ScalarEvolution.h revision aadb5f5adbdb650c5cdc5ece939aaa30af91b3bc
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/System/DataTypes.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/DenseMap.h"
33#include <map>
34
35namespace llvm {
36  class APInt;
37  class Constant;
38  class ConstantInt;
39  class DominatorTree;
40  class Type;
41  class ScalarEvolution;
42  class TargetData;
43  class LLVMContext;
44  class Loop;
45  class LoopInfo;
46  class Operator;
47  class SCEVUnknown;
48  class SCEV;
49  template<> class FoldingSetTrait<SCEV>;
50
51  /// SCEV - This class represents an analyzed expression in the program.  These
52  /// are opaque objects that the client is not allowed to do much with
53  /// directly.
54  ///
55  class SCEV : public FoldingSetNode {
56    friend class FoldingSetTrait<SCEV>;
57
58    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
59    /// The ScalarEvolution's BumpPtrAllocator holds the data.
60    FoldingSetNodeIDRef FastID;
61
62    // The SCEV baseclass this node corresponds to
63    const unsigned short SCEVType;
64
65  protected:
66    /// SubclassData - This field is initialized to zero and may be used in
67    /// subclasses to store miscellaneous information.
68    unsigned short SubclassData;
69
70  private:
71    SCEV(const SCEV &);            // DO NOT IMPLEMENT
72    void operator=(const SCEV &);  // DO NOT IMPLEMENT
73  protected:
74    virtual ~SCEV();
75  public:
76    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
77      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
78
79    unsigned getSCEVType() const { return SCEVType; }
80
81    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
82    /// the specified loop.
83    virtual bool isLoopInvariant(const Loop *L) const = 0;
84
85    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
86    /// known way in the specified loop.  This property being true implies that
87    /// the value is variant in the loop AND that we can emit an expression to
88    /// compute the value of the expression at any particular loop iteration.
89    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
90
91    /// getType - Return the LLVM type of this SCEV expression.
92    ///
93    virtual const Type *getType() const = 0;
94
95    /// isZero - Return true if the expression is a constant zero.
96    ///
97    bool isZero() const;
98
99    /// isOne - Return true if the expression is a constant one.
100    ///
101    bool isOne() const;
102
103    /// isAllOnesValue - Return true if the expression is a constant
104    /// all-ones value.
105    ///
106    bool isAllOnesValue() const;
107
108    /// hasOperand - Test whether this SCEV has Op as a direct or
109    /// indirect operand.
110    virtual bool hasOperand(const SCEV *Op) const = 0;
111
112    /// dominates - Return true if elements that makes up this SCEV dominates
113    /// the specified basic block.
114    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
115
116    /// properlyDominates - Return true if elements that makes up this SCEV
117    /// properly dominate the specified basic block.
118    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const = 0;
119
120    /// print - Print out the internal representation of this scalar to the
121    /// specified stream.  This should really only be used for debugging
122    /// purposes.
123    virtual void print(raw_ostream &OS) const = 0;
124
125    /// dump - This method is used for debugging.
126    ///
127    void dump() const;
128  };
129
130  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
131  // temporary FoldingSetNodeID values.
132  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
133    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
134      ID = X.FastID;
135    }
136    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
137                       FoldingSetNodeID &TempID) {
138      return ID == X.FastID;
139    }
140    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
141      return X.FastID.ComputeHash();
142    }
143  };
144
145  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
146    S.print(OS);
147    return OS;
148  }
149
150  /// SCEVCouldNotCompute - An object of this class is returned by queries that
151  /// could not be answered.  For example, if you ask for the number of
152  /// iterations of a linked-list traversal loop, you will get one of these.
153  /// None of the standard SCEV operations are valid on this class, it is just a
154  /// marker.
155  struct SCEVCouldNotCompute : public SCEV {
156    SCEVCouldNotCompute();
157
158    // None of these methods are valid for this object.
159    virtual bool isLoopInvariant(const Loop *L) const;
160    virtual const Type *getType() const;
161    virtual bool hasComputableLoopEvolution(const Loop *L) const;
162    virtual void print(raw_ostream &OS) const;
163    virtual bool hasOperand(const SCEV *Op) const;
164
165    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
166      return true;
167    }
168
169    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
170      return true;
171    }
172
173    /// Methods for support type inquiry through isa, cast, and dyn_cast:
174    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
175    static bool classof(const SCEV *S);
176  };
177
178  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
179  /// client code (intentionally) can't do much with the SCEV objects directly,
180  /// they must ask this class for services.
181  ///
182  class ScalarEvolution : public FunctionPass {
183    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
184    /// notified whenever a Value is deleted.
185    class SCEVCallbackVH : public CallbackVH {
186      ScalarEvolution *SE;
187      virtual void deleted();
188      virtual void allUsesReplacedWith(Value *New);
189    public:
190      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
191    };
192
193    friend class SCEVCallbackVH;
194    friend class SCEVExpander;
195    friend class SCEVUnknown;
196
197    /// F - The function we are analyzing.
198    ///
199    Function *F;
200
201    /// LI - The loop information for the function we are currently analyzing.
202    ///
203    LoopInfo *LI;
204
205    /// TD - The target data information for the target we are targeting.
206    ///
207    TargetData *TD;
208
209    /// DT - The dominator tree.
210    ///
211    DominatorTree *DT;
212
213    /// CouldNotCompute - This SCEV is used to represent unknown trip
214    /// counts and things.
215    SCEVCouldNotCompute CouldNotCompute;
216
217    /// Scalars - This is a cache of the scalars we have analyzed so far.
218    ///
219    std::map<SCEVCallbackVH, const SCEV *> Scalars;
220
221    /// BackedgeTakenInfo - Information about the backedge-taken count
222    /// of a loop. This currently includes an exact count and a maximum count.
223    ///
224    struct BackedgeTakenInfo {
225      /// Exact - An expression indicating the exact backedge-taken count of
226      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
227      const SCEV *Exact;
228
229      /// Max - An expression indicating the least maximum backedge-taken
230      /// count of the loop that is known, or a SCEVCouldNotCompute.
231      const SCEV *Max;
232
233      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
234        Exact(exact), Max(exact) {}
235
236      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
237        Exact(exact), Max(max) {}
238
239      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
240      /// computed information, or whether it's all SCEVCouldNotCompute
241      /// values.
242      bool hasAnyInfo() const {
243        return !isa<SCEVCouldNotCompute>(Exact) ||
244               !isa<SCEVCouldNotCompute>(Max);
245      }
246    };
247
248    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
249    /// this function as they are computed.
250    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
251
252    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
253    /// the PHI instructions that we attempt to compute constant evolutions for.
254    /// This allows us to avoid potentially expensive recomputation of these
255    /// properties.  An instruction maps to null if we are unable to compute its
256    /// exit value.
257    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
258
259    /// ValuesAtScopes - This map contains entries for all the expressions
260    /// that we attempt to compute getSCEVAtScope information for, which can
261    /// be expensive in extreme cases.
262    std::map<const SCEV *,
263             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
264
265    /// createSCEV - We know that there is no SCEV for the specified value.
266    /// Analyze the expression.
267    const SCEV *createSCEV(Value *V);
268
269    /// createNodeForPHI - Provide the special handling we need to analyze PHI
270    /// SCEVs.
271    const SCEV *createNodeForPHI(PHINode *PN);
272
273    /// createNodeForGEP - Provide the special handling we need to analyze GEP
274    /// SCEVs.
275    const SCEV *createNodeForGEP(GEPOperator *GEP);
276
277    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
278    /// at most once for each SCEV+Loop pair.
279    ///
280    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
281
282    /// ForgetSymbolicValue - This looks up computed SCEV values for all
283    /// instructions that depend on the given instruction and removes them from
284    /// the Scalars map if they reference SymName. This is used during PHI
285    /// resolution.
286    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
287
288    /// getBECount - Subtract the end and start values and divide by the step,
289    /// rounding up, to get the number of times the backedge is executed. Return
290    /// CouldNotCompute if an intermediate computation overflows.
291    const SCEV *getBECount(const SCEV *Start,
292                           const SCEV *End,
293                           const SCEV *Step,
294                           bool NoWrap);
295
296    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
297    /// loop, lazily computing new values if the loop hasn't been analyzed
298    /// yet.
299    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
300
301    /// ComputeBackedgeTakenCount - Compute the number of times the specified
302    /// loop will iterate.
303    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
304
305    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
306    /// backedge of the specified loop will execute if it exits via the
307    /// specified block.
308    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
309                                                      BasicBlock *ExitingBlock);
310
311    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
312    /// backedge of the specified loop will execute if its exit condition
313    /// were a conditional branch of ExitCond, TBB, and FBB.
314    BackedgeTakenInfo
315      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
316                                            Value *ExitCond,
317                                            BasicBlock *TBB,
318                                            BasicBlock *FBB);
319
320    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
321    /// times the backedge of the specified loop will execute if its exit
322    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
323    /// and FBB.
324    BackedgeTakenInfo
325      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
326                                                ICmpInst *ExitCond,
327                                                BasicBlock *TBB,
328                                                BasicBlock *FBB);
329
330    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
331    /// of 'icmp op load X, cst', try to see if we can compute the
332    /// backedge-taken count.
333    BackedgeTakenInfo
334      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
335                                                   Constant *RHS,
336                                                   const Loop *L,
337                                                   ICmpInst::Predicate p);
338
339    /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute
340    /// a constant number of times (the condition evolves only from constants),
341    /// try to evaluate a few iterations of the loop until we get the exit
342    /// condition gets a value of ExitWhen (true or false).  If we cannot
343    /// evaluate the backedge-taken count of the loop, return CouldNotCompute.
344    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
345                                                      Value *Cond,
346                                                      bool ExitWhen);
347
348    /// HowFarToZero - Return the number of times a backedge comparing the
349    /// specified value to zero will execute.  If not computable, return
350    /// CouldNotCompute.
351    BackedgeTakenInfo HowFarToZero(const SCEV *V, const Loop *L);
352
353    /// HowFarToNonZero - Return the number of times a backedge checking the
354    /// specified value for nonzero will execute.  If not computable, return
355    /// CouldNotCompute.
356    BackedgeTakenInfo HowFarToNonZero(const SCEV *V, const Loop *L);
357
358    /// HowManyLessThans - Return the number of times a backedge containing the
359    /// specified less-than comparison will execute.  If not computable, return
360    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
361    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
362                                       const Loop *L, bool isSigned);
363
364    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
365    /// (which may not be an immediate predecessor) which has exactly one
366    /// successor from which BB is reachable, or null if no such block is
367    /// found.
368    std::pair<BasicBlock *, BasicBlock *>
369    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
370
371    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
372    /// RHS is true whenever the given FoundCondValue value evaluates to true.
373    bool isImpliedCond(ICmpInst::Predicate Pred,
374                       const SCEV *LHS, const SCEV *RHS,
375                       Value *FoundCondValue,
376                       bool Inverse);
377
378    /// isImpliedCondOperands - Test whether the condition described by Pred,
379    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
380    /// and FoundRHS is true.
381    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
382                               const SCEV *LHS, const SCEV *RHS,
383                               const SCEV *FoundLHS, const SCEV *FoundRHS);
384
385    /// isImpliedCondOperandsHelper - Test whether the condition described by
386    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
387    /// FoundLHS, and FoundRHS is true.
388    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
389                                     const SCEV *LHS, const SCEV *RHS,
390                                     const SCEV *FoundLHS, const SCEV *FoundRHS);
391
392    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
393    /// in the header of its containing loop, we know the loop executes a
394    /// constant number of times, and the PHI node is just a recurrence
395    /// involving constants, fold it.
396    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
397                                                const Loop *L);
398
399    /// isKnownPredicateWithRanges - Test if the given expression is known to
400    /// satisfy the condition described by Pred and the known constant ranges
401    /// of LHS and RHS.
402    ///
403    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
404                                    const SCEV *LHS, const SCEV *RHS);
405
406  public:
407    static char ID; // Pass identification, replacement for typeid
408    ScalarEvolution();
409
410    LLVMContext &getContext() const { return F->getContext(); }
411
412    /// isSCEVable - Test if values of the given type are analyzable within
413    /// the SCEV framework. This primarily includes integer types, and it
414    /// can optionally include pointer types if the ScalarEvolution class
415    /// has access to target-specific information.
416    bool isSCEVable(const Type *Ty) const;
417
418    /// getTypeSizeInBits - Return the size in bits of the specified type,
419    /// for which isSCEVable must return true.
420    uint64_t getTypeSizeInBits(const Type *Ty) const;
421
422    /// getEffectiveSCEVType - Return a type with the same bitwidth as
423    /// the given type and which represents how SCEV will treat the given
424    /// type, for which isSCEVable must return true. For pointer types,
425    /// this is the pointer-sized integer type.
426    const Type *getEffectiveSCEVType(const Type *Ty) const;
427
428    /// getSCEV - Return a SCEV expression for the full generality of the
429    /// specified expression.
430    const SCEV *getSCEV(Value *V);
431
432    const SCEV *getConstant(ConstantInt *V);
433    const SCEV *getConstant(const APInt& Val);
434    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
435    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
436    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
437    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
438    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
439    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
440                           bool HasNUW = false, bool HasNSW = false);
441    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
442                           bool HasNUW = false, bool HasNSW = false) {
443      SmallVector<const SCEV *, 2> Ops;
444      Ops.push_back(LHS);
445      Ops.push_back(RHS);
446      return getAddExpr(Ops, HasNUW, HasNSW);
447    }
448    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
449                           const SCEV *Op2,
450                           bool HasNUW = false, bool HasNSW = false) {
451      SmallVector<const SCEV *, 3> Ops;
452      Ops.push_back(Op0);
453      Ops.push_back(Op1);
454      Ops.push_back(Op2);
455      return getAddExpr(Ops, HasNUW, HasNSW);
456    }
457    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
458                           bool HasNUW = false, bool HasNSW = false);
459    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
460                           bool HasNUW = false, bool HasNSW = false) {
461      SmallVector<const SCEV *, 2> Ops;
462      Ops.push_back(LHS);
463      Ops.push_back(RHS);
464      return getMulExpr(Ops, HasNUW, HasNSW);
465    }
466    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
467    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
468                              const Loop *L,
469                              bool HasNUW = false, bool HasNSW = false);
470    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
471                              const Loop *L,
472                              bool HasNUW = false, bool HasNSW = false);
473    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
474                              const Loop *L,
475                              bool HasNUW = false, bool HasNSW = false) {
476      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
477      return getAddRecExpr(NewOp, L, HasNUW, HasNSW);
478    }
479    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
480    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
481    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
482    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
483    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
484    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
485    const SCEV *getUnknown(Value *V);
486    const SCEV *getCouldNotCompute();
487
488    /// getSizeOfExpr - Return an expression for sizeof on the given type.
489    ///
490    const SCEV *getSizeOfExpr(const Type *AllocTy);
491
492    /// getAlignOfExpr - Return an expression for alignof on the given type.
493    ///
494    const SCEV *getAlignOfExpr(const Type *AllocTy);
495
496    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
497    ///
498    const SCEV *getOffsetOfExpr(const StructType *STy, unsigned FieldNo);
499
500    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
501    ///
502    const SCEV *getOffsetOfExpr(const Type *CTy, Constant *FieldNo);
503
504    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
505    ///
506    const SCEV *getNegativeSCEV(const SCEV *V);
507
508    /// getNotSCEV - Return the SCEV object corresponding to ~V.
509    ///
510    const SCEV *getNotSCEV(const SCEV *V);
511
512    /// getMinusSCEV - Return LHS-RHS.
513    ///
514    const SCEV *getMinusSCEV(const SCEV *LHS,
515                             const SCEV *RHS);
516
517    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
518    /// of the input value to the specified type.  If the type must be
519    /// extended, it is zero extended.
520    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
521
522    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
523    /// of the input value to the specified type.  If the type must be
524    /// extended, it is sign extended.
525    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
526
527    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
528    /// the input value to the specified type.  If the type must be extended,
529    /// it is zero extended.  The conversion must not be narrowing.
530    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
531
532    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
533    /// the input value to the specified type.  If the type must be extended,
534    /// it is sign extended.  The conversion must not be narrowing.
535    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
536
537    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
538    /// the input value to the specified type. If the type must be extended,
539    /// it is extended with unspecified bits. The conversion must not be
540    /// narrowing.
541    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
542
543    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
544    /// input value to the specified type.  The conversion must not be
545    /// widening.
546    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
547
548    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
549    /// the types using zero-extension, and then perform a umax operation
550    /// with them.
551    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
552                                           const SCEV *RHS);
553
554    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
555    /// the types using zero-extension, and then perform a umin operation
556    /// with them.
557    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
558                                           const SCEV *RHS);
559
560    /// getSCEVAtScope - Return a SCEV expression for the specified value
561    /// at the specified scope in the program.  The L value specifies a loop
562    /// nest to evaluate the expression at, where null is the top-level or a
563    /// specified loop is immediately inside of the loop.
564    ///
565    /// This method can be used to compute the exit value for a variable defined
566    /// in a loop by querying what the value will hold in the parent loop.
567    ///
568    /// In the case that a relevant loop exit value cannot be computed, the
569    /// original value V is returned.
570    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
571
572    /// getSCEVAtScope - This is a convenience function which does
573    /// getSCEVAtScope(getSCEV(V), L).
574    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
575
576    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
577    /// by a conditional between LHS and RHS.  This is used to help avoid max
578    /// expressions in loop trip counts, and to eliminate casts.
579    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
580                                  const SCEV *LHS, const SCEV *RHS);
581
582    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
583    /// protected by a conditional between LHS and RHS.  This is used to
584    /// to eliminate casts.
585    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
586                                     const SCEV *LHS, const SCEV *RHS);
587
588    /// getBackedgeTakenCount - If the specified loop has a predictable
589    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
590    /// object. The backedge-taken count is the number of times the loop header
591    /// will be branched to from within the loop. This is one less than the
592    /// trip count of the loop, since it doesn't count the first iteration,
593    /// when the header is branched to from outside the loop.
594    ///
595    /// Note that it is not valid to call this method on a loop without a
596    /// loop-invariant backedge-taken count (see
597    /// hasLoopInvariantBackedgeTakenCount).
598    ///
599    const SCEV *getBackedgeTakenCount(const Loop *L);
600
601    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
602    /// return the least SCEV value that is known never to be less than the
603    /// actual backedge taken count.
604    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
605
606    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
607    /// has an analyzable loop-invariant backedge-taken count.
608    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
609
610    /// forgetLoop - This method should be called by the client when it has
611    /// changed a loop in a way that may effect ScalarEvolution's ability to
612    /// compute a trip count, or if the loop is deleted.
613    void forgetLoop(const Loop *L);
614
615    /// forgetValue - This method should be called by the client when it has
616    /// changed a value in a way that may effect its value, or which may
617    /// disconnect it from a def-use chain linking it to a loop.
618    void forgetValue(Value *V);
619
620    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
621    /// is guaranteed to end in (at every loop iteration).  It is, at the same
622    /// time, the minimum number of times S is divisible by 2.  For example,
623    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
624    /// bitwidth of S.
625    uint32_t GetMinTrailingZeros(const SCEV *S);
626
627    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
628    ///
629    ConstantRange getUnsignedRange(const SCEV *S);
630
631    /// getSignedRange - Determine the signed range for a particular SCEV.
632    ///
633    ConstantRange getSignedRange(const SCEV *S);
634
635    /// isKnownNegative - Test if the given expression is known to be negative.
636    ///
637    bool isKnownNegative(const SCEV *S);
638
639    /// isKnownPositive - Test if the given expression is known to be positive.
640    ///
641    bool isKnownPositive(const SCEV *S);
642
643    /// isKnownNonNegative - Test if the given expression is known to be
644    /// non-negative.
645    ///
646    bool isKnownNonNegative(const SCEV *S);
647
648    /// isKnownNonPositive - Test if the given expression is known to be
649    /// non-positive.
650    ///
651    bool isKnownNonPositive(const SCEV *S);
652
653    /// isKnownNonZero - Test if the given expression is known to be
654    /// non-zero.
655    ///
656    bool isKnownNonZero(const SCEV *S);
657
658    /// isKnownPredicate - Test if the given expression is known to satisfy
659    /// the condition described by Pred, LHS, and RHS.
660    ///
661    bool isKnownPredicate(ICmpInst::Predicate Pred,
662                          const SCEV *LHS, const SCEV *RHS);
663
664    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
665    /// predicate Pred. Return true iff any changes were made. If the
666    /// operands are provably equal or inequal, LHS and RHS are set to
667    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
668    ///
669    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
670                              const SCEV *&LHS,
671                              const SCEV *&RHS);
672
673    virtual bool runOnFunction(Function &F);
674    virtual void releaseMemory();
675    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
676    virtual void print(raw_ostream &OS, const Module* = 0) const;
677
678  private:
679    FoldingSet<SCEV> UniqueSCEVs;
680    BumpPtrAllocator SCEVAllocator;
681
682    /// FirstUnknown - The head of a linked list of all SCEVUnknown
683    /// values that have been allocated. This is used by releaseMemory
684    /// to locate them all and call their destructors.
685    SCEVUnknown *FirstUnknown;
686  };
687}
688
689#endif
690