ScalarEvolution.h revision 1b342583f6fc42f548912632f6aa24fc6e11986a
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Allocator.h"
29#include "llvm/Support/ConstantRange.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/DenseMap.h"
32#include <iosfwd>
33
34namespace llvm {
35  class APInt;
36  class ConstantInt;
37  class Type;
38  class ScalarEvolution;
39  class TargetData;
40  class LLVMContext;
41
42  /// SCEV - This class represents an analyzed expression in the program.  These
43  /// are opaque objects that the client is not allowed to do much with
44  /// directly.
45  ///
46  class SCEV : public FoldingSetNode {
47    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
48
49    SCEV(const SCEV &);            // DO NOT IMPLEMENT
50    void operator=(const SCEV &);  // DO NOT IMPLEMENT
51  protected:
52    virtual ~SCEV();
53  public:
54    explicit SCEV(unsigned SCEVTy) :
55      SCEVType(SCEVTy) {}
56
57    virtual void Profile(FoldingSetNodeID &ID) const = 0;
58
59    unsigned getSCEVType() const { return SCEVType; }
60
61    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
62    /// the specified loop.
63    virtual bool isLoopInvariant(const Loop *L) const = 0;
64
65    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
66    /// known way in the specified loop.  This property being true implies that
67    /// the value is variant in the loop AND that we can emit an expression to
68    /// compute the value of the expression at any particular loop iteration.
69    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
70
71    /// getType - Return the LLVM type of this SCEV expression.
72    ///
73    virtual const Type *getType() const = 0;
74
75    /// isZero - Return true if the expression is a constant zero.
76    ///
77    bool isZero() const;
78
79    /// isOne - Return true if the expression is a constant one.
80    ///
81    bool isOne() const;
82
83    /// isAllOnesValue - Return true if the expression is a constant
84    /// all-ones value.
85    ///
86    bool isAllOnesValue() const;
87
88    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
89    /// the symbolic value "Sym", construct and return a new SCEV that produces
90    /// the same value, but which uses the concrete value Conc instead of the
91    /// symbolic value.  If this SCEV does not use the symbolic value, it
92    /// returns itself.
93    virtual const SCEV *
94    replaceSymbolicValuesWithConcrete(const SCEV *Sym,
95                                      const SCEV *Conc,
96                                      ScalarEvolution &SE) const = 0;
97
98    /// dominates - Return true if elements that makes up this SCEV dominates
99    /// the specified basic block.
100    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
101
102    /// print - Print out the internal representation of this scalar to the
103    /// specified stream.  This should really only be used for debugging
104    /// purposes.
105    virtual void print(raw_ostream &OS) const = 0;
106    void print(std::ostream &OS) const;
107    void print(std::ostream *OS) const { if (OS) print(*OS); }
108
109    /// dump - This method is used for debugging.
110    ///
111    void dump() const;
112  };
113
114  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
115    S.print(OS);
116    return OS;
117  }
118
119  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
120    S.print(OS);
121    return OS;
122  }
123
124  /// SCEVCouldNotCompute - An object of this class is returned by queries that
125  /// could not be answered.  For example, if you ask for the number of
126  /// iterations of a linked-list traversal loop, you will get one of these.
127  /// None of the standard SCEV operations are valid on this class, it is just a
128  /// marker.
129  struct SCEVCouldNotCompute : public SCEV {
130    SCEVCouldNotCompute();
131
132    // None of these methods are valid for this object.
133    virtual void Profile(FoldingSetNodeID &ID) const;
134    virtual bool isLoopInvariant(const Loop *L) const;
135    virtual const Type *getType() const;
136    virtual bool hasComputableLoopEvolution(const Loop *L) const;
137    virtual void print(raw_ostream &OS) const;
138    virtual const SCEV *
139    replaceSymbolicValuesWithConcrete(const SCEV *Sym,
140                                      const SCEV *Conc,
141                                      ScalarEvolution &SE) const;
142
143    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
144      return true;
145    }
146
147    /// Methods for support type inquiry through isa, cast, and dyn_cast:
148    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
149    static bool classof(const SCEV *S);
150  };
151
152  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
153  /// client code (intentionally) can't do much with the SCEV objects directly,
154  /// they must ask this class for services.
155  ///
156  class ScalarEvolution : public FunctionPass {
157    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
158    /// notified whenever a Value is deleted.
159    class SCEVCallbackVH : public CallbackVH {
160      ScalarEvolution *SE;
161      virtual void deleted();
162      virtual void allUsesReplacedWith(Value *New);
163    public:
164      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
165    };
166
167    friend class SCEVCallbackVH;
168    friend class SCEVExpander;
169
170    /// F - The function we are analyzing.
171    ///
172    Function *F;
173
174    /// LI - The loop information for the function we are currently analyzing.
175    ///
176    LoopInfo *LI;
177
178    /// TD - The target data information for the target we are targetting.
179    ///
180    TargetData *TD;
181
182    /// CouldNotCompute - This SCEV is used to represent unknown trip
183    /// counts and things.
184    SCEVCouldNotCompute CouldNotCompute;
185
186    /// Scalars - This is a cache of the scalars we have analyzed so far.
187    ///
188    std::map<SCEVCallbackVH, const SCEV *> Scalars;
189
190    /// BackedgeTakenInfo - Information about the backedge-taken count
191    /// of a loop. This currently inclues an exact count and a maximum count.
192    ///
193    struct BackedgeTakenInfo {
194      /// Exact - An expression indicating the exact backedge-taken count of
195      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
196      const SCEV *Exact;
197
198      /// Max - An expression indicating the least maximum backedge-taken
199      /// count of the loop that is known, or a SCEVCouldNotCompute.
200      const SCEV *Max;
201
202      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
203        Exact(exact), Max(exact) {}
204
205      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
206        Exact(exact), Max(max) {}
207
208      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
209      /// computed information, or whether it's all SCEVCouldNotCompute
210      /// values.
211      bool hasAnyInfo() const {
212        return !isa<SCEVCouldNotCompute>(Exact) ||
213               !isa<SCEVCouldNotCompute>(Max);
214      }
215    };
216
217    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
218    /// this function as they are computed.
219    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
220
221    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
222    /// the PHI instructions that we attempt to compute constant evolutions for.
223    /// This allows us to avoid potentially expensive recomputation of these
224    /// properties.  An instruction maps to null if we are unable to compute its
225    /// exit value.
226    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
227
228    /// ValuesAtScopes - This map contains entries for all the instructions
229    /// that we attempt to compute getSCEVAtScope information for without
230    /// using SCEV techniques, which can be expensive.
231    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
232
233    /// createSCEV - We know that there is no SCEV for the specified value.
234    /// Analyze the expression.
235    const SCEV *createSCEV(Value *V);
236
237    /// createNodeForPHI - Provide the special handling we need to analyze PHI
238    /// SCEVs.
239    const SCEV *createNodeForPHI(PHINode *PN);
240
241    /// createNodeForGEP - Provide the special handling we need to analyze GEP
242    /// SCEVs.
243    const SCEV *createNodeForGEP(User *GEP);
244
245    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
246    /// for the specified instruction and replaces any references to the
247    /// symbolic value SymName with the specified value.  This is used during
248    /// PHI resolution.
249    void ReplaceSymbolicValueWithConcrete(Instruction *I,
250                                          const SCEV *SymName,
251                                          const SCEV *NewVal);
252
253    /// getBECount - Subtract the end and start values and divide by the step,
254    /// rounding up, to get the number of times the backedge is executed. Return
255    /// CouldNotCompute if an intermediate computation overflows.
256    const SCEV *getBECount(const SCEV *Start,
257                          const SCEV *End,
258                          const SCEV *Step);
259
260    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
261    /// loop, lazily computing new values if the loop hasn't been analyzed
262    /// yet.
263    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
264
265    /// ComputeBackedgeTakenCount - Compute the number of times the specified
266    /// loop will iterate.
267    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
268
269    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
270    /// backedge of the specified loop will execute if it exits via the
271    /// specified block.
272    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
273                                                      BasicBlock *ExitingBlock);
274
275    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
276    /// backedge of the specified loop will execute if its exit condition
277    /// were a conditional branch of ExitCond, TBB, and FBB.
278    BackedgeTakenInfo
279      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
280                                            Value *ExitCond,
281                                            BasicBlock *TBB,
282                                            BasicBlock *FBB);
283
284    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
285    /// times the backedge of the specified loop will execute if its exit
286    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
287    /// and FBB.
288    BackedgeTakenInfo
289      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
290                                                ICmpInst *ExitCond,
291                                                BasicBlock *TBB,
292                                                BasicBlock *FBB);
293
294    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
295    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
296    const SCEV *
297      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
298                                                   Constant *RHS,
299                                                   const Loop *L,
300                                                   ICmpInst::Predicate p);
301
302    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
303    /// a constant number of times (the condition evolves only from constants),
304    /// try to evaluate a few iterations of the loop until we get the exit
305    /// condition gets a value of ExitWhen (true or false).  If we cannot
306    /// evaluate the trip count of the loop, return CouldNotCompute.
307    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
308                                                      Value *Cond,
309                                                      bool ExitWhen);
310
311    /// HowFarToZero - Return the number of times a backedge comparing the
312    /// specified value to zero will execute.  If not computable, return
313    /// CouldNotCompute.
314    const SCEV *HowFarToZero(const SCEV *V, const Loop *L);
315
316    /// HowFarToNonZero - Return the number of times a backedge checking the
317    /// specified value for nonzero will execute.  If not computable, return
318    /// CouldNotCompute.
319    const SCEV *HowFarToNonZero(const SCEV *V, const Loop *L);
320
321    /// HowManyLessThans - Return the number of times a backedge containing the
322    /// specified less-than comparison will execute.  If not computable, return
323    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
324    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
325                                       const Loop *L, bool isSigned);
326
327    /// getLoopPredecessor - If the given loop's header has exactly one unique
328    /// predecessor outside the loop, return it. Otherwise return null.
329    BasicBlock *getLoopPredecessor(const Loop *L);
330
331    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
332    /// (which may not be an immediate predecessor) which has exactly one
333    /// successor from which BB is reachable, or null if no such block is
334    /// found.
335    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
336
337    /// isNecessaryCond - Test whether the condition described by Pred, LHS,
338    /// and RHS is a necessary condition for the given Cond value to evaluate
339    /// to true.
340    bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
341                         const SCEV *LHS, const SCEV *RHS,
342                         bool Inverse);
343
344    /// isNecessaryCondOperands - Test whether the condition described by Pred,
345    /// LHS, and RHS is a necessary condition for the condition described by
346    /// Pred, FoundLHS, and FoundRHS to evaluate to true.
347    bool isNecessaryCondOperands(ICmpInst::Predicate Pred,
348                                 const SCEV *LHS, const SCEV *RHS,
349                                 const SCEV *FoundLHS, const SCEV *FoundRHS);
350
351    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
352    /// in the header of its containing loop, we know the loop executes a
353    /// constant number of times, and the PHI node is just a recurrence
354    /// involving constants, fold it.
355    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
356                                                const Loop *L);
357
358  public:
359    static char ID; // Pass identification, replacement for typeid
360    ScalarEvolution();
361
362    LLVMContext *getContext() const { return Context; }
363
364    /// isSCEVable - Test if values of the given type are analyzable within
365    /// the SCEV framework. This primarily includes integer types, and it
366    /// can optionally include pointer types if the ScalarEvolution class
367    /// has access to target-specific information.
368    bool isSCEVable(const Type *Ty) const;
369
370    /// getTypeSizeInBits - Return the size in bits of the specified type,
371    /// for which isSCEVable must return true.
372    uint64_t getTypeSizeInBits(const Type *Ty) const;
373
374    /// getEffectiveSCEVType - Return a type with the same bitwidth as
375    /// the given type and which represents how SCEV will treat the given
376    /// type, for which isSCEVable must return true. For pointer types,
377    /// this is the pointer-sized integer type.
378    const Type *getEffectiveSCEVType(const Type *Ty) const;
379
380    /// getSCEV - Return a SCEV expression handle for the full generality of the
381    /// specified expression.
382    const SCEV *getSCEV(Value *V);
383
384    const SCEV *getConstant(ConstantInt *V);
385    const SCEV *getConstant(const APInt& Val);
386    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
387    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
388    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
389    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
390    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
391    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops);
392    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS) {
393      SmallVector<const SCEV *, 2> Ops;
394      Ops.push_back(LHS);
395      Ops.push_back(RHS);
396      return getAddExpr(Ops);
397    }
398    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
399                          const SCEV *Op2) {
400      SmallVector<const SCEV *, 3> Ops;
401      Ops.push_back(Op0);
402      Ops.push_back(Op1);
403      Ops.push_back(Op2);
404      return getAddExpr(Ops);
405    }
406    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops);
407    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS) {
408      SmallVector<const SCEV *, 2> Ops;
409      Ops.push_back(LHS);
410      Ops.push_back(RHS);
411      return getMulExpr(Ops);
412    }
413    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
414    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
415                             const Loop *L);
416    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
417                             const Loop *L);
418    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
419                             const Loop *L) {
420      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
421      return getAddRecExpr(NewOp, L);
422    }
423    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
424    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
425    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
426    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
427    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
428    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
429    const SCEV *getUnknown(Value *V);
430    const SCEV *getCouldNotCompute();
431
432    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
433    ///
434    const SCEV *getNegativeSCEV(const SCEV *V);
435
436    /// getNotSCEV - Return the SCEV object corresponding to ~V.
437    ///
438    const SCEV *getNotSCEV(const SCEV *V);
439
440    /// getMinusSCEV - Return LHS-RHS.
441    ///
442    const SCEV *getMinusSCEV(const SCEV *LHS,
443                            const SCEV *RHS);
444
445    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
446    /// of the input value to the specified type.  If the type must be
447    /// extended, it is zero extended.
448    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
449
450    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
451    /// of the input value to the specified type.  If the type must be
452    /// extended, it is sign extended.
453    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
454
455    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
456    /// the input value to the specified type.  If the type must be extended,
457    /// it is zero extended.  The conversion must not be narrowing.
458    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
459
460    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
461    /// the input value to the specified type.  If the type must be extended,
462    /// it is sign extended.  The conversion must not be narrowing.
463    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
464
465    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
466    /// the input value to the specified type. If the type must be extended,
467    /// it is extended with unspecified bits. The conversion must not be
468    /// narrowing.
469    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
470
471    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
472    /// input value to the specified type.  The conversion must not be
473    /// widening.
474    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
475
476    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
477    /// specified signed integer value and return a SCEV for the constant.
478    const SCEV *getIntegerSCEV(int Val, const Type *Ty);
479
480    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
481    /// the types using zero-extension, and then perform a umax operation
482    /// with them.
483    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
484                                          const SCEV *RHS);
485
486    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
487    /// the types using zero-extension, and then perform a umin operation
488    /// with them.
489    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
490                                           const SCEV *RHS);
491
492    /// hasSCEV - Return true if the SCEV for this value has already been
493    /// computed.
494    bool hasSCEV(Value *V) const;
495
496    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
497    /// the specified value.
498    void setSCEV(Value *V, const SCEV *H);
499
500    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
501    /// at the specified scope in the program.  The L value specifies a loop
502    /// nest to evaluate the expression at, where null is the top-level or a
503    /// specified loop is immediately inside of the loop.
504    ///
505    /// This method can be used to compute the exit value for a variable defined
506    /// in a loop by querying what the value will hold in the parent loop.
507    ///
508    /// In the case that a relevant loop exit value cannot be computed, the
509    /// original value V is returned.
510    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
511
512    /// getSCEVAtScope - This is a convenience function which does
513    /// getSCEVAtScope(getSCEV(V), L).
514    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
515
516    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
517    /// a conditional between LHS and RHS.  This is used to help avoid max
518    /// expressions in loop trip counts, and to eliminate casts.
519    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
520                             const SCEV *LHS, const SCEV *RHS);
521
522    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
523    /// protected by a conditional between LHS and RHS.  This is used to
524    /// to eliminate casts.
525    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
526                                     const SCEV *LHS, const SCEV *RHS);
527
528    /// getBackedgeTakenCount - If the specified loop has a predictable
529    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
530    /// object. The backedge-taken count is the number of times the loop header
531    /// will be branched to from within the loop. This is one less than the
532    /// trip count of the loop, since it doesn't count the first iteration,
533    /// when the header is branched to from outside the loop.
534    ///
535    /// Note that it is not valid to call this method on a loop without a
536    /// loop-invariant backedge-taken count (see
537    /// hasLoopInvariantBackedgeTakenCount).
538    ///
539    const SCEV *getBackedgeTakenCount(const Loop *L);
540
541    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
542    /// return the least SCEV value that is known never to be less than the
543    /// actual backedge taken count.
544    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
545
546    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
547    /// has an analyzable loop-invariant backedge-taken count.
548    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
549
550    /// forgetLoopBackedgeTakenCount - This method should be called by the
551    /// client when it has changed a loop in a way that may effect
552    /// ScalarEvolution's ability to compute a trip count, or if the loop
553    /// is deleted.
554    void forgetLoopBackedgeTakenCount(const Loop *L);
555
556    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
557    /// is guaranteed to end in (at every loop iteration).  It is, at the same
558    /// time, the minimum number of times S is divisible by 2.  For example,
559    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
560    /// bitwidth of S.
561    uint32_t GetMinTrailingZeros(const SCEV *S);
562
563    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
564    ///
565    ConstantRange getUnsignedRange(const SCEV *S);
566
567    /// getSignedRange - Determine the signed range for a particular SCEV.
568    ///
569    ConstantRange getSignedRange(const SCEV *S);
570
571    /// isKnownNegative - Test if the given expression is known to be negative.
572    ///
573    bool isKnownNegative(const SCEV *S);
574
575    /// isKnownPositive - Test if the given expression is known to be positive.
576    ///
577    bool isKnownPositive(const SCEV *S);
578
579    /// isKnownNonNegative - Test if the given expression is known to be
580    /// non-negative.
581    ///
582    bool isKnownNonNegative(const SCEV *S);
583
584    /// isKnownNonPositive - Test if the given expression is known to be
585    /// non-positive.
586    ///
587    bool isKnownNonPositive(const SCEV *S);
588
589    /// isKnownNonZero - Test if the given expression is known to be
590    /// non-zero.
591    ///
592    bool isKnownNonZero(const SCEV *S);
593
594    /// isKnownNonZero - Test if the given expression is known to satisfy
595    /// the condition described by Pred, LHS, and RHS.
596    ///
597    bool isKnownPredicate(ICmpInst::Predicate Pred,
598                          const SCEV *LHS, const SCEV *RHS);
599
600    virtual bool runOnFunction(Function &F);
601    virtual void releaseMemory();
602    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
603    void print(raw_ostream &OS, const Module* = 0) const;
604    virtual void print(std::ostream &OS, const Module* = 0) const;
605    void print(std::ostream *OS, const Module* M = 0) const {
606      if (OS) print(*OS, M);
607    }
608
609  private:
610    FoldingSet<SCEV> UniqueSCEVs;
611    BumpPtrAllocator SCEVAllocator;
612  };
613}
614
615#endif
616