ScalarEvolution.h revision 9661c13c37d017df6f91a399c0160b82e8a6c39f
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/Support/DataTypes.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/DenseMap.h"
33#include <map>
34
35namespace llvm {
36  class APInt;
37  class Constant;
38  class ConstantInt;
39  class DominatorTree;
40  class Type;
41  class ScalarEvolution;
42  class TargetData;
43  class LLVMContext;
44  class Loop;
45  class LoopInfo;
46  class Operator;
47
48  /// SCEV - This class represents an analyzed expression in the program.  These
49  /// are opaque objects that the client is not allowed to do much with
50  /// directly.
51  ///
52  class SCEV : public FastFoldingSetNode {
53    // The SCEV baseclass this node corresponds to
54    const unsigned short SCEVType;
55
56  protected:
57    /// SubclassData - This field is initialized to zero and may be used in
58    /// subclasses to store miscelaneous information.
59    unsigned short SubclassData;
60
61  private:
62    SCEV(const SCEV &);            // DO NOT IMPLEMENT
63    void operator=(const SCEV &);  // DO NOT IMPLEMENT
64  protected:
65    virtual ~SCEV();
66  public:
67    explicit SCEV(const FoldingSetNodeID &ID, unsigned SCEVTy) :
68      FastFoldingSetNode(ID), SCEVType(SCEVTy), SubclassData(0) {}
69
70    unsigned getSCEVType() const { return SCEVType; }
71
72    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
73    /// the specified loop.
74    virtual bool isLoopInvariant(const Loop *L) const = 0;
75
76    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
77    /// known way in the specified loop.  This property being true implies that
78    /// the value is variant in the loop AND that we can emit an expression to
79    /// compute the value of the expression at any particular loop iteration.
80    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
81
82    /// getType - Return the LLVM type of this SCEV expression.
83    ///
84    virtual const Type *getType() const = 0;
85
86    /// isZero - Return true if the expression is a constant zero.
87    ///
88    bool isZero() const;
89
90    /// isOne - Return true if the expression is a constant one.
91    ///
92    bool isOne() const;
93
94    /// isAllOnesValue - Return true if the expression is a constant
95    /// all-ones value.
96    ///
97    bool isAllOnesValue() const;
98
99    /// hasOperand - Test whether this SCEV has Op as a direct or
100    /// indirect operand.
101    virtual bool hasOperand(const SCEV *Op) const = 0;
102
103    /// dominates - Return true if elements that makes up this SCEV dominates
104    /// the specified basic block.
105    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
106
107    /// print - Print out the internal representation of this scalar to the
108    /// specified stream.  This should really only be used for debugging
109    /// purposes.
110    virtual void print(raw_ostream &OS) const = 0;
111
112    /// dump - This method is used for debugging.
113    ///
114    void dump() const;
115  };
116
117  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
118    S.print(OS);
119    return OS;
120  }
121
122  /// SCEVCouldNotCompute - An object of this class is returned by queries that
123  /// could not be answered.  For example, if you ask for the number of
124  /// iterations of a linked-list traversal loop, you will get one of these.
125  /// None of the standard SCEV operations are valid on this class, it is just a
126  /// marker.
127  struct SCEVCouldNotCompute : public SCEV {
128    SCEVCouldNotCompute();
129
130    // None of these methods are valid for this object.
131    virtual bool isLoopInvariant(const Loop *L) const;
132    virtual const Type *getType() const;
133    virtual bool hasComputableLoopEvolution(const Loop *L) const;
134    virtual void print(raw_ostream &OS) const;
135    virtual bool hasOperand(const SCEV *Op) const;
136
137    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
138      return true;
139    }
140
141    /// Methods for support type inquiry through isa, cast, and dyn_cast:
142    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
143    static bool classof(const SCEV *S);
144  };
145
146  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
147  /// client code (intentionally) can't do much with the SCEV objects directly,
148  /// they must ask this class for services.
149  ///
150  class ScalarEvolution : public FunctionPass {
151    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
152    /// notified whenever a Value is deleted.
153    class SCEVCallbackVH : public CallbackVH {
154      ScalarEvolution *SE;
155      virtual void deleted();
156      virtual void allUsesReplacedWith(Value *New);
157    public:
158      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
159    };
160
161    friend class SCEVCallbackVH;
162    friend struct SCEVExpander;
163
164    /// F - The function we are analyzing.
165    ///
166    Function *F;
167
168    /// LI - The loop information for the function we are currently analyzing.
169    ///
170    LoopInfo *LI;
171
172    /// TD - The target data information for the target we are targetting.
173    ///
174    TargetData *TD;
175
176    /// CouldNotCompute - This SCEV is used to represent unknown trip
177    /// counts and things.
178    SCEVCouldNotCompute CouldNotCompute;
179
180    /// Scalars - This is a cache of the scalars we have analyzed so far.
181    ///
182    std::map<SCEVCallbackVH, const SCEV *> Scalars;
183
184    /// BackedgeTakenInfo - Information about the backedge-taken count
185    /// of a loop. This currently inclues an exact count and a maximum count.
186    ///
187    struct BackedgeTakenInfo {
188      /// Exact - An expression indicating the exact backedge-taken count of
189      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
190      const SCEV *Exact;
191
192      /// Max - An expression indicating the least maximum backedge-taken
193      /// count of the loop that is known, or a SCEVCouldNotCompute.
194      const SCEV *Max;
195
196      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
197        Exact(exact), Max(exact) {}
198
199      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
200        Exact(exact), Max(max) {}
201
202      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
203      /// computed information, or whether it's all SCEVCouldNotCompute
204      /// values.
205      bool hasAnyInfo() const {
206        return !isa<SCEVCouldNotCompute>(Exact) ||
207               !isa<SCEVCouldNotCompute>(Max);
208      }
209    };
210
211    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
212    /// this function as they are computed.
213    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
214
215    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
216    /// the PHI instructions that we attempt to compute constant evolutions for.
217    /// This allows us to avoid potentially expensive recomputation of these
218    /// properties.  An instruction maps to null if we are unable to compute its
219    /// exit value.
220    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
221
222    /// ValuesAtScopes - This map contains entries for all the instructions
223    /// that we attempt to compute getSCEVAtScope information for without
224    /// using SCEV techniques, which can be expensive.
225    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
226
227    /// createSCEV - We know that there is no SCEV for the specified value.
228    /// Analyze the expression.
229    const SCEV *createSCEV(Value *V);
230
231    /// createNodeForPHI - Provide the special handling we need to analyze PHI
232    /// SCEVs.
233    const SCEV *createNodeForPHI(PHINode *PN);
234
235    /// createNodeForGEP - Provide the special handling we need to analyze GEP
236    /// SCEVs.
237    const SCEV *createNodeForGEP(Operator *GEP);
238
239    /// ForgetSymbolicValue - This looks up computed SCEV values for all
240    /// instructions that depend on the given instruction and removes them from
241    /// the Scalars map if they reference SymName. This is used during PHI
242    /// resolution.
243    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
244
245    /// getBECount - Subtract the end and start values and divide by the step,
246    /// rounding up, to get the number of times the backedge is executed. Return
247    /// CouldNotCompute if an intermediate computation overflows.
248    const SCEV *getBECount(const SCEV *Start,
249                           const SCEV *End,
250                           const SCEV *Step);
251
252    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
253    /// loop, lazily computing new values if the loop hasn't been analyzed
254    /// yet.
255    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
256
257    /// ComputeBackedgeTakenCount - Compute the number of times the specified
258    /// loop will iterate.
259    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
260
261    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
262    /// backedge of the specified loop will execute if it exits via the
263    /// specified block.
264    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
265                                                      BasicBlock *ExitingBlock);
266
267    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
268    /// backedge of the specified loop will execute if its exit condition
269    /// were a conditional branch of ExitCond, TBB, and FBB.
270    BackedgeTakenInfo
271      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
272                                            Value *ExitCond,
273                                            BasicBlock *TBB,
274                                            BasicBlock *FBB);
275
276    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
277    /// times the backedge of the specified loop will execute if its exit
278    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
279    /// and FBB.
280    BackedgeTakenInfo
281      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
282                                                ICmpInst *ExitCond,
283                                                BasicBlock *TBB,
284                                                BasicBlock *FBB);
285
286    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
287    /// of 'icmp op load X, cst', try to see if we can compute the
288    /// backedge-taken count.
289    const SCEV *
290      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
291                                                   Constant *RHS,
292                                                   const Loop *L,
293                                                   ICmpInst::Predicate p);
294
295    /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute
296    /// a constant number of times (the condition evolves only from constants),
297    /// try to evaluate a few iterations of the loop until we get the exit
298    /// condition gets a value of ExitWhen (true or false).  If we cannot
299    /// evaluate the backedge-taken count of the loop, return CouldNotCompute.
300    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
301                                                      Value *Cond,
302                                                      bool ExitWhen);
303
304    /// HowFarToZero - Return the number of times a backedge comparing the
305    /// specified value to zero will execute.  If not computable, return
306    /// CouldNotCompute.
307    const SCEV *HowFarToZero(const SCEV *V, const Loop *L);
308
309    /// HowFarToNonZero - Return the number of times a backedge checking the
310    /// specified value for nonzero will execute.  If not computable, return
311    /// CouldNotCompute.
312    const SCEV *HowFarToNonZero(const SCEV *V, const Loop *L);
313
314    /// HowManyLessThans - Return the number of times a backedge containing the
315    /// specified less-than comparison will execute.  If not computable, return
316    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
317    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
318                                       const Loop *L, bool isSigned);
319
320    /// getLoopPredecessor - If the given loop's header has exactly one unique
321    /// predecessor outside the loop, return it. Otherwise return null.
322    BasicBlock *getLoopPredecessor(const Loop *L);
323
324    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
325    /// (which may not be an immediate predecessor) which has exactly one
326    /// successor from which BB is reachable, or null if no such block is
327    /// found.
328    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
329
330    /// isImpliedCond - Test whether the condition described by Pred, LHS,
331    /// and RHS is true whenever the given Cond value evaluates to true.
332    bool isImpliedCond(Value *Cond, ICmpInst::Predicate Pred,
333                       const SCEV *LHS, const SCEV *RHS,
334                       bool Inverse);
335
336    /// isImpliedCondOperands - Test whether the condition described by Pred,
337    /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
338    /// and FoundRHS is true.
339    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
340                               const SCEV *LHS, const SCEV *RHS,
341                               const SCEV *FoundLHS, const SCEV *FoundRHS);
342
343    /// isImpliedCondOperandsHelper - Test whether the condition described by
344    /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
345    /// FoundLHS, and FoundRHS is true.
346    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
347                                     const SCEV *LHS, const SCEV *RHS,
348                                     const SCEV *FoundLHS, const SCEV *FoundRHS);
349
350    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
351    /// in the header of its containing loop, we know the loop executes a
352    /// constant number of times, and the PHI node is just a recurrence
353    /// involving constants, fold it.
354    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
355                                                const Loop *L);
356
357  public:
358    static char ID; // Pass identification, replacement for typeid
359    ScalarEvolution();
360
361    LLVMContext &getContext() const { return F->getContext(); }
362
363    /// isSCEVable - Test if values of the given type are analyzable within
364    /// the SCEV framework. This primarily includes integer types, and it
365    /// can optionally include pointer types if the ScalarEvolution class
366    /// has access to target-specific information.
367    bool isSCEVable(const Type *Ty) const;
368
369    /// getTypeSizeInBits - Return the size in bits of the specified type,
370    /// for which isSCEVable must return true.
371    uint64_t getTypeSizeInBits(const Type *Ty) const;
372
373    /// getEffectiveSCEVType - Return a type with the same bitwidth as
374    /// the given type and which represents how SCEV will treat the given
375    /// type, for which isSCEVable must return true. For pointer types,
376    /// this is the pointer-sized integer type.
377    const Type *getEffectiveSCEVType(const Type *Ty) const;
378
379    /// getSCEV - Return a SCEV expression handle for the full generality of the
380    /// specified expression.
381    const SCEV *getSCEV(Value *V);
382
383    const SCEV *getConstant(ConstantInt *V);
384    const SCEV *getConstant(const APInt& Val);
385    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
386    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
387    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
388    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
389    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
390    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops);
391    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS) {
392      SmallVector<const SCEV *, 2> Ops;
393      Ops.push_back(LHS);
394      Ops.push_back(RHS);
395      return getAddExpr(Ops);
396    }
397    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
398                           const SCEV *Op2) {
399      SmallVector<const SCEV *, 3> Ops;
400      Ops.push_back(Op0);
401      Ops.push_back(Op1);
402      Ops.push_back(Op2);
403      return getAddExpr(Ops);
404    }
405    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops);
406    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS) {
407      SmallVector<const SCEV *, 2> Ops;
408      Ops.push_back(LHS);
409      Ops.push_back(RHS);
410      return getMulExpr(Ops);
411    }
412    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
413    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
414                              const Loop *L);
415    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
416                              const Loop *L);
417    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
418                              const Loop *L) {
419      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
420      return getAddRecExpr(NewOp, L);
421    }
422    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
423    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
424    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
425    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
426    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
427    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
428    const SCEV *getFieldOffsetExpr(const StructType *STy, unsigned FieldNo);
429    const SCEV *getAllocSizeExpr(const Type *AllocTy);
430    const SCEV *getUnknown(Value *V);
431    const SCEV *getCouldNotCompute();
432
433    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
434    ///
435    const SCEV *getNegativeSCEV(const SCEV *V);
436
437    /// getNotSCEV - Return the SCEV object corresponding to ~V.
438    ///
439    const SCEV *getNotSCEV(const SCEV *V);
440
441    /// getMinusSCEV - Return LHS-RHS.
442    ///
443    const SCEV *getMinusSCEV(const SCEV *LHS,
444                             const SCEV *RHS);
445
446    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
447    /// of the input value to the specified type.  If the type must be
448    /// extended, it is zero extended.
449    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
450
451    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
452    /// of the input value to the specified type.  If the type must be
453    /// extended, it is sign extended.
454    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
455
456    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
457    /// the input value to the specified type.  If the type must be extended,
458    /// it is zero extended.  The conversion must not be narrowing.
459    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
460
461    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
462    /// the input value to the specified type.  If the type must be extended,
463    /// it is sign extended.  The conversion must not be narrowing.
464    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
465
466    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
467    /// the input value to the specified type. If the type must be extended,
468    /// it is extended with unspecified bits. The conversion must not be
469    /// narrowing.
470    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
471
472    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
473    /// input value to the specified type.  The conversion must not be
474    /// widening.
475    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
476
477    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
478    /// specified signed integer value and return a SCEV for the constant.
479    const SCEV *getIntegerSCEV(int Val, const Type *Ty);
480
481    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
482    /// the types using zero-extension, and then perform a umax operation
483    /// with them.
484    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
485                                           const SCEV *RHS);
486
487    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
488    /// the types using zero-extension, and then perform a umin operation
489    /// with them.
490    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
491                                           const SCEV *RHS);
492
493    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
494    /// at the specified scope in the program.  The L value specifies a loop
495    /// nest to evaluate the expression at, where null is the top-level or a
496    /// specified loop is immediately inside of the loop.
497    ///
498    /// This method can be used to compute the exit value for a variable defined
499    /// in a loop by querying what the value will hold in the parent loop.
500    ///
501    /// In the case that a relevant loop exit value cannot be computed, the
502    /// original value V is returned.
503    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
504
505    /// getSCEVAtScope - This is a convenience function which does
506    /// getSCEVAtScope(getSCEV(V), L).
507    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
508
509    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
510    /// a conditional between LHS and RHS.  This is used to help avoid max
511    /// expressions in loop trip counts, and to eliminate casts.
512    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
513                             const SCEV *LHS, const SCEV *RHS);
514
515    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
516    /// protected by a conditional between LHS and RHS.  This is used to
517    /// to eliminate casts.
518    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
519                                     const SCEV *LHS, const SCEV *RHS);
520
521    /// getBackedgeTakenCount - If the specified loop has a predictable
522    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
523    /// object. The backedge-taken count is the number of times the loop header
524    /// will be branched to from within the loop. This is one less than the
525    /// trip count of the loop, since it doesn't count the first iteration,
526    /// when the header is branched to from outside the loop.
527    ///
528    /// Note that it is not valid to call this method on a loop without a
529    /// loop-invariant backedge-taken count (see
530    /// hasLoopInvariantBackedgeTakenCount).
531    ///
532    const SCEV *getBackedgeTakenCount(const Loop *L);
533
534    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
535    /// return the least SCEV value that is known never to be less than the
536    /// actual backedge taken count.
537    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
538
539    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
540    /// has an analyzable loop-invariant backedge-taken count.
541    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
542
543    /// forgetLoopBackedgeTakenCount - This method should be called by the
544    /// client when it has changed a loop in a way that may effect
545    /// ScalarEvolution's ability to compute a trip count, or if the loop
546    /// is deleted.
547    void forgetLoopBackedgeTakenCount(const Loop *L);
548
549    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
550    /// is guaranteed to end in (at every loop iteration).  It is, at the same
551    /// time, the minimum number of times S is divisible by 2.  For example,
552    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
553    /// bitwidth of S.
554    uint32_t GetMinTrailingZeros(const SCEV *S);
555
556    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
557    ///
558    ConstantRange getUnsignedRange(const SCEV *S);
559
560    /// getSignedRange - Determine the signed range for a particular SCEV.
561    ///
562    ConstantRange getSignedRange(const SCEV *S);
563
564    /// isKnownNegative - Test if the given expression is known to be negative.
565    ///
566    bool isKnownNegative(const SCEV *S);
567
568    /// isKnownPositive - Test if the given expression is known to be positive.
569    ///
570    bool isKnownPositive(const SCEV *S);
571
572    /// isKnownNonNegative - Test if the given expression is known to be
573    /// non-negative.
574    ///
575    bool isKnownNonNegative(const SCEV *S);
576
577    /// isKnownNonPositive - Test if the given expression is known to be
578    /// non-positive.
579    ///
580    bool isKnownNonPositive(const SCEV *S);
581
582    /// isKnownNonZero - Test if the given expression is known to be
583    /// non-zero.
584    ///
585    bool isKnownNonZero(const SCEV *S);
586
587    /// isKnownNonZero - Test if the given expression is known to satisfy
588    /// the condition described by Pred, LHS, and RHS.
589    ///
590    bool isKnownPredicate(ICmpInst::Predicate Pred,
591                          const SCEV *LHS, const SCEV *RHS);
592
593    virtual bool runOnFunction(Function &F);
594    virtual void releaseMemory();
595    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
596    virtual void print(raw_ostream &OS, const Module* = 0) const;
597
598  private:
599    FoldingSet<SCEV> UniqueSCEVs;
600    BumpPtrAllocator SCEVAllocator;
601  };
602}
603
604#endif
605