LoopInfo.h revision 8fc5ad33691b2a0672a7487da1f56b6f7f675a1b
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * the trip count
26//  * etc...
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_LOOP_INFO_H
31#define LLVM_ANALYSIS_LOOP_INFO_H
32
33#include "llvm/Pass.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/raw_ostream.h"
40#include <algorithm>
41
42namespace llvm {
43
44template<typename T>
45static void RemoveFromVector(std::vector<T*> &V, T *N) {
46  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
47  assert(I != V.end() && "N is not in this list!");
48  V.erase(I);
49}
50
51class DominatorTree;
52class LoopInfo;
53class Loop;
54template<class N, class M> class LoopInfoBase;
55template<class N, class M> class LoopBase;
56
57//===----------------------------------------------------------------------===//
58/// LoopBase class - Instances of this class are used to represent loops that
59/// are detected in the flow graph
60///
61template<class BlockT, class LoopT>
62class LoopBase {
63  LoopT *ParentLoop;
64  // SubLoops - Loops contained entirely within this one.
65  std::vector<LoopT *> SubLoops;
66
67  // Blocks - The list of blocks in this loop.  First entry is the header node.
68  std::vector<BlockT*> Blocks;
69
70  // DO NOT IMPLEMENT
71  LoopBase(const LoopBase<BlockT, LoopT> &);
72  // DO NOT IMPLEMENT
73  const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
74public:
75  /// Loop ctor - This creates an empty loop.
76  LoopBase() : ParentLoop(0) {}
77  ~LoopBase() {
78    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
79      delete SubLoops[i];
80  }
81
82  /// getLoopDepth - Return the nesting level of this loop.  An outer-most
83  /// loop has depth 1, for consistency with loop depth values used for basic
84  /// blocks, where depth 0 is used for blocks not inside any loops.
85  unsigned getLoopDepth() const {
86    unsigned D = 1;
87    for (const LoopT *CurLoop = ParentLoop; CurLoop;
88         CurLoop = CurLoop->ParentLoop)
89      ++D;
90    return D;
91  }
92  BlockT *getHeader() const { return Blocks.front(); }
93  LoopT *getParentLoop() const { return ParentLoop; }
94
95  /// contains - Return true if the specified basic block is in this loop
96  ///
97  bool contains(const BlockT *BB) const {
98    return std::find(block_begin(), block_end(), BB) != block_end();
99  }
100
101  /// iterator/begin/end - Return the loops contained entirely within this loop.
102  ///
103  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
104  typedef typename std::vector<LoopT *>::const_iterator iterator;
105  iterator begin() const { return SubLoops.begin(); }
106  iterator end() const { return SubLoops.end(); }
107  bool empty() const { return SubLoops.empty(); }
108
109  /// getBlocks - Get a list of the basic blocks which make up this loop.
110  ///
111  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
112  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
113  block_iterator block_begin() const { return Blocks.begin(); }
114  block_iterator block_end() const { return Blocks.end(); }
115
116  /// isLoopExit - True if terminator in the block can branch to another block
117  /// that is outside of the current loop.
118  ///
119  bool isLoopExit(const BlockT *BB) const {
120    typedef GraphTraits<BlockT*> BlockTraits;
121    for (typename BlockTraits::ChildIteratorType SI =
122         BlockTraits::child_begin(const_cast<BlockT*>(BB)),
123         SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
124      if (!contains(*SI))
125        return true;
126    }
127    return false;
128  }
129
130  /// getNumBackEdges - Calculate the number of back edges to the loop header
131  ///
132  unsigned getNumBackEdges() const {
133    unsigned NumBackEdges = 0;
134    BlockT *H = getHeader();
135
136    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
137    for (typename InvBlockTraits::ChildIteratorType I =
138         InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
139         E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
140      if (contains(*I))
141        ++NumBackEdges;
142
143    return NumBackEdges;
144  }
145
146  //===--------------------------------------------------------------------===//
147  // APIs for simple analysis of the loop.
148  //
149  // Note that all of these methods can fail on general loops (ie, there may not
150  // be a preheader, etc).  For best success, the loop simplification and
151  // induction variable canonicalization pass should be used to normalize loops
152  // for easy analysis.  These methods assume canonical loops.
153
154  /// getExitingBlocks - Return all blocks inside the loop that have successors
155  /// outside of the loop.  These are the blocks _inside of the current loop_
156  /// which branch out.  The returned list is always unique.
157  ///
158  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
159    // Sort the blocks vector so that we can use binary search to do quick
160    // lookups.
161    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
162    std::sort(LoopBBs.begin(), LoopBBs.end());
163
164    typedef GraphTraits<BlockT*> BlockTraits;
165    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
166      for (typename BlockTraits::ChildIteratorType I =
167          BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
168          I != E; ++I)
169        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
170          // Not in current loop? It must be an exit block.
171          ExitingBlocks.push_back(*BI);
172          break;
173        }
174  }
175
176  /// getExitingBlock - If getExitingBlocks would return exactly one block,
177  /// return that block. Otherwise return null.
178  BlockT *getExitingBlock() const {
179    SmallVector<BlockT*, 8> ExitingBlocks;
180    getExitingBlocks(ExitingBlocks);
181    if (ExitingBlocks.size() == 1)
182      return ExitingBlocks[0];
183    return 0;
184  }
185
186  /// getExitBlocks - Return all of the successor blocks of this loop.  These
187  /// are the blocks _outside of the current loop_ which are branched to.
188  ///
189  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
190    // Sort the blocks vector so that we can use binary search to do quick
191    // lookups.
192    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
193    std::sort(LoopBBs.begin(), LoopBBs.end());
194
195    typedef GraphTraits<BlockT*> BlockTraits;
196    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
197      for (typename BlockTraits::ChildIteratorType I =
198           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
199           I != E; ++I)
200        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
201          // Not in current loop? It must be an exit block.
202          ExitBlocks.push_back(*I);
203  }
204
205  /// getExitBlock - If getExitBlocks would return exactly one block,
206  /// return that block. Otherwise return null.
207  BlockT *getExitBlock() const {
208    SmallVector<BlockT*, 8> ExitBlocks;
209    getExitBlocks(ExitBlocks);
210    if (ExitBlocks.size() == 1)
211      return ExitBlocks[0];
212    return 0;
213  }
214
215  /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
216  typedef std::pair<const BlockT*,const BlockT*> Edge;
217  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
218    // Sort the blocks vector so that we can use binary search to do quick
219    // lookups.
220    SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
221    std::sort(LoopBBs.begin(), LoopBBs.end());
222
223    typedef GraphTraits<BlockT*> BlockTraits;
224    for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
225      for (typename BlockTraits::ChildIteratorType I =
226           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
227           I != E; ++I)
228        if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
229          // Not in current loop? It must be an exit block.
230          ExitEdges.push_back(std::make_pair(*BI, *I));
231  }
232
233  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
234  /// loop has a preheader if there is only one edge to the header of the loop
235  /// from outside of the loop.  If this is the case, the block branching to the
236  /// header of the loop is the preheader node.
237  ///
238  /// This method returns null if there is no preheader for the loop.
239  ///
240  BlockT *getLoopPreheader() const {
241    // Keep track of nodes outside the loop branching to the header...
242    BlockT *Out = 0;
243
244    // Loop over the predecessors of the header node...
245    BlockT *Header = getHeader();
246    typedef GraphTraits<BlockT*> BlockTraits;
247    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
248    for (typename InvBlockTraits::ChildIteratorType PI =
249         InvBlockTraits::child_begin(Header),
250         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
251      if (!contains(*PI)) {     // If the block is not in the loop...
252        if (Out && Out != *PI)
253          return 0;             // Multiple predecessors outside the loop
254        Out = *PI;
255      }
256
257    // Make sure there is only one exit out of the preheader.
258    assert(Out && "Header of loop has no predecessors from outside loop?");
259    typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
260    ++SI;
261    if (SI != BlockTraits::child_end(Out))
262      return 0;  // Multiple exits from the block, must not be a preheader.
263
264    // If there is exactly one preheader, return it.  If there was zero, then
265    // Out is still null.
266    return Out;
267  }
268
269  /// getLoopLatch - If there is a single latch block for this loop, return it.
270  /// A latch block is a block that contains a branch back to the header.
271  /// A loop header in normal form has two edges into it: one from a preheader
272  /// and one from a latch block.
273  BlockT *getLoopLatch() const {
274    BlockT *Header = getHeader();
275    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
276    typename InvBlockTraits::ChildIteratorType PI =
277                                            InvBlockTraits::child_begin(Header);
278    typename InvBlockTraits::ChildIteratorType PE =
279                                              InvBlockTraits::child_end(Header);
280    if (PI == PE) return 0;  // no preds?
281
282    BlockT *Latch = 0;
283    if (contains(*PI))
284      Latch = *PI;
285    ++PI;
286    if (PI == PE) return 0;  // only one pred?
287
288    if (contains(*PI)) {
289      if (Latch) return 0;  // multiple backedges
290      Latch = *PI;
291    }
292    ++PI;
293    if (PI != PE) return 0;  // more than two preds
294
295    return Latch;
296  }
297
298  //===--------------------------------------------------------------------===//
299  // APIs for updating loop information after changing the CFG
300  //
301
302  /// addBasicBlockToLoop - This method is used by other analyses to update loop
303  /// information.  NewBB is set to be a new member of the current loop.
304  /// Because of this, it is added as a member of all parent loops, and is added
305  /// to the specified LoopInfo object as being in the current basic block.  It
306  /// is not valid to replace the loop header with this method.
307  ///
308  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
309
310  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
311  /// the OldChild entry in our children list with NewChild, and updates the
312  /// parent pointer of OldChild to be null and the NewChild to be this loop.
313  /// This updates the loop depth of the new child.
314  void replaceChildLoopWith(LoopT *OldChild,
315                            LoopT *NewChild) {
316    assert(OldChild->ParentLoop == this && "This loop is already broken!");
317    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
318    typename std::vector<LoopT *>::iterator I =
319                          std::find(SubLoops.begin(), SubLoops.end(), OldChild);
320    assert(I != SubLoops.end() && "OldChild not in loop!");
321    *I = NewChild;
322    OldChild->ParentLoop = 0;
323    NewChild->ParentLoop = static_cast<LoopT *>(this);
324  }
325
326  /// addChildLoop - Add the specified loop to be a child of this loop.  This
327  /// updates the loop depth of the new child.
328  ///
329  void addChildLoop(LoopT *NewChild) {
330    assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
331    NewChild->ParentLoop = static_cast<LoopT *>(this);
332    SubLoops.push_back(NewChild);
333  }
334
335  /// removeChildLoop - This removes the specified child from being a subloop of
336  /// this loop.  The loop is not deleted, as it will presumably be inserted
337  /// into another loop.
338  LoopT *removeChildLoop(iterator I) {
339    assert(I != SubLoops.end() && "Cannot remove end iterator!");
340    LoopT *Child = *I;
341    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
342    SubLoops.erase(SubLoops.begin()+(I-begin()));
343    Child->ParentLoop = 0;
344    return Child;
345  }
346
347  /// addBlockEntry - This adds a basic block directly to the basic block list.
348  /// This should only be used by transformations that create new loops.  Other
349  /// transformations should use addBasicBlockToLoop.
350  void addBlockEntry(BlockT *BB) {
351    Blocks.push_back(BB);
352  }
353
354  /// moveToHeader - This method is used to move BB (which must be part of this
355  /// loop) to be the loop header of the loop (the block that dominates all
356  /// others).
357  void moveToHeader(BlockT *BB) {
358    if (Blocks[0] == BB) return;
359    for (unsigned i = 0; ; ++i) {
360      assert(i != Blocks.size() && "Loop does not contain BB!");
361      if (Blocks[i] == BB) {
362        Blocks[i] = Blocks[0];
363        Blocks[0] = BB;
364        return;
365      }
366    }
367  }
368
369  /// removeBlockFromLoop - This removes the specified basic block from the
370  /// current loop, updating the Blocks as appropriate.  This does not update
371  /// the mapping in the LoopInfo class.
372  void removeBlockFromLoop(BlockT *BB) {
373    RemoveFromVector(Blocks, BB);
374  }
375
376  /// verifyLoop - Verify loop structure
377  void verifyLoop() const {
378#ifndef NDEBUG
379    assert(!Blocks.empty() && "Loop header is missing");
380    assert(getHeader() && "Loop header is missing");
381
382    // Verify the individual blocks.
383    for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
384      BlockT *BB = *I;
385      bool HasInsideLoopSuccs = false;
386      bool HasInsideLoopPreds = false;
387      SmallVector<BlockT *, 2> OutsideLoopPreds;
388
389      typedef GraphTraits<BlockT*> BlockTraits;
390      for (typename BlockTraits::ChildIteratorType SI =
391           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
392           SI != SE; ++SI)
393        if (contains(*SI))
394          HasInsideLoopSuccs = true;
395      typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
396      for (typename InvBlockTraits::ChildIteratorType PI =
397           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
398           PI != PE; ++PI) {
399        if (contains(*PI))
400          HasInsideLoopPreds = true;
401        else
402          OutsideLoopPreds.push_back(*PI);
403      }
404
405      if (BB == getHeader()) {
406        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
407      } else if (!OutsideLoopPreds.empty()) {
408        // A non-header loop shouldn't be reachable from outside the loop,
409        // though it is permitted if the predecessor is not itself actually
410        // reachable.
411        BlockT *EntryBB = BB->getParent()->begin();
412        for (df_iterator<BlockT *> NI = df_begin(EntryBB),
413             NE = df_end(EntryBB); NI != NE; ++NI)
414          for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
415            assert(*NI != OutsideLoopPreds[i] &&
416                   "Loop has multiple entry points!");
417      }
418      assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
419      assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
420      assert(BB != getHeader()->getParent()->begin() &&
421             "Loop contains function entry block!");
422    }
423
424    // Verify the subloops.
425    for (iterator I = begin(), E = end(); I != E; ++I) {
426      // Each block in each subloop should be contained within this loop.
427      for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
428           BI != BE; ++BI) {
429        assert(contains(*BI) &&
430               "Loop does not contain all the blocks of a subloop!");
431      }
432      // Recursively check the subloop.
433      (*I)->verifyLoop();
434    }
435
436    // Verify the parent loop.
437    if (ParentLoop) {
438      bool FoundSelf = false;
439      for (iterator I = ParentLoop->begin(), E = ParentLoop->end(); I != E; ++I)
440        if (*I == this) {
441          FoundSelf = true;
442          break;
443        }
444      assert(FoundSelf && "Loop is not a subloop of its parent!");
445    }
446#endif
447  }
448
449  void print(raw_ostream &OS, unsigned Depth = 0) const {
450    OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
451       << " containing: ";
452
453    for (unsigned i = 0; i < getBlocks().size(); ++i) {
454      if (i) OS << ",";
455      BlockT *BB = getBlocks()[i];
456      WriteAsOperand(OS, BB, false);
457      if (BB == getHeader())    OS << "<header>";
458      if (BB == getLoopLatch()) OS << "<latch>";
459      if (isLoopExit(BB))       OS << "<exit>";
460    }
461    OS << "\n";
462
463    for (iterator I = begin(), E = end(); I != E; ++I)
464      (*I)->print(OS, Depth+2);
465  }
466
467  void dump() const {
468    print(errs());
469  }
470
471protected:
472  friend class LoopInfoBase<BlockT, LoopT>;
473  explicit LoopBase(BlockT *BB) : ParentLoop(0) {
474    Blocks.push_back(BB);
475  }
476};
477
478class Loop : public LoopBase<BasicBlock, Loop> {
479public:
480  Loop() {}
481
482  /// isLoopInvariant - Return true if the specified value is loop invariant
483  ///
484  bool isLoopInvariant(Value *V) const;
485
486  /// isLoopInvariant - Return true if the specified instruction is
487  /// loop-invariant.
488  ///
489  bool isLoopInvariant(Instruction *I) const;
490
491  /// makeLoopInvariant - If the given value is an instruction inside of the
492  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
493  /// Return true if the value after any hoisting is loop invariant. This
494  /// function can be used as a slightly more aggressive replacement for
495  /// isLoopInvariant.
496  ///
497  /// If InsertPt is specified, it is the point to hoist instructions to.
498  /// If null, the terminator of the loop preheader is used.
499  ///
500  bool makeLoopInvariant(Value *V, bool &Changed,
501                         Instruction *InsertPt = 0) const;
502
503  /// makeLoopInvariant - If the given instruction is inside of the
504  /// loop and it can be hoisted, do so to make it trivially loop-invariant.
505  /// Return true if the instruction after any hoisting is loop invariant. This
506  /// function can be used as a slightly more aggressive replacement for
507  /// isLoopInvariant.
508  ///
509  /// If InsertPt is specified, it is the point to hoist instructions to.
510  /// If null, the terminator of the loop preheader is used.
511  ///
512  bool makeLoopInvariant(Instruction *I, bool &Changed,
513                         Instruction *InsertPt = 0) const;
514
515  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
516  /// induction variable: an integer recurrence that starts at 0 and increments
517  /// by one each time through the loop.  If so, return the phi node that
518  /// corresponds to it.
519  ///
520  /// The IndVarSimplify pass transforms loops to have a canonical induction
521  /// variable.
522  ///
523  PHINode *getCanonicalInductionVariable() const;
524
525  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
526  /// the canonical induction variable value for the "next" iteration of the
527  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
528  ///
529  Instruction *getCanonicalInductionVariableIncrement() const;
530
531  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
532  /// times the loop will be executed.  Note that this means that the backedge
533  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
534  /// this returns null.
535  ///
536  /// The IndVarSimplify pass transforms loops to have a form that this
537  /// function easily understands.
538  ///
539  Value *getTripCount() const;
540
541  /// getSmallConstantTripCount - Returns the trip count of this loop as a
542  /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
543  /// of not constant. Will also return 0 if the trip count is very large
544  /// (>= 2^32)
545  unsigned getSmallConstantTripCount() const;
546
547  /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
548  /// trip count of this loop as a normal unsigned value, if possible. This
549  /// means that the actual trip count is always a multiple of the returned
550  /// value (don't forget the trip count could very well be zero as well!).
551  ///
552  /// Returns 1 if the trip count is unknown or not guaranteed to be the
553  /// multiple of a constant (which is also the case if the trip count is simply
554  /// constant, use getSmallConstantTripCount for that case), Will also return 1
555  /// if the trip count is very large (>= 2^32).
556  unsigned getSmallConstantTripMultiple() const;
557
558  /// isLCSSAForm - Return true if the Loop is in LCSSA form
559  bool isLCSSAForm() const;
560
561  /// isLoopSimplifyForm - Return true if the Loop is in the form that
562  /// the LoopSimplify form transforms loops to, which is sometimes called
563  /// normal form.
564  bool isLoopSimplifyForm() const;
565
566  /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
567  /// These are the blocks _outside of the current loop_ which are branched to.
568  /// This assumes that loop is in canonical form.
569  ///
570  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
571
572  /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
573  /// block, return that block. Otherwise return null.
574  BasicBlock *getUniqueExitBlock() const;
575
576private:
577  friend class LoopInfoBase<BasicBlock, Loop>;
578  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
579};
580
581//===----------------------------------------------------------------------===//
582/// LoopInfo - This class builds and contains all of the top level loop
583/// structures in the specified function.
584///
585
586template<class BlockT, class LoopT>
587class LoopInfoBase {
588  // BBMap - Mapping of basic blocks to the inner most loop they occur in
589  std::map<BlockT *, LoopT *> BBMap;
590  std::vector<LoopT *> TopLevelLoops;
591  friend class LoopBase<BlockT, LoopT>;
592
593  void operator=(const LoopInfoBase &); // do not implement
594  LoopInfoBase(const LoopInfo &);       // do not implement
595public:
596  LoopInfoBase() { }
597  ~LoopInfoBase() { releaseMemory(); }
598
599  void releaseMemory() {
600    for (typename std::vector<LoopT *>::iterator I =
601         TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
602      delete *I;   // Delete all of the loops...
603
604    BBMap.clear();                           // Reset internal state of analysis
605    TopLevelLoops.clear();
606  }
607
608  /// iterator/begin/end - The interface to the top-level loops in the current
609  /// function.
610  ///
611  typedef typename std::vector<LoopT *>::const_iterator iterator;
612  iterator begin() const { return TopLevelLoops.begin(); }
613  iterator end() const { return TopLevelLoops.end(); }
614  bool empty() const { return TopLevelLoops.empty(); }
615
616  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
617  /// block is in no loop (for example the entry node), null is returned.
618  ///
619  LoopT *getLoopFor(const BlockT *BB) const {
620    typename std::map<BlockT *, LoopT *>::const_iterator I=
621      BBMap.find(const_cast<BlockT*>(BB));
622    return I != BBMap.end() ? I->second : 0;
623  }
624
625  /// operator[] - same as getLoopFor...
626  ///
627  const LoopT *operator[](const BlockT *BB) const {
628    return getLoopFor(BB);
629  }
630
631  /// getLoopDepth - Return the loop nesting level of the specified block.  A
632  /// depth of 0 means the block is not inside any loop.
633  ///
634  unsigned getLoopDepth(const BlockT *BB) const {
635    const LoopT *L = getLoopFor(BB);
636    return L ? L->getLoopDepth() : 0;
637  }
638
639  // isLoopHeader - True if the block is a loop header node
640  bool isLoopHeader(BlockT *BB) const {
641    const LoopT *L = getLoopFor(BB);
642    return L && L->getHeader() == BB;
643  }
644
645  /// removeLoop - This removes the specified top-level loop from this loop info
646  /// object.  The loop is not deleted, as it will presumably be inserted into
647  /// another loop.
648  LoopT *removeLoop(iterator I) {
649    assert(I != end() && "Cannot remove end iterator!");
650    LoopT *L = *I;
651    assert(L->getParentLoop() == 0 && "Not a top-level loop!");
652    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
653    return L;
654  }
655
656  /// changeLoopFor - Change the top-level loop that contains BB to the
657  /// specified loop.  This should be used by transformations that restructure
658  /// the loop hierarchy tree.
659  void changeLoopFor(BlockT *BB, LoopT *L) {
660    LoopT *&OldLoop = BBMap[BB];
661    assert(OldLoop && "Block not in a loop yet!");
662    OldLoop = L;
663  }
664
665  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
666  /// list with the indicated loop.
667  void changeTopLevelLoop(LoopT *OldLoop,
668                          LoopT *NewLoop) {
669    typename std::vector<LoopT *>::iterator I =
670                 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
671    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
672    *I = NewLoop;
673    assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
674           "Loops already embedded into a subloop!");
675  }
676
677  /// addTopLevelLoop - This adds the specified loop to the collection of
678  /// top-level loops.
679  void addTopLevelLoop(LoopT *New) {
680    assert(New->getParentLoop() == 0 && "Loop already in subloop!");
681    TopLevelLoops.push_back(New);
682  }
683
684  /// removeBlock - This method completely removes BB from all data structures,
685  /// including all of the Loop objects it is nested in and our mapping from
686  /// BasicBlocks to loops.
687  void removeBlock(BlockT *BB) {
688    typename std::map<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
689    if (I != BBMap.end()) {
690      for (LoopT *L = I->second; L; L = L->getParentLoop())
691        L->removeBlockFromLoop(BB);
692
693      BBMap.erase(I);
694    }
695  }
696
697  // Internals
698
699  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
700                                      const LoopT *ParentLoop) {
701    if (SubLoop == 0) return true;
702    if (SubLoop == ParentLoop) return false;
703    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
704  }
705
706  void Calculate(DominatorTreeBase<BlockT> &DT) {
707    BlockT *RootNode = DT.getRootNode()->getBlock();
708
709    for (df_iterator<BlockT*> NI = df_begin(RootNode),
710           NE = df_end(RootNode); NI != NE; ++NI)
711      if (LoopT *L = ConsiderForLoop(*NI, DT))
712        TopLevelLoops.push_back(L);
713  }
714
715  LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
716    if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
717
718    std::vector<BlockT *> TodoStack;
719
720    // Scan the predecessors of BB, checking to see if BB dominates any of
721    // them.  This identifies backedges which target this node...
722    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
723    for (typename InvBlockTraits::ChildIteratorType I =
724         InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
725         I != E; ++I)
726      if (DT.dominates(BB, *I))   // If BB dominates it's predecessor...
727        TodoStack.push_back(*I);
728
729    if (TodoStack.empty()) return 0;  // No backedges to this block...
730
731    // Create a new loop to represent this basic block...
732    LoopT *L = new LoopT(BB);
733    BBMap[BB] = L;
734
735    BlockT *EntryBlock = BB->getParent()->begin();
736
737    while (!TodoStack.empty()) {  // Process all the nodes in the loop
738      BlockT *X = TodoStack.back();
739      TodoStack.pop_back();
740
741      if (!L->contains(X) &&         // As of yet unprocessed??
742          DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
743        // Check to see if this block already belongs to a loop.  If this occurs
744        // then we have a case where a loop that is supposed to be a child of
745        // the current loop was processed before the current loop.  When this
746        // occurs, this child loop gets added to a part of the current loop,
747        // making it a sibling to the current loop.  We have to reparent this
748        // loop.
749        if (LoopT *SubLoop =
750            const_cast<LoopT *>(getLoopFor(X)))
751          if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
752            // Remove the subloop from it's current parent...
753            assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
754            LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
755            typename std::vector<LoopT *>::iterator I =
756              std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
757            assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
758            SLP->SubLoops.erase(I);   // Remove from parent...
759
760            // Add the subloop to THIS loop...
761            SubLoop->ParentLoop = L;
762            L->SubLoops.push_back(SubLoop);
763          }
764
765        // Normal case, add the block to our loop...
766        L->Blocks.push_back(X);
767
768        typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
769
770        // Add all of the predecessors of X to the end of the work stack...
771        TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
772                         InvBlockTraits::child_end(X));
773      }
774    }
775
776    // If there are any loops nested within this loop, create them now!
777    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
778         E = L->Blocks.end(); I != E; ++I)
779      if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
780        L->SubLoops.push_back(NewLoop);
781        NewLoop->ParentLoop = L;
782      }
783
784    // Add the basic blocks that comprise this loop to the BBMap so that this
785    // loop can be found for them.
786    //
787    for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
788           E = L->Blocks.end(); I != E; ++I)
789      BBMap.insert(std::make_pair(*I, L));
790
791    // Now that we have a list of all of the child loops of this loop, check to
792    // see if any of them should actually be nested inside of each other.  We
793    // can accidentally pull loops our of their parents, so we must make sure to
794    // organize the loop nests correctly now.
795    {
796      std::map<BlockT *, LoopT *> ContainingLoops;
797      for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
798        LoopT *Child = L->SubLoops[i];
799        assert(Child->getParentLoop() == L && "Not proper child loop?");
800
801        if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
802          // If there is already a loop which contains this loop, move this loop
803          // into the containing loop.
804          MoveSiblingLoopInto(Child, ContainingLoop);
805          --i;  // The loop got removed from the SubLoops list.
806        } else {
807          // This is currently considered to be a top-level loop.  Check to see
808          // if any of the contained blocks are loop headers for subloops we
809          // have already processed.
810          for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
811            LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
812            if (BlockLoop == 0) {   // Child block not processed yet...
813              BlockLoop = Child;
814            } else if (BlockLoop != Child) {
815              LoopT *SubLoop = BlockLoop;
816              // Reparent all of the blocks which used to belong to BlockLoops
817              for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
818                ContainingLoops[SubLoop->Blocks[j]] = Child;
819
820              // There is already a loop which contains this block, that means
821              // that we should reparent the loop which the block is currently
822              // considered to belong to to be a child of this loop.
823              MoveSiblingLoopInto(SubLoop, Child);
824              --i;  // We just shrunk the SubLoops list.
825            }
826          }
827        }
828      }
829    }
830
831    return L;
832  }
833
834  /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
835  /// of the NewParent Loop, instead of being a sibling of it.
836  void MoveSiblingLoopInto(LoopT *NewChild,
837                           LoopT *NewParent) {
838    LoopT *OldParent = NewChild->getParentLoop();
839    assert(OldParent && OldParent == NewParent->getParentLoop() &&
840           NewChild != NewParent && "Not sibling loops!");
841
842    // Remove NewChild from being a child of OldParent
843    typename std::vector<LoopT *>::iterator I =
844      std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
845                NewChild);
846    assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
847    OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
848    NewChild->ParentLoop = 0;
849
850    InsertLoopInto(NewChild, NewParent);
851  }
852
853  /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
854  /// the parent loop contains a loop which should contain L, the loop gets
855  /// inserted into L instead.
856  void InsertLoopInto(LoopT *L, LoopT *Parent) {
857    BlockT *LHeader = L->getHeader();
858    assert(Parent->contains(LHeader) &&
859           "This loop should not be inserted here!");
860
861    // Check to see if it belongs in a child loop...
862    for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
863         i != e; ++i)
864      if (Parent->SubLoops[i]->contains(LHeader)) {
865        InsertLoopInto(L, Parent->SubLoops[i]);
866        return;
867      }
868
869    // If not, insert it here!
870    Parent->SubLoops.push_back(L);
871    L->ParentLoop = Parent;
872  }
873
874  // Debugging
875
876  void print(raw_ostream &OS) const {
877    for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
878      TopLevelLoops[i]->print(OS);
879  #if 0
880    for (std::map<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
881           E = BBMap.end(); I != E; ++I)
882      OS << "BB '" << I->first->getName() << "' level = "
883         << I->second->getLoopDepth() << "\n";
884  #endif
885  }
886};
887
888class LoopInfo : public FunctionPass {
889  LoopInfoBase<BasicBlock, Loop> LI;
890  friend class LoopBase<BasicBlock, Loop>;
891
892  void operator=(const LoopInfo &); // do not implement
893  LoopInfo(const LoopInfo &);       // do not implement
894public:
895  static char ID; // Pass identification, replacement for typeid
896
897  LoopInfo() : FunctionPass(&ID) {}
898
899  LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
900
901  /// iterator/begin/end - The interface to the top-level loops in the current
902  /// function.
903  ///
904  typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
905  inline iterator begin() const { return LI.begin(); }
906  inline iterator end() const { return LI.end(); }
907  bool empty() const { return LI.empty(); }
908
909  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
910  /// block is in no loop (for example the entry node), null is returned.
911  ///
912  inline Loop *getLoopFor(const BasicBlock *BB) const {
913    return LI.getLoopFor(BB);
914  }
915
916  /// operator[] - same as getLoopFor...
917  ///
918  inline const Loop *operator[](const BasicBlock *BB) const {
919    return LI.getLoopFor(BB);
920  }
921
922  /// getLoopDepth - Return the loop nesting level of the specified block.  A
923  /// depth of 0 means the block is not inside any loop.
924  ///
925  inline unsigned getLoopDepth(const BasicBlock *BB) const {
926    return LI.getLoopDepth(BB);
927  }
928
929  // isLoopHeader - True if the block is a loop header node
930  inline bool isLoopHeader(BasicBlock *BB) const {
931    return LI.isLoopHeader(BB);
932  }
933
934  /// runOnFunction - Calculate the natural loop information.
935  ///
936  virtual bool runOnFunction(Function &F);
937
938  virtual void verifyAnalysis() const;
939
940  virtual void releaseMemory() { LI.releaseMemory(); }
941
942  virtual void print(raw_ostream &O, const Module* M = 0) const;
943
944  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
945
946  /// removeLoop - This removes the specified top-level loop from this loop info
947  /// object.  The loop is not deleted, as it will presumably be inserted into
948  /// another loop.
949  inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
950
951  /// changeLoopFor - Change the top-level loop that contains BB to the
952  /// specified loop.  This should be used by transformations that restructure
953  /// the loop hierarchy tree.
954  inline void changeLoopFor(BasicBlock *BB, Loop *L) {
955    LI.changeLoopFor(BB, L);
956  }
957
958  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
959  /// list with the indicated loop.
960  inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
961    LI.changeTopLevelLoop(OldLoop, NewLoop);
962  }
963
964  /// addTopLevelLoop - This adds the specified loop to the collection of
965  /// top-level loops.
966  inline void addTopLevelLoop(Loop *New) {
967    LI.addTopLevelLoop(New);
968  }
969
970  /// removeBlock - This method completely removes BB from all data structures,
971  /// including all of the Loop objects it is nested in and our mapping from
972  /// BasicBlocks to loops.
973  void removeBlock(BasicBlock *BB) {
974    LI.removeBlock(BB);
975  }
976
977  static bool isNotAlreadyContainedIn(const Loop *SubLoop,
978                                      const Loop *ParentLoop) {
979    return
980      LoopInfoBase<BasicBlock, Loop>::isNotAlreadyContainedIn(SubLoop,
981                                                              ParentLoop);
982  }
983};
984
985
986// Allow clients to walk the list of nested loops...
987template <> struct GraphTraits<const Loop*> {
988  typedef const Loop NodeType;
989  typedef LoopInfo::iterator ChildIteratorType;
990
991  static NodeType *getEntryNode(const Loop *L) { return L; }
992  static inline ChildIteratorType child_begin(NodeType *N) {
993    return N->begin();
994  }
995  static inline ChildIteratorType child_end(NodeType *N) {
996    return N->end();
997  }
998};
999
1000template <> struct GraphTraits<Loop*> {
1001  typedef Loop NodeType;
1002  typedef LoopInfo::iterator ChildIteratorType;
1003
1004  static NodeType *getEntryNode(Loop *L) { return L; }
1005  static inline ChildIteratorType child_begin(NodeType *N) {
1006    return N->begin();
1007  }
1008  static inline ChildIteratorType child_end(NodeType *N) {
1009    return N->end();
1010  }
1011};
1012
1013template<class BlockT, class LoopT>
1014void
1015LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1016                                             LoopInfoBase<BlockT, LoopT> &LIB) {
1017  assert((Blocks.empty() || LIB[getHeader()] == this) &&
1018         "Incorrect LI specified for this loop!");
1019  assert(NewBB && "Cannot add a null basic block to the loop!");
1020  assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1021
1022  LoopT *L = static_cast<LoopT *>(this);
1023
1024  // Add the loop mapping to the LoopInfo object...
1025  LIB.BBMap[NewBB] = L;
1026
1027  // Add the basic block to this loop and all parent loops...
1028  while (L) {
1029    L->Blocks.push_back(NewBB);
1030    L = L->getParentLoop();
1031  }
1032}
1033
1034} // End llvm namespace
1035
1036#endif
1037