithm>
43
44namespace llvm {
45
46template<typename T>
47static void RemoveFromVector(std::vector<T*> &V, T *N) {
48  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
49  assert(I != V.end() && "N is not in this list!");
50  V.erase(I);
51}
52
53class DominatorTree;
54class LoopInfo;
55class Loop;
56template<class N, class M> class LoopInfoBase;
57template<class N, class M> class LoopBase;
58
59//===----------------------------------------------------------------------===//
60/// LoopBase class - Instances of this class are used to represent loops that
61/// are detected in the flow graph
62///
63template<class BlockT, class LoopT>
64class LoopBase {
65  LoopT *ParentLoop;
66  // SubLoops - Loops contained entirely within this one.
67  std::vector<LoopT *> SubLoops;
68
69  // Blocks - The list of blocks in this loop.  First entry is the header node.
70  std::vector<BlockT*> Blocks;
71
72  // DO NOT IMPLEMENT
73  LoopBase(const LoopBase<BlockT, LoopT> &);
74  // DO NOT IMPLEMENT
75  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
76public:
77  /// Loop ctor - This creates an empty loop.
78  LoopBase() : ParentLoop(0) {}
79  ~LoopBase() {
80    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
81      delete SubLoops[i];
82  }
83
84  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
85  /// loop has depth 1, for consistency with loop depth values used for basic
86  /// blocks, where depth 0 is used for blocks not inside any loops.
87  unsigned getLoopDepth() const {
88    unsigned D = 1;
89    for (const LoopT *CurLoop = ParentLoop; CurLoop;
90         CurLoop = CurLoop->ParentLoop)
91      ++D;
92    return D;
93  }
94  BlockT *getHeader() const { return Blocks.front(); }
95  LoopT *getParentLoop() const { return ParentLoop; }
96
97  /// contains - Return true if the specified loop is contained within in
98  /// this loop.
99  ///
100  bool contains(const LoopT *L) const {
101    if (L == this) return true;
102    if (L == 0)    return false;
103    return contains(L->getParentLoop());
104  }
105
106  /// contains - Return true if the specified basic block is in this loop.
107  ///
108  bool contains(const BlockT *BB) const {
109    return std::find(block_begin(), block_end(), BB) != block_end();
110  }
111
112  /// contains - Return true if the specified instruction is in this loop.
113  ///
114  template<class InstT>
115  bool contains(const InstT *Inst) const {
116    return contains(Inst->getParent());
117  }
118
119  /// iterator/begin/end - Return the loops contained entirely within this loop.
120  ///
121  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
122  typedef typename std::vector<LoopT *>::const_iterator iterator;
123  iterator begin() const { return SubLoops.begin(); }
124  iterator end() const { return SubLoops.end(); }
125  bool empty() const { return SubLoops.empty(); }
126
127  /// getBlocks - Get a list of the basic blocks which make up this loop.
128  ///
129  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
130  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
131  block_iterator block_begin() const { return Blocks.begin(); }
132  block_iterator block_end() const { return Blocks.end(); }
133
134  /// isLoopExiting - True if terminator in the block can branch to another
135  /// block that is outside of the current loop.
136  ///
137  bool isLoopExiting(const BlockT *BB) const {
138    typedef GraphTraits<BlockT*> BlockTraits;
139    for (typename BlockTraits::ChildIteratorType SI =
140         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
141         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
142      if (!contains(*SI))
143        return true;
144    }
145    return false;
146  }
147
148  /// getNumBackEdges - Calculate the number of back edges to the loop header
149  ///
150  unsigned getNumBackEdges() const {
151    unsigned NumBackEdges = 0;
152    BlockT *H = getHeader();
153
154    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
155    for (typename InvBlockTraits::ChildIteratorType I =
156         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
157         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
158      if (contains(*I))
159        ++NumBackEdges;
160
161    return NumBackEdges;
162  }
163
164  //===--------------------------------------------------------------------===//
165  // APIs for simple analysis of the loop.
166  //
167  // Note that all of these methods can fail on general loops (ie, there may not
168  // be a preheader, etc).  For best success, the loop simplification and
169  // induction variable canonicalization pass should be used to normalize loops
170  // for easy analysis.  These methods assume canonical loops.
171
172  /// getExitingBlocks - Return all blocks inside the loop that have successors
173  /// outside of the loop.  These are the blocks _inside of the current loop_
174  /// which branch out.  The returned list is always unique.
175  ///
176  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
177    // Sort the blocks vector so that we can use binary search to do quick
178    // lookups.
179    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
180    std::sort(LoopBBs.begin(), LoopBBs.end());
181
182    typedef GraphTraits<BlockT*> BlockTraits;
183    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
184      for (typename BlockTraits::ChildIteratorType I =
185          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
186          I != E; ++I)
187        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
188          // Not in current loop? It must be an exit block.
189          ExitingBlocks.push_back(*BI);
190          break;
191        }
192  }
193
194  /// getExitingBlock - If getExitingBlocks would return exactly one block,
195  /// return that block. Otherwise return null.
196  BlockT *getExitingBlock() const {
197    SmallVector<BlockT*, 8> ExitingBlocks;
198    getExitingBlocks(ExitingBlocks);
199    if (ExitingBlocks.size() == 1)
200      return ExitingBlocks[0];
201    return 0;
202  }
203
204  /// getExitBlocks - Return all of the successor blocks of this loop.  These
205  /// are the blocks _outside of the current loop_ which are branched to.
206  ///
207  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
208    // Sort the blocks vector so that we can use binary search to do quick
209    // lookups.
210    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
211    std::sort(LoopBBs.begin(), LoopBBs.end());
212
213    typedef GraphTraits<BlockT*> BlockTraits;
214    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
215      for (typename BlockTraits::ChildIteratorType I =
216           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
217           I != E; ++I)
218        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
219          // Not in current loop? It must be an exit block.
220          ExitBlocks.push_back(*I);
221  }
222
223  /// getExitBlock - If getExitBlocks would return exactly one block,
224  /// return that block. Otherwise return null.
225  BlockT *getExitBlock() const {
226    SmallVector<BlockT*, 8> ExitBlocks;
227    getExitBlocks(ExitBlocks);
228    if (ExitBlocks.size() == 1)
229      return ExitBlocks[0];
230    return 0;
231  }
232
233  /// Edge type.
234  typedef std::pair<BlockT*, BlockT*> Edge;
235
236  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
237  template <typename EdgeT>
238  void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
239    // Sort the blocks vector so that we can use binary search to do quick
240    // lookups.
241    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
242    array_pod_sort(LoopBBs.begin(), LoopBBs.end());
243
244    typedef GraphTraits<BlockT*> BlockTraits;
245    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
246      for (typename BlockTraits::ChildIteratorType I =
247           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
248           I != E; ++I)
249        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
250          // Not in current loop? It must be an exit block.
251          ExitEdges.push_back(EdgeT(*BI, *I));
252  }
253
254  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
255  /// loop has a preheader if there is only one edge to the header of the loop
256  /// from outside of the loop.  If this is the case, the block branching to the
257  /// header of the loop is the preheader node.
258  ///
259  /// This method returns null if there is no preheader for the loop.
260  ///
261  BlockT *getLoopPreheader() const {
262    // Keep track of nodes outside the loop branching to the header...
263    BlockT *Out = getLoopPredecessor();
264    if (!Out) return 0;
265
266    // Make sure there is only one exit out of the preheader.
267    typedef GraphTraits<BlockT*> BlockTraits;
268    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
269    ++SI;
270    if (SI != BlockTraits::child_end(Out))
271      return 0;  // Multiple exits from the block, must not be a preheader.
272
273    // The predecessor has exactly one successor, so it is a preheader.
274    return Out;
275  }
276
277  /// getLoopPredecessor - If the given loop's header has exactly one unique
278  /// predecessor outside the loop, return it. Otherwise return null.
279  /// This is less strict that the loop "preheader" concept, which requires
280  /// the predecessor to have exactly one successor.
281  ///
282  BlockT *getLoopPredecessor() const {
283    // Keep track of nodes outside the loop branching to the header...
284    BlockT *Out = 0;
285
286    // Loop over the predecessors of the header node...
287    BlockT *Header = getHeader();
288    typedef GraphTraits<BlockT*> BlockTraits;
289    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
290    for (typename InvBlockTraits::ChildIteratorType PI =
291         InvBlockTraits::child_begin(Header),
292         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
293      typename InvBlockTraits::NodeType *N = *PI;
294      if (!contains(N)) {     // If the block is not in the loop...
295        if (Out && Out != N)
296          return 0;             // Multiple predecessors outside the loop
297        Out = N;
298      }
299    }
300
301    // Make sure there is only one exit out of the preheader.
302    assert(Out && "Header of loop has no predecessors from outside loop?");
303    return Out;
304  }
305
306  /// getLoopLatch - If there is a single latch block for this loop, return it.
307  /// A latch block is a block that contains a branch back to the header.
308  BlockT *getLoopLatch() const {
309    BlockT *Header = getHeader();
310    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
311    typename InvBlockTraits::ChildIteratorType PI =
312                                            InvBlockTraits::child_begin(Header);
313    typename InvBlockTraits::ChildIteratorType PE =
314                                              InvBlockTraits::child_end(Header);
315    BlockT *Latch = 0;
316    for (; PI != PE; ++PI) {
317      typename InvBlockTraits::NodeType *N = *PI;
318      if (contains(N)) {
319        if (Latch) return 0;
320        Latch = N;
321      }
322    }
323
324    return Latch;
325  }
326
327  //===--------------------------------------------------------------------===//
328  // APIs for updating loop information after changing the CFG
329  //
330
331  /// addBasicBlockToLoop - This method is used by other analyses to update loop
332  /// information.  NewBB is set to be a new member of the current loop.
333  /// Because of this, it is added as a member of all parent loops, and is added
334  /// to the specified LoopInfo object as being in the current basic block.  It
335  /// is not valid to replace the loop header with this method.
336  ///
337  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
338
339  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
340  /// the OldChild entry in our children list with NewChild, and updates the
341  /// parent pointer of OldChild to be null and the NewChild to be this loop.
342  /// This updates the loop depth of the new child.
343  void replaceChildLoopWith(LoopT *OldChild,
344                            LoopT *NewChild) {
345    assert(OldChild->ParentLoop == this && "This loop is already broken!");
346    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
347    typename std::vector<LoopT *>::iterator I =
348                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
349    assert(I != SubLoops.end() && "OldChild not in loop!");
350    *I = NewChild;
351    OldChild->ParentLoop = 0;
352    NewChild->ParentLoop = static_cast<LoopT *>(this);
353  }
354
355  /// addChildLoop - Add the specified loop to be a child of this loop.  This
356  /// updates the loop depth of the new child.
357  ///
358  void addChildLoop(LoopT *NewChild) {
359    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
360    NewChild->ParentLoop = static_cast<LoopT *>(this);
361    SubLoops.push_back(NewChild);
362  }
363
364  /// removeChildLoop - This removes the specified child from being a subloop of
365  /// this loop.  The loop is not deleted, as it will presumably be inserted
366  /// into another loop.
367  LoopT *removeChildLoop(iterator I) {
368    assert(I != SubLoops.end() && "Cannot remove end iterator!");
369    LoopT *Child = *I;
370    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
371    SubLoops.erase(SubLoops.begin()+(I-begin()));
372    Child->ParentLoop = 0;
373    return Child;
374  }
375
376  /// addBlockEntry - This adds a basic block directly to the basic block list.
377  /// This should only be used by transformations that create new loops.  Other
378  /// transformations should use addBasicBlockToLoop.
379  void addBlockEntry(BlockT *BB) {
380    Blocks.push_back(BB);
381  }
382
383  /// moveToHeader - This method is used to move BB (which must be part of this
384  /// loop) to be the loop header of the loop (the block that dominates all
385  /// others).
386  void moveToHeader(BlockT *BB) {
387    if (Blocks[0] == BB) return;
388    for (unsigned i = 0; ; ++i) {
389      assert(i != Blocks.size() && "Loop does not contain BB!");
390      if (Blocks[i] == BB) {
391        Blocks[i] = Blocks[0];
392        Blocks[0] = BB;
393        return;
394      }
395    }
396  }
397
398  /// removeBlockFromLoop - This removes the specified basic block from the
399  /// current loop, updating the Blocks as appropriate.  This does not update
400  /// the mapping in the LoopInfo class.
401  void removeBlockFromLoop(BlockT *BB) {
402    RemoveFromVector(Blocks, BB);
403  }
404
405  /// verifyLoop - Verify loop structure
406  void verifyLoop() const {
407#ifndef NDEBUG
408    assert(!Blocks.empty() && "Loop header is missing");
409
410    // Sort the blocks vector so that we can use binary search to do quick
411    // lookups.
412    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
413    std::sort(LoopBBs.begin(), LoopBBs.end());
414
415    // Check the individual blocks.
416    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
417      BlockT *BB = *I;
418      bool HasInsideLoopSuccs = false;
419      bool HasInsideLoopPreds = false;
420      SmallVector<BlockT *, 2> OutsideLoopPreds;
421
422      typedef GraphTraits<BlockT*> BlockTraits;
423      for (typename BlockTraits::ChildIteratorType SI =
424           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
425           SI != SE; ++SI)
426        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
427          HasInsideLoopSuccs = true;
428          break;
429        }
430      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
431      for (typename InvBlockTraits::ChildIteratorType PI =
432           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
433           PI != PE; ++PI) {
434        typename InvBlockTraits::NodeType *N = *PI;
435        if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
436          HasInsideLoopPreds = true;
437        else
438          OutsideLoopPreds.push_back(N);
439      }
440
441      if (BB == getHeader()) {
442        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
443      } else if (!OutsideLoopPreds.empty()) {
444        // A non-header loop shouldn't be reachable from outside the loop,
445        // though it is permitted if the predecessor is not itself actually
446        // reachable.
447        BlockT *EntryBB = BB->getParent()->begin();
448        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
449             NE = df_end(EntryBB); NI != NE; ++NI)
450          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
451            assert(*NI != OutsideLoopPreds[i] &&
452                   "Loop has multiple entry points!");
453      }
454      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
455      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
456      assert(BB != getHeader()->getParent()->begin() &&
457             "Loop contains function entry block!");
458    }
459
460    // Check the subloops.
461    for (iterator I = begin(), E = end(); I != E; ++I)
462      // Each block in each subloop should be contained within this loop.
463      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
464           BI != BE; ++BI) {
465        assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
466               "Loop does not contain all the blocks of a subloop!");
467      }
468
469    // Check the parent loop pointer.
470    if (ParentLoop) {
471      assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
472               ParentLoop->end() &&
473             "Loop is not a subloop of its parent!");
474    }
475#endif
476  }
477
478  /// verifyLoop - Verify loop structure of this loop and all nested loops.
479  void verifyLoopNest() const {
480    // Verify this loop.
481    verifyLoop();
482    // Verify the subloops.
483    for (iterator I = begin(), E = end(); I != E; ++I)
484      (*I)->verifyLoopNest();
485  }
486
487  void print(raw_ostream &OS, unsigned Depth = 0) const {
488    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
489       << " containing: ";
490
491    for (unsigned i = 0; i < getBlocks().size(); ++i) {
492      if (i) OS << ",";
493      BlockT *BB = getBlocks()[i];
494      WriteAsOperand(OS, BB, false);
495      if (BB == getHeader())    OS << "<header>";
496      if (BB == getLoopLatch()) OS << "<latch>";
497      if (isLoopExiting(BB))    OS << "<exiting>";
498    }
499    OS << "\n";
500
501    for (iterator I = begin(), E = end(); I != E; ++I)
502      (*I)->print(OS, Depth+2);
503  }
504
505protected:
506  friend class LoopInfoBase<BlockT, LoopT>;
507  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
508    Blocks.push_back(BB);
509  }
510};
511
512template<class BlockT, class LoopT>
513raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
514  Loop.print(OS);
515  return OS;
516}
517
518class Loop : public LoopBase<BasicBlock, Loop> {
519public:
520  Loop() {}
521
522  /// isLoopInvariant - Return true if the specified value is loop invariant
523  ///
524  bool isLoopInvariant(Value *V) const;
525
526  /// isLoopInvariant - Return true if the specified instruction is
527  /// loop-invariant.
528  ///
529  bool isLoopInvariant(Instruction *I) const;
530
531  /// makeLoopInvariant - If the given value is an instruction inside of the
532  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
533  /// Return true if the value after any hoisting is loop invariant. This
534  /// function can be used as a slightly more aggressive replacement for
535  /// isLoopInvariant.
536  ///
537  /// If InsertPt is specified, it is the point to hoist instructions to.
538  /// If null, the terminator of the loop preheader is used.
539  ///
540  bool makeLoopInvariant(Value *V, bool &Changed,
541                         Instruction *InsertPt = 0) const;
542
543  /// makeLoopInvariant - If the given instruction is inside of the
544  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
545  /// Return true if the instruction after any hoisting is loop invariant. This
546  /// function can be used as a slightly more aggressive replacement for
547  /// isLoopInvariant.
548  ///
549  /// If InsertPt is specified, it is the point to hoist instructions to.
550  /// If null, the terminator of the loop preheader is used.
551  ///
552  bool makeLoopInvariant(Instruction *I, bool &Changed,
553                         Instruction *InsertPt = 0) const;
554
555  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
556  /// induction variable: an integer recurrence that starts at 0 and increments
557  /// by one each time through the loop.  If so, return the phi node that
558  /// corresponds to it.
559  ///
560  /// The IndVarSimplify pass transforms loops to have a canonical induction
561  /// variable.
562  ///
563  PHINode *getCanonicalInductionVariable() const;
564
565  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
566  /// the canonical induction variable value for the "next" iteration of the
567  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
568  ///
569  Instruction *getCanonicalInductionVariableIncrement() const;
570
571  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
572  /// times the loop will be executed.  Note that this means that the backedge
573  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
574  /// this returns null.
575  ///
576  /// The IndVarSimplify pass transforms loops to have a form that this
577  /// function easily understands.
578  ///
579  Value *getTripCount() const;
580
581  /// getSmallConstantTripCount - Returns the trip count of this loop as a
582  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
583  /// of not constant. Will also return 0 if the trip count is very large
584  /// (>= 2^32)
585  ///
586  /// The IndVarSimplify pass transforms loops to have a form that this
587  /// function easily understands.
588  ///
589  unsigned getSmallConstantTripCount() const;
590
591  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
592  /// trip count of this loop as a normal unsigned value, if possible. This
593  /// means that the actual trip count is always a multiple of the returned
594  /// value (don't forget the trip count could very well be zero as well!).
595  ///
596  /// Returns 1 if the trip count is unknown or not guaranteed to be the
597  /// multiple of a constant (which is also the case if the trip count is simply
598  /// constant, use getSmallConstantTripCount for that case), Will also return 1
599  /// if the trip count is very large (>= 2^32).
600  unsigned getSmallConstantTripMultiple() const;
601
602  /// isLCSSAForm - Return true if the Loop is in LCSSA form
603  bool isLCSSAForm(DominatorTree &DT) const;
604
605  /// isLoopSimplifyForm - Return true if the Loop is in the form that
606  /// the LoopSimplify form transforms loops to, which is sometimes called
607  /// normal form.
608  bool isLoopSimplifyForm() const;
609
610  /// hasDedicatedExits - Return true if no exit block for the loop
611  /// has a predecessor that is outside the loop.
612  bool hasDedicatedExits() const;
613
614  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
615  /// These are the blocks _outside of the current loop_ which are branched to.
616  /// This assumes that loop exits are in canonical form.
617  ///
618  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
619
620  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
621  /// block, return that block. Otherwise return null.
622  BasicBlock *getUniqueExitBlock() const;
623
624  void dump() const;
625
626private:
627  friend class LoopInfoBase<BasicBlock, Loop>;
628  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
629};
630
631//===----------------------------------------------------------------------===//
632/// LoopInfo - This class builds and contains all of the top level loop
633/// structures in the specified function.
634///
635
636template<class BlockT, class LoopT>
637class LoopInfoBase {
638  // BBMap - Mapping of basic blocks to the inner most loop they occur in
639  std::map<BlockT *, LoopT *> BBMap;
640  std::vector<LoopT *> TopLevelLoops;
641  friend class LoopBase<BlockT, LoopT>;
642
643  void operator=(const LoopInfoBase &); // do not implement
644  LoopInfoBase(const LoopInfo &);       // do not implement
645public:
646  LoopInfoBase() { }
647  ~LoopInfoBase() { releaseMemory(); }
648
649  void releaseMemory() {
650    for (typename std::vector<LoopT *>::iterator I =
651         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
652      delete *I;   // Delete all of the loops...
653
654    BBMap.clear();                           // Reset internal state of analysis
655    TopLevelLoops.clear();
656  }
657
658  /// iterator/begin/end - The interface to the top-level loops in the current
659  /// function.
660  ///
661  typedef typename std::vector<LoopT *>::const_iterator iterator;
662  iterator begin() const { return TopLevelLoops.begin(); }
663  iterator end() const { return TopLevelLoops.end(); }
664  bool empty() const { return TopLevelLoops.empty(); }
665
666  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
667  /// block is in no loop (for example the entry node), null is returned.
668  ///
669  LoopT *getLoopFor(const BlockT *BB) const {
670    typename std::map<BlockT *, LoopT *>::const_iterator I=
671      BBMap.find(const_cast<BlockT*>(BB));
672    return I != BBMap.end() ? I->second : 0;
673  }
674
675  /// operator[] - same as getLoopFor...
676  ///
677  const LoopT *operator[](const BlockT *BB) const {
678    return getLoopFor(BB);
679  }
680
681  /// getLoopDepth - Return the loop nesting level of the specified block.  A
682  /// depth of 0 means the block is not inside any loop.
683  ///
684  unsigned getLoopDepth(const BlockT *BB) const {
685    const LoopT *L = getLoopFor(BB);
686    return L ? L->getLoopDepth() : 0;
687  }
688
689  // isLoopHeader - True if the block is a loop header node
690  bool isLoopHeader(BlockT *BB) const {
691    const LoopT *L = getLoopFor(BB);
692    return L && L->getHeader() == BB;
693  }
694
695  /// removeLoop - This removes the specified top-level loop from this loop info
696  /// object.  The loop is not deleted, as it will presumably be inserted into
697  /// another loop.
698  LoopT *removeLoop(iterator I) {
699    assert(I != end() && "Cannot remove end iterator!");
700    LoopT *L = *I;
701    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
702    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
703    return L;
704  }
705
706  /// changeLoopFor - Change the top-level loop that contains BB to the
707  /// specified loop.  This should be used by transformations that restructure
708  /// the loop hierarchy tree.
709  void changeLoopFor(BlockT *BB, LoopT *L) {
710    LoopT *&OldLoop = BBMap[BB];
711    assert(OldLoop && "Block not in a loop yet!");
712    OldLoop = L;
713  }
714
715  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
716  /// list with the indicated loop.
717  void changeTopLevelLoop(LoopT *OldLoop,
718                          LoopT *NewLoop) {
719    typename std::vector<LoopT *>::iterator I =
720                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
721    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
722    *I = NewLoop;
723    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
724           "Loops already embedded into a subloop!");
725  }
726
727  /// addTopLevelLoop - This adds the specified loop to the collection of
728  /// top-level loops.
729  void addTopLevelLoop(LoopT *New) {
730    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
731    TopLevelLoops.push_back(New);
732  }
733
734  /// removeBlock - This method completely removes BB from all data structures,
735  /// including all of the Loop objects it is nested in and our mapping from
736  /// BasicBlocks to loops.
737  void removeBlock(BlockT *BB) {
738    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
739    if (I != BBMap.end()) {
740      for (LoopT *L = I->second; L; L = L->getParentLoop())
741        L->removeBlockFromLoop(BB);
742
743      BBMap.erase(I);
744    }
745  }
746
747  // Internals
748
749  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
750                                      const LoopT *ParentLoop) {
751    if (SubLoop == 0) return true;
752    if (SubLoop == ParentLoop) return false;
753    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
754  }
755
756  void Calculate(DominatorTreeBase<BlockT> &DT) {
757    BlockT *RootNode = DT.getRootNode()->getBlock();
758
759    for (df_iterator<BlockT*> NI = df_begin(RootNode),
760           NE = df_end(RootNode); NI != NE; ++NI)
761      if (LoopT *L = ConsiderForLoop(*NI, DT))
762        TopLevelLoops.push_back(L);
763  }
764
765  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
766    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
767
768    std::vector<BlockT *> TodoStack;
769
770    // Scan the predecessors of BB, checking to see if BB dominates any of
771    // them.  This identifies backedges which target this node...
772    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
773    for (typename InvBlockTraits::ChildIteratorType I =
774         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
775         I != E; ++I) {
776      typename InvBlockTraits::NodeType *N = *I;
777      if (DT.dominates(BB, N))   // If BB dominates its predecessor...
778          TodoStack.push_back(N);
779    }
780
781    if (TodoStack.empty()) return 0;  // No backedges to this block...
782
783    // Create a new loop to represent this basic block...
784    LoopT *L = new LoopT(BB);
785    BBMap[BB] = L;
786
787    BlockT *EntryBlock = BB->getParent()->begin();
788
789    while (!TodoStack.empty()) {  // Process all the nodes in the loop
790      BlockT *X = TodoStack.back();
791      TodoStack.pop_back();
792
793      if (!L->contains(X) &&         // As of yet unprocessed??
794          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
795        // Check to see if this block already belongs to a loop.  If this occurs
796        // then we have a case where a loop that is supposed to be a child of
797        // the current loop was processed before the current loop.  When this
798        // occurs, this child loop gets added to a part of the current loop,
799        // making it a sibling to the current loop.  We have to reparent this
800        // loop.
801        if (LoopT *SubLoop =
802            const_cast<LoopT *>(getLoopFor(X)))
803          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
804            // Remove the subloop from its current parent...
805            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
806            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
807            typename std::vector<LoopT *>::iterator I =
808              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
809            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
810            SLP->SubLoops.erase(I);   // Remove from parent...
811
812            // Add the subloop to THIS loop...
813            SubLoop->ParentLoop = L;
814            L->SubLoops.push_back(SubLoop);
815          }
816
817        // Normal case, add the block to our loop...
818        L->Blocks.push_back(X);
819
820        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
821
822        // Add all of the predecessors of X to the end of the work stack...
823        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
824                         InvBlockTraits::child_end(X));
825      }
826    }
827
828    // If there are any loops nested within this loop, create them now!
829    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
830         E = L->Blocks.end(); I != E; ++I)
831      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
832        L->SubLoops.push_back(NewLoop);
833        NewLoop->ParentLoop = L;
834      }
835
836    // Add the basic blocks that comprise this loop to the BBMap so that this
837    // loop can be found for them.
838    //
839    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
840           E = L->Blocks.end(); I != E; ++I)
841      BBMap.insert(std::make_pair(*I, L));
842
843    // Now that we have a list of all of the child loops of this loop, check to
844    // see if any of them should actually be nested inside of each other.  We
845    // can accidentally pull loops our of their parents, so we must make sure to
846    // organize the loop nests correctly now.
847    {
848      std::map<BlockT *, LoopT *> ContainingLoops;
849      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
850        LoopT *Child = L->SubLoops[i];
851        assert(Child->getParentLoop() == L && "Not proper child loop?");
852
853        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
854          // If there is already a loop which contains this loop, move this loop
855          // into the containing loop.
856          MoveSiblingLoopInto(Child, ContainingLoop);
857          --i;  // The loop got removed from the SubLoops list.
858        } else {
859          // This is currently considered to be a top-level loop.  Check to see
860          // if any of the contained blocks are loop headers for subloops we
861          // have already processed.
862          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
863            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
864            if (BlockLoop == 0) {   // Child block not processed yet...
865              BlockLoop = Child;
866            } else if (BlockLoop != Child) {
867              LoopT *SubLoop = BlockLoop;
868              // Reparent all of the blocks which used to belong to BlockLoops
869              for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
870                ContainingLoops[SubLoop->Blocks[j]] = Child;
871
872              // There is already a loop which contains this block, that means
873              // that we should reparent the loop which the block is currently
874              // considered to belong to to be a child of this loop.
875              MoveSiblingLoopInto(SubLoop, Child);
876              --i;  // We just shrunk the SubLoops list.
877            }
878          }
879        }
880      }
881    }
882
883    return L;
884  }
885
886  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
887  /// of the NewParent Loop, instead of being a sibling of it.
888  void MoveSiblingLoopInto(LoopT *NewChild,
889                           LoopT *NewParent) {
890    LoopT *OldParent = NewChild->getParentLoop();
891    assert(OldParent && OldParent == NewParent->getParentLoop() &&
892           NewChild != NewParent && "Not sibling loops!");
893
894    // Remove NewChild from being a child of OldParent
895    typename std::vector<LoopT *>::iterator I =
896      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
897                NewChild);
898    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
899    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
900    NewChild->ParentLoop = 0;
901
902    InsertLoopInto(NewChild, NewParent);
903  }
904
905  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
906  /// the parent loop contains a loop which should contain L, the loop gets
907  /// inserted into L instead.
908  void InsertLoopInto(LoopT *L, LoopT *Parent) {
909    BlockT *LHeader = L->getHeader();
910    assert(Parent->contains(LHeader) &&
911           "This loop should not be inserted here!");
912
913    // Check to see if it belongs in a child loop...
914    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
915         i != e; ++i)
916      if (Parent->SubLoops[i]->contains(LHeader)) {
917        InsertLoopInto(L, Parent->SubLoops[i]);
918        return;
919      }
920
921    // If not, insert it here!
922    Parent->SubLoops.push_back(L);
923    L->ParentLoop = Parent;
924  }
925
926  // Debugging
927
928  void print(raw_ostream &OS) const {
929    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
930      TopLevelLoops[i]->print(OS);
931  #if 0
932    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
933           E = BBMap.end(); I != E; ++I)
934      OS << "BB '" << I->first->getName() << "' level = "
935         << I->second->getLoopDepth() << "\n";
936  #endif
937  }
938};
939
940class LoopInfo : public FunctionPass {
941  LoopInfoBase<BasicBlock, Loop> LI;
942  friend class LoopBase<BasicBlock, Loop>;
943
944  void operator=(const LoopInfo &); // do not implement
945  LoopInfo(const LoopInfo &);       // do not implement
946public:
947  static char ID; // Pass identification, replacement for typeid
948
949  LoopInfo() : FunctionPass(&ID) {}
950
951  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
952
953  /// iterator/begin/end - The interface to the top-level loops in the current
954  /// function.
955  ///
956  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
957  inline iterator begin() const { return LI.begin(); }
958  inline iterator end() const { return LI.end(); }
959  bool empty() const { return LI.empty(); }
960
961  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
962  /// block is in no loop (for example the entry node), null is returned.
963  ///
964  inline Loop *getLoopFor(const BasicBlock *BB) const {
965    return LI.getLoopFor(BB);
966  }
967
968  /// operator[] - same as getLoopFor...
969  ///
970  inline const Loop *operator[](const BasicBlock *BB) const {
971    return LI.getLoopFor(BB);
972  }
973
974  /// getLoopDepth - Return the loop nesting level of the specified block.  A
975  /// depth of 0 means the block is not inside any loop.
976  ///
977  inline unsigned getLoopDepth(const BasicBlock *BB) const {
978    return LI.getLoopDepth(BB);
979  }
980
981  // isLoopHeader - True if the block is a loop header node
982  inline bool isLoopHeader(BasicBlock *BB) const {
983    return LI.isLoopHeader(BB);
984  }
985
986  /// runOnFunction - Calculate the natural loop information.
987  ///
988  virtual bool runOnFunction(Function &F);
989
990  virtual void verifyAnalysis() const;
991
992  virtual void releaseMemory() { LI.releaseMemory(); }
993
994  virtual void print(raw_ostream &O, const Module* M = 0) const;
995
996  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
997
998  /// removeLoop - This removes the specified top-level loop from this loop info
999  /// object.  The loop is not deleted, as it will presumably be inserted into
1000  /// another loop.
1001  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
1002
1003  /// changeLoopFor - Change the top-level loop that contains BB to the
1004  /// specified loop.  This should be used by transformations that restructure
1005  /// the loop hierarchy tree.
1006  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1007    LI.changeLoopFor(BB, L);
1008  }
1009
1010  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1011  /// list with the indicated loop.
1012  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1013    LI.changeTopLevelLoop(OldLoop, NewLoop);
1014  }
1015
1016  /// addTopLevelLoop - This adds the specified loop to the collection of
1017  /// top-level loops.
1018  inline void addTopLevelLoop(Loop *New) {
1019    LI.addTopLevelLoop(New);
1020  }
1021
1022  /// removeBlock - This method completely removes BB from all data structures,
1023  /// including all of the Loop objects it is nested in and our mapping from
1024  /// BasicBlocks to loops.
1025  void removeBlock(BasicBlock *BB) {
1026    LI.removeBlock(BB);
1027  }
1028};
1029
1030
1031// Allow clients to walk the list of nested loops...
1032template <> struct GraphTraits<const Loop*> {
1033  typedef const Loop NodeType;
1034  typedef LoopInfo::iterator ChildIteratorType;
1035
1036  static NodeType *getEntryNode(const Loop *L) { return L; }
1037  static inline ChildIteratorType child_begin(NodeType *N) {
1038    return N->begin();
1039  }
1040  static inline ChildIteratorType child_end(NodeType *N) {
1041    return N->end();
1042  }
1043};
1044
1045template <> struct GraphTraits<Loop*> {
1046  typedef Loop NodeType;
1047  typedef LoopInfo::iterator ChildIteratorType;
1048
1049  static NodeType *getEntryNode(Loop *L) { return L; }
1050  static inline ChildIteratorType child_begin(NodeType *N) {
1051    return N->begin();
1052  }
1053  static inline ChildIteratorType child_end(NodeType *N) {
1054    return N->end();
1055  }
1056};
1057
1058template<class BlockT, class LoopT>
1059void
1060LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1061                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1062  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1063         "Incorrect LI specified for this loop!");
1064  assert(NewBB && "Cannot add a null basic block to the loop!");
1065  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1066
1067  LoopT *L = static_cast<LoopT *>(this);
1068
1069  // Add the loop mapping to the LoopInfo object...
1070  LIB.BBMap[NewBB] = L;
1071
1072  // Add the basic block to this loop and all parent loops...
1073  while (L) {
1074    L->Blocks.push_back(NewBB);
1075    L = L->getParentLoop();
1076  }
1077}
1078
1079} // End llvm namespace
1080
1081#endif
1082