ScalarEvolution.h revision 859b4824eeb2d88c441e855afe3dd7827dfd62a4
1a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//
3a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
4a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//
5a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
6a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// License. See LICENSE.TXT for details.
7a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//
8a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//===----------------------------------------------------------------------===//
9a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//
10a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// catagorize scalar expressions in loops.  It specializes in recognizing
12a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// general induction variables, representing them with the abstract and opaque
13a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// SCEV class.  Given this analysis, trip counts of loops and other important
14a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// properties can be obtained.
15a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//
16a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// This analysis is primarily useful for induction variable substitution and
17a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)// strength reduction.
18a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//
19a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)//===----------------------------------------------------------------------===//
20a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
21a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
24a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)#include "llvm/Pass.h"
25a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)#include "llvm/Analysis/LoopInfo.h"
26a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)#include "llvm/Support/DataTypes.h"
27a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)#include "llvm/Support/ValueHandle.h"
28a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)#include <iosfwd>
29a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
30a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)namespace llvm {
31a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  class APInt;
32a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  class ConstantInt;
33a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  class Type;
34a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  class SCEVHandle;
35a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  class ScalarEvolution;
36a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  class TargetData;
37a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
38a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  /// SCEV - This class represent an analyzed expression in the program.  These
39a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  /// are reference counted opaque objects that the client is not allowed to
40a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  /// do much with directly.
41a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  ///
42a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  class SCEV {
43a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
44a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    mutable unsigned RefCount;
45a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
46a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    friend class SCEVHandle;
4790dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)    void addRef() const { ++RefCount; }
4890dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)    void dropRef() const {
4990dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)      if (--RefCount == 0)
5090dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)        delete this;
51a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    }
52a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
53a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    SCEV(const SCEV &);            // DO NOT IMPLEMENT
54a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    void operator=(const SCEV &);  // DO NOT IMPLEMENT
55a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  protected:
56a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    virtual ~SCEV();
57a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)  public:
58a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    explicit SCEV(unsigned SCEVTy) : SCEVType(SCEVTy), RefCount(0) {}
59a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
60a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    unsigned getSCEVType() const { return SCEVType; }
61a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
62a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
63a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// the specified loop.
64a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    virtual bool isLoopInvariant(const Loop *L) const = 0;
65a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
66a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
67a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// known way in the specified loop.  This property being true implies that
68a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// the value is variant in the loop AND that we can emit an expression to
69a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// compute the value of the expression at any particular loop iteration.
70a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
71a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
72a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// getType - Return the LLVM type of this SCEV expression.
73a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    ///
74a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    virtual const Type *getType() const = 0;
75a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
76a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// isZero - Return true if the expression is a constant zero.
77a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    ///
78a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    bool isZero() const;
79a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
80a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// isOne - Return true if the expression is a constant one.
81a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    ///
82a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    bool isOne() const;
83a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
84a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
85a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// the symbolic value "Sym", construct and return a new SCEV that produces
86a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// the same value, but which uses the concrete value Conc instead of the
8790dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)    /// symbolic value.  If this SCEV does not use the symbolic value, it
8890dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)    /// returns itself.
8990dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)    virtual SCEVHandle
9090dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
91a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)                                      const SCEVHandle &Conc,
92a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)                                      ScalarEvolution &SE) const = 0;
93a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
94a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// dominates - Return true if elements that makes up this SCEV dominates
95a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// the specified basic block.
96a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
97a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)
98a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// print - Print out the internal representation of this scalar to the
99a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// specified stream.  This should really only be used for debugging
100a93a17c8d99d686bd4a1511e5504e5e6cc9fcadfTorne (Richard Coles)    /// purposes.
101    virtual void print(raw_ostream &OS) const = 0;
102    void print(std::ostream &OS) const;
103    void print(std::ostream *OS) const { if (OS) print(*OS); }
104
105    /// dump - This method is used for debugging.
106    ///
107    void dump() const;
108  };
109
110  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
111    S.print(OS);
112    return OS;
113  }
114
115  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
116    S.print(OS);
117    return OS;
118  }
119
120  /// SCEVCouldNotCompute - An object of this class is returned by queries that
121  /// could not be answered.  For example, if you ask for the number of
122  /// iterations of a linked-list traversal loop, you will get one of these.
123  /// None of the standard SCEV operations are valid on this class, it is just a
124  /// marker.
125  struct SCEVCouldNotCompute : public SCEV {
126    SCEVCouldNotCompute();
127    ~SCEVCouldNotCompute();
128
129    // None of these methods are valid for this object.
130    virtual bool isLoopInvariant(const Loop *L) const;
131    virtual const Type *getType() const;
132    virtual bool hasComputableLoopEvolution(const Loop *L) const;
133    virtual void print(raw_ostream &OS) const;
134    virtual SCEVHandle
135    replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
136                                      const SCEVHandle &Conc,
137                                      ScalarEvolution &SE) const;
138
139    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
140      return true;
141    }
142
143    /// Methods for support type inquiry through isa, cast, and dyn_cast:
144    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
145    static bool classof(const SCEV *S);
146  };
147
148  /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
149  /// notified whenever a Value is deleted.
150  class SCEVCallbackVH : public CallbackVH {
151    ScalarEvolution *SE;
152    virtual void deleted();
153    virtual void allUsesReplacedWith(Value *New);
154  public:
155    SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
156  };
157
158  /// SCEVHandle - This class is used to maintain the SCEV object's refcounts,
159  /// freeing the objects when the last reference is dropped.
160  class SCEVHandle {
161    const SCEV *S;
162    SCEVHandle();  // DO NOT IMPLEMENT
163  public:
164    SCEVHandle(const SCEV *s) : S(s) {
165      assert(S && "Cannot create a handle to a null SCEV!");
166      S->addRef();
167    }
168    SCEVHandle(const SCEVHandle &RHS) : S(RHS.S) {
169      S->addRef();
170    }
171    ~SCEVHandle() { S->dropRef(); }
172
173    operator const SCEV*() const { return S; }
174
175    const SCEV &operator*() const { return *S; }
176    const SCEV *operator->() const { return S; }
177
178    bool operator==(const SCEV *RHS) const { return S == RHS; }
179    bool operator!=(const SCEV *RHS) const { return S != RHS; }
180
181    const SCEVHandle &operator=(SCEV *RHS) {
182      if (S != RHS) {
183        S->dropRef();
184        S = RHS;
185        S->addRef();
186      }
187      return *this;
188    }
189
190    const SCEVHandle &operator=(const SCEVHandle &RHS) {
191      if (S != RHS.S) {
192        S->dropRef();
193        S = RHS.S;
194        S->addRef();
195      }
196      return *this;
197    }
198  };
199
200  template<typename From> struct simplify_type;
201  template<> struct simplify_type<const SCEVHandle> {
202    typedef const SCEV* SimpleType;
203    static SimpleType getSimplifiedValue(const SCEVHandle &Node) {
204      return Node;
205    }
206  };
207  template<> struct simplify_type<SCEVHandle>
208    : public simplify_type<const SCEVHandle> {};
209
210  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
211  /// client code (intentionally) can't do much with the SCEV objects directly,
212  /// they must ask this class for services.
213  ///
214  class ScalarEvolution : public FunctionPass {
215    friend class SCEVCallbackVH;
216
217    /// F - The function we are analyzing.
218    ///
219    Function *F;
220
221    /// LI - The loop information for the function we are currently analyzing.
222    ///
223    LoopInfo *LI;
224
225    /// TD - The target data information for the target we are targetting.
226    ///
227    TargetData *TD;
228
229    /// UnknownValue - This SCEV is used to represent unknown trip counts and
230    /// things.
231    SCEVHandle UnknownValue;
232
233    /// Scalars - This is a cache of the scalars we have analyzed so far.
234    ///
235    std::map<SCEVCallbackVH, SCEVHandle> Scalars;
236
237    /// BackedgeTakenInfo - Information about the backedge-taken count
238    /// of a loop. This currently inclues an exact count and a maximum count.
239    ///
240    struct BackedgeTakenInfo {
241      /// Exact - An expression indicating the exact backedge-taken count of
242      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
243      SCEVHandle Exact;
244
245      /// Exact - An expression indicating the least maximum backedge-taken
246      /// count of the loop that is known, or a SCEVCouldNotCompute.
247      SCEVHandle Max;
248
249      /*implicit*/ BackedgeTakenInfo(SCEVHandle exact) :
250        Exact(exact), Max(exact) {}
251
252      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
253        Exact(exact), Max(exact) {}
254
255      BackedgeTakenInfo(SCEVHandle exact, SCEVHandle max) :
256        Exact(exact), Max(max) {}
257
258      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
259      /// computed information, or whether it's all SCEVCouldNotCompute
260      /// values.
261      bool hasAnyInfo() const {
262        return !isa<SCEVCouldNotCompute>(Exact) ||
263               !isa<SCEVCouldNotCompute>(Max);
264      }
265    };
266
267    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
268    /// this function as they are computed.
269    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
270
271    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
272    /// the PHI instructions that we attempt to compute constant evolutions for.
273    /// This allows us to avoid potentially expensive recomputation of these
274    /// properties.  An instruction maps to null if we are unable to compute its
275    /// exit value.
276    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
277
278    /// ValuesAtScopes - This map contains entries for all the instructions
279    /// that we attempt to compute getSCEVAtScope information for without
280    /// using SCEV techniques, which can be expensive.
281    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
282
283    /// createSCEV - We know that there is no SCEV for the specified value.
284    /// Analyze the expression.
285    SCEVHandle createSCEV(Value *V);
286
287    /// createNodeForPHI - Provide the special handling we need to analyze PHI
288    /// SCEVs.
289    SCEVHandle createNodeForPHI(PHINode *PN);
290
291    /// createNodeForGEP - Provide the special handling we need to analyze GEP
292    /// SCEVs.
293    SCEVHandle createNodeForGEP(User *GEP);
294
295    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
296    /// for the specified instruction and replaces any references to the
297    /// symbolic value SymName with the specified value.  This is used during
298    /// PHI resolution.
299    void ReplaceSymbolicValueWithConcrete(Instruction *I,
300                                          const SCEVHandle &SymName,
301                                          const SCEVHandle &NewVal);
302
303    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
304    /// loop, lazily computing new values if the loop hasn't been analyzed
305    /// yet.
306    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
307
308    /// ComputeBackedgeTakenCount - Compute the number of times the specified
309    /// loop will iterate.
310    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
311
312    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
313    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
314    SCEVHandle
315      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
316                                                   Constant *RHS,
317                                                   const Loop *L,
318                                                   ICmpInst::Predicate p);
319
320    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
321    /// a constant number of times (the condition evolves only from constants),
322    /// try to evaluate a few iterations of the loop until we get the exit
323    /// condition gets a value of ExitWhen (true or false).  If we cannot
324    /// evaluate the trip count of the loop, return UnknownValue.
325    SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
326                                                     bool ExitWhen);
327
328    /// HowFarToZero - Return the number of times a backedge comparing the
329    /// specified value to zero will execute.  If not computable, return
330    /// UnknownValue.
331    SCEVHandle HowFarToZero(const SCEV *V, const Loop *L);
332
333    /// HowFarToNonZero - Return the number of times a backedge checking the
334    /// specified value for nonzero will execute.  If not computable, return
335    /// UnknownValue.
336    SCEVHandle HowFarToNonZero(const SCEV *V, const Loop *L);
337
338    /// HowManyLessThans - Return the number of times a backedge containing the
339    /// specified less-than comparison will execute.  If not computable, return
340    /// UnknownValue. isSigned specifies whether the less-than is signed.
341    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
342                                       const Loop *L, bool isSigned);
343
344    /// getLoopPredecessor - If the given loop's header has exactly one unique
345    /// predecessor outside the loop, return it. Otherwise return null.
346    BasicBlock *getLoopPredecessor(const Loop *L);
347
348    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
349    /// (which may not be an immediate predecessor) which has exactly one
350    /// successor from which BB is reachable, or null if no such block is
351    /// found.
352    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
353
354    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
355    /// in the header of its containing loop, we know the loop executes a
356    /// constant number of times, and the PHI node is just a recurrence
357    /// involving constants, fold it.
358    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
359                                                const Loop *L);
360
361    /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
362    /// PHI nodes in the given loop. This is used when the trip count of
363    /// the loop may have changed.
364    void forgetLoopPHIs(const Loop *L);
365
366  public:
367    static char ID; // Pass identification, replacement for typeid
368    ScalarEvolution();
369
370    /// isSCEVable - Test if values of the given type are analyzable within
371    /// the SCEV framework. This primarily includes integer types, and it
372    /// can optionally include pointer types if the ScalarEvolution class
373    /// has access to target-specific information.
374    bool isSCEVable(const Type *Ty) const;
375
376    /// getTypeSizeInBits - Return the size in bits of the specified type,
377    /// for which isSCEVable must return true.
378    uint64_t getTypeSizeInBits(const Type *Ty) const;
379
380    /// getEffectiveSCEVType - Return a type with the same bitwidth as
381    /// the given type and which represents how SCEV will treat the given
382    /// type, for which isSCEVable must return true. For pointer types,
383    /// this is the pointer-sized integer type.
384    const Type *getEffectiveSCEVType(const Type *Ty) const;
385
386    /// getSCEV - Return a SCEV expression handle for the full generality of the
387    /// specified expression.
388    SCEVHandle getSCEV(Value *V);
389
390    SCEVHandle getConstant(ConstantInt *V);
391    SCEVHandle getConstant(const APInt& Val);
392    SCEVHandle getTruncateExpr(const SCEVHandle &Op, const Type *Ty);
393    SCEVHandle getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty);
394    SCEVHandle getSignExtendExpr(const SCEVHandle &Op, const Type *Ty);
395    SCEVHandle getAddExpr(std::vector<SCEVHandle> &Ops);
396    SCEVHandle getAddExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
397      std::vector<SCEVHandle> Ops;
398      Ops.push_back(LHS);
399      Ops.push_back(RHS);
400      return getAddExpr(Ops);
401    }
402    SCEVHandle getAddExpr(const SCEVHandle &Op0, const SCEVHandle &Op1,
403                          const SCEVHandle &Op2) {
404      std::vector<SCEVHandle> Ops;
405      Ops.push_back(Op0);
406      Ops.push_back(Op1);
407      Ops.push_back(Op2);
408      return getAddExpr(Ops);
409    }
410    SCEVHandle getMulExpr(std::vector<SCEVHandle> &Ops);
411    SCEVHandle getMulExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
412      std::vector<SCEVHandle> Ops;
413      Ops.push_back(LHS);
414      Ops.push_back(RHS);
415      return getMulExpr(Ops);
416    }
417    SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
418    SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step,
419                             const Loop *L);
420    SCEVHandle getAddRecExpr(std::vector<SCEVHandle> &Operands,
421                             const Loop *L);
422    SCEVHandle getAddRecExpr(const std::vector<SCEVHandle> &Operands,
423                             const Loop *L) {
424      std::vector<SCEVHandle> NewOp(Operands);
425      return getAddRecExpr(NewOp, L);
426    }
427    SCEVHandle getSMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
428    SCEVHandle getSMaxExpr(std::vector<SCEVHandle> Operands);
429    SCEVHandle getUMaxExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
430    SCEVHandle getUMaxExpr(std::vector<SCEVHandle> Operands);
431    SCEVHandle getUnknown(Value *V);
432    SCEVHandle getCouldNotCompute();
433
434    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
435    ///
436    SCEVHandle getNegativeSCEV(const SCEVHandle &V);
437
438    /// getNotSCEV - Return the SCEV object corresponding to ~V.
439    ///
440    SCEVHandle getNotSCEV(const SCEVHandle &V);
441
442    /// getMinusSCEV - Return LHS-RHS.
443    ///
444    SCEVHandle getMinusSCEV(const SCEVHandle &LHS,
445                            const SCEVHandle &RHS);
446
447    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
448    /// of the input value to the specified type.  If the type must be
449    /// extended, it is zero extended.
450    SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty);
451
452    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
453    /// of the input value to the specified type.  If the type must be
454    /// extended, it is sign extended.
455    SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty);
456
457    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
458    /// the input value to the specified type.  If the type must be extended,
459    /// it is zero extended.  The conversion must not be narrowing.
460    SCEVHandle getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty);
461
462    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
463    /// the input value to the specified type.  If the type must be extended,
464    /// it is sign extended.  The conversion must not be narrowing.
465    SCEVHandle getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty);
466
467    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
468    /// input value to the specified type.  The conversion must not be
469    /// widening.
470    SCEVHandle getTruncateOrNoop(const SCEVHandle &V, const Type *Ty);
471
472    /// getIntegerSCEV - Given an integer or FP type, create a constant for the
473    /// specified signed integer value and return a SCEV for the constant.
474    SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
475
476    /// hasSCEV - Return true if the SCEV for this value has already been
477    /// computed.
478    bool hasSCEV(Value *V) const;
479
480    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
481    /// the specified value.
482    void setSCEV(Value *V, const SCEVHandle &H);
483
484    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
485    /// at the specified scope in the program.  The L value specifies a loop
486    /// nest to evaluate the expression at, where null is the top-level or a
487    /// specified loop is immediately inside of the loop.
488    ///
489    /// This method can be used to compute the exit value for a variable defined
490    /// in a loop by querying what the value will hold in the parent loop.
491    ///
492    /// If this value is not computable at this scope, a SCEVCouldNotCompute
493    /// object is returned.
494    SCEVHandle getSCEVAtScope(const SCEV *S, const Loop *L);
495
496    /// getSCEVAtScope - This is a convenience function which does
497    /// getSCEVAtScope(getSCEV(V), L).
498    SCEVHandle getSCEVAtScope(Value *V, const Loop *L);
499
500    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
501    /// a conditional between LHS and RHS.  This is used to help avoid max
502    /// expressions in loop trip counts.
503    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
504                             const SCEV *LHS, const SCEV *RHS);
505
506    /// getBackedgeTakenCount - If the specified loop has a predictable
507    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
508    /// object. The backedge-taken count is the number of times the loop header
509    /// will be branched to from within the loop. This is one less than the
510    /// trip count of the loop, since it doesn't count the first iteration,
511    /// when the header is branched to from outside the loop.
512    ///
513    /// Note that it is not valid to call this method on a loop without a
514    /// loop-invariant backedge-taken count (see
515    /// hasLoopInvariantBackedgeTakenCount).
516    ///
517    SCEVHandle getBackedgeTakenCount(const Loop *L);
518
519    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
520    /// return the least SCEV value that is known never to be less than the
521    /// actual backedge taken count.
522    SCEVHandle getMaxBackedgeTakenCount(const Loop *L);
523
524    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
525    /// has an analyzable loop-invariant backedge-taken count.
526    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
527
528    /// forgetLoopBackedgeTakenCount - This method should be called by the
529    /// client when it has changed a loop in a way that may effect
530    /// ScalarEvolution's ability to compute a trip count, or if the loop
531    /// is deleted.
532    void forgetLoopBackedgeTakenCount(const Loop *L);
533
534    virtual bool runOnFunction(Function &F);
535    virtual void releaseMemory();
536    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
537    void print(raw_ostream &OS, const Module* = 0) const;
538    virtual void print(std::ostream &OS, const Module* = 0) const;
539    void print(std::ostream *OS, const Module* M = 0) const {
540      if (OS) print(*OS, M);
541    }
542  };
543}
544
545#endif
546