ScalarEvolution.h revision af08a36bd6b9d32a5ea993849d43094fecbd5bed
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/System/DataTypes.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/DenseMap.h"
33#include <map>
34
35namespace llvm {
36  class APInt;
37  class Constant;
38  class ConstantInt;
39  class DominatorTree;
40  class Type;
41  class ScalarEvolution;
42  class TargetData;
43  class LLVMContext;
44  class Loop;
45  class LoopInfo;
46  class Operator;
47  class SCEVUnknown;
48
49  /// SCEV - This class represents an analyzed expression in the program.  These
50  /// are opaque objects that the client is not allowed to do much with
51  /// directly.
52  ///
53  class SCEV : public FoldingSetNode {
54    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
55    /// The ScalarEvolution's BumpPtrAllocator holds the data.
56    FoldingSetNodeIDRef FastID;
57
58    // The SCEV baseclass this node corresponds to
59    const unsigned short SCEVType;
60
61  protected:
62    /// SubclassData - This field is initialized to zero and may be used in
63    /// subclasses to store miscellaneous information.
64    unsigned short SubclassData;
65
66  private:
67    SCEV(const SCEV &);            // DO NOT IMPLEMENT
68    void operator=(const SCEV &);  // DO NOT IMPLEMENT
69  protected:
70    virtual ~SCEV();
71  public:
72    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
73      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
74
75    unsigned getSCEVType() const { return SCEVType; }
76
77    /// Profile - FoldingSet support.
78    void Profile(FoldingSetNodeID& ID) { ID = FastID; }
79
80    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
81    /// the specified loop.
82    virtual bool isLoopInvariant(const Loop *L) const = 0;
83
84    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
85    /// known way in the specified loop.  This property being true implies that
86    /// the value is variant in the loop AND that we can emit an expression to
87    /// compute the value of the expression at any particular loop iteration.
88    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
89
90    /// getType - Return the LLVM type of this SCEV expression.
91    ///
92    virtual const Type *getType() const = 0;
93
94    /// isZero - Return true if the expression is a constant zero.
95    ///
96    bool isZero() const;
97
98    /// isOne - Return true if the expression is a constant one.
99    ///
100    bool isOne() const;
101
102    /// isAllOnesValue - Return true if the expression is a constant
103    /// all-ones value.
104    ///
105    bool isAllOnesValue() const;
106
107    /// hasOperand - Test whether this SCEV has Op as a direct or
108    /// indirect operand.
109    virtual bool hasOperand(const SCEV *Op) const = 0;
110
111    /// dominates - Return true if elements that makes up this SCEV dominates
112    /// the specified basic block.
113    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
114
115    /// properlyDominates - Return true if elements that makes up this SCEV
116    /// properly dominate the specified basic block.
117    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const = 0;
118
119    /// print - Print out the internal representation of this scalar to the
120    /// specified stream.  This should really only be used for debugging
121    /// purposes.
122    virtual void print(raw_ostream &OS) const = 0;
123
124    /// dump - This method is used for debugging.
125    ///
126    void dump() const;
127  };
128
129  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
130    S.print(OS);
131    return OS;
132  }
133
134  /// SCEVCouldNotCompute - An object of this class is returned by queries that
135  /// could not be answered.  For example, if you ask for the number of
136  /// iterations of a linked-list traversal loop, you will get one of these.
137  /// None of the standard SCEV operations are valid on this class, it is just a
138  /// marker.
139  struct SCEVCouldNotCompute : public SCEV {
140    SCEVCouldNotCompute();
141
142    // None of these methods are valid for this object.
143    virtual bool isLoopInvariant(const Loop *L) const;
144    virtual const Type *getType() const;
145    virtual bool hasComputableLoopEvolution(const Loop *L) const;
146    virtual void print(raw_ostream &OS) const;
147    virtual bool hasOperand(const SCEV *Op) const;
148
149    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
150      return true;
151    }
152
153    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
154      return true;
155    }
156
157    /// Methods for support type inquiry through isa, cast, and dyn_cast:
158    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
159    static bool classof(const SCEV *S);
160  };
161
162  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
163  /// client code (intentionally) can't do much with the SCEV objects directly,
164  /// they must ask this class for services.
165  ///
166  class ScalarEvolution : public FunctionPass {
167    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
168    /// notified whenever a Value is deleted.
169    class SCEVCallbackVH : public CallbackVH {
170      ScalarEvolution *SE;
171      virtual void deleted();
172      virtual void allUsesReplacedWith(Value *New);
173    public:
174      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
175    };
176
177    friend class SCEVCallbackVH;
178    friend class SCEVExpander;
179    friend class SCEVUnknown;
180
181    /// F - The function we are analyzing.
182    ///
183    Function *F;
184
185    /// LI - The loop information for the function we are currently analyzing.
186    ///
187    LoopInfo *LI;
188
189    /// TD - The target data information for the target we are targeting.
190    ///
191    TargetData *TD;
192
193    /// DT - The dominator tree.
194    ///
195    DominatorTree *DT;
196
197    /// CouldNotCompute - This SCEV is used to represent unknown trip
198    /// counts and things.
199    SCEVCouldNotCompute CouldNotCompute;
200
201    /// Scalars - This is a cache of the scalars we have analyzed so far.
202    ///
203    std::map<SCEVCallbackVH, const SCEV *> Scalars;
204
205    /// BackedgeTakenInfo - Information about the backedge-taken count
206    /// of a loop. This currently includes an exact count and a maximum count.
207    ///
208    struct BackedgeTakenInfo {
209      /// Exact - An expression indicating the exact backedge-taken count of
210      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
211      const SCEV *Exact;
212
213      /// Max - An expression indicating the least maximum backedge-taken
214      /// count of the loop that is known, or a SCEVCouldNotCompute.
215      const SCEV *Max;
216
217      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
218        Exact(exact), Max(exact) {}
219
220      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
221        Exact(exact), Max(max) {}
222
223      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
224      /// computed information, or whether it's all SCEVCouldNotCompute
225      /// values.
226      bool hasAnyInfo() const {
227        return !isa<SCEVCouldNotCompute>(Exact) ||
228               !isa<SCEVCouldNotCompute>(Max);
229      }
230    };
231
232    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
233    /// this function as they are computed.
234    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
235
236    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
237    /// the PHI instructions that we attempt to compute constant evolutions for.
238    /// This allows us to avoid potentially expensive recomputation of these
239    /// properties.  An instruction maps to null if we are unable to compute its
240    /// exit value.
241    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
242
243    /// ValuesAtScopes - This map contains entries for all the expressions
244    /// that we attempt to compute getSCEVAtScope information for, which can
245    /// be expensive in extreme cases.
246    std::map<const SCEV *,
247             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
248
249    /// createSCEV - We know that there is no SCEV for the specified value.
250    /// Analyze the expression.
251    const SCEV *createSCEV(Value *V);
252
253    /// createNodeForPHI - Provide the special handling we need to analyze PHI
254    /// SCEVs.
255    const SCEV *createNodeForPHI(PHINode *PN);
256
257    /// createNodeForGEP - Provide the special handling we need to analyze GEP
258    /// SCEVs.
259    const SCEV *createNodeForGEP(GEPOperator *GEP);
260
261    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
262    /// at most once for each SCEV+Loop pair.
263    ///
264    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
265
266    /// ForgetSymbolicValue - This looks up computed SCEV values for all
267    /// instructions that depend on the given instruction and removes them from
268    /// the Scalars map if they reference SymName. This is used during PHI
269    /// resolution.
270    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
271
272    /// getBECount - Subtract the end and start values and divide by the step,
273    /// rounding up, to get the number of times the backedge is executed. Return
274    /// CouldNotCompute if an intermediate computation overflows.
275    const SCEV *getBECount(const SCEV *Start,
276                           const SCEV *End,
277                           const SCEV *Step,
278                           bool NoWrap);
279
280    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
281    /// loop, lazily computing new values if the loop hasn't been analyzed
282    /// yet.
283    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
284
285    /// ComputeBackedgeTakenCount - Compute the number of times the specified
286    /// loop will iterate.
287    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
288
289    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
290    /// backedge of the specified loop will execute if it exits via the
291    /// specified block.
292    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
293                                                      BasicBlock *ExitingBlock);
294
295    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
296    /// backedge of the specified loop will execute if its exit condition
297    /// were a conditional branch of ExitCond, TBB, and FBB.
298    BackedgeTakenInfo
299      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
300                                            Value *ExitCond,
301                                            BasicBlock *TBB,
302                                            BasicBlock *FBB);
303
304    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
305    /// times the backedge of the specified loop will execute if its exit
306    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
307    /// and FBB.
308    BackedgeTakenInfo
309      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
310                                                ICmpInst *ExitCond,
311                                                BasicBlock *TBB,
312                                                BasicBlock *FBB);
313
314    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
315    /// of 'icmp op load X, cst', try to see if we can compute the
316    /// backedge-taken count.
317    BackedgeTakenInfo
318      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
319                                                   Constant *RHS,
320                                                   const Loop *L,
321                                                   ICmpInst::Predicate p);
322
323    /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute
324    /// a constant number of times (the condition evolves only from constants),
325    /// try to evaluate a few iterations of the loop until we get the exit
326    /// condition gets a value of ExitWhen (true or false).  If we cannot
327    /// evaluate the backedge-taken count of the loop, return CouldNotCompute.
328    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
329                                                      Value *Cond,
330                                                      bool ExitWhen);
331
332    /// HowFarToZero - Return the number of times a backedge comparing the
333    /// specified value to zero will execute.  If not computable, return
334    /// CouldNotCompute.
335    BackedgeTakenInfo HowFarToZero(const SCEV *V, const Loop *L);
336
337    /// HowFarToNonZero - Return the number of times a backedge checking the
338    /// specified value for nonzero will execute.  If not computable, return
339    /// CouldNotCompute.
340    BackedgeTakenInfo HowFarToNonZero(const SCEV *V, const Loop *L);
341
342    /// HowManyLessThans - Return the number of times a backedge containing the
343    /// specified less-than comparison will execute.  If not computable, return
344    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
345    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
346                                       const Loop *L, bool isSigned);
347
348    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
349    /// (which may not be an immediate predecessor) which has exactly one
350    /// successor from which BB is reachable, or null if no such block is
351    /// found.
352    std::pair<BasicBlock *, BasicBlock *>
353    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
354
355    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
356    /// RHS is true whenever the given FoundCondValue value evaluates to true.
357    bool isImpliedCond(ICmpInst::Predicate Pred,
358                       const SCEV *LHS, const SCEV *RHS,
359                       Value *FoundCondValue,
360                       bool Inverse);
361
362    /// isImpliedCondOperands - Test whether the condition described by Pred,
363    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
364    /// and FoundRHS is true.
365    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
366                               const SCEV *LHS, const SCEV *RHS,
367                               const SCEV *FoundLHS, const SCEV *FoundRHS);
368
369    /// isImpliedCondOperandsHelper - Test whether the condition described by
370    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
371    /// FoundLHS, and FoundRHS is true.
372    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
373                                     const SCEV *LHS, const SCEV *RHS,
374                                     const SCEV *FoundLHS, const SCEV *FoundRHS);
375
376    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
377    /// in the header of its containing loop, we know the loop executes a
378    /// constant number of times, and the PHI node is just a recurrence
379    /// involving constants, fold it.
380    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
381                                                const Loop *L);
382
383    /// isKnownPredicateWithRanges - Test if the given expression is known to
384    /// satisfy the condition described by Pred and the known constant ranges
385    /// of LHS and RHS.
386    ///
387    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
388                                    const SCEV *LHS, const SCEV *RHS);
389
390  public:
391    static char ID; // Pass identification, replacement for typeid
392    ScalarEvolution();
393
394    LLVMContext &getContext() const { return F->getContext(); }
395
396    /// isSCEVable - Test if values of the given type are analyzable within
397    /// the SCEV framework. This primarily includes integer types, and it
398    /// can optionally include pointer types if the ScalarEvolution class
399    /// has access to target-specific information.
400    bool isSCEVable(const Type *Ty) const;
401
402    /// getTypeSizeInBits - Return the size in bits of the specified type,
403    /// for which isSCEVable must return true.
404    uint64_t getTypeSizeInBits(const Type *Ty) const;
405
406    /// getEffectiveSCEVType - Return a type with the same bitwidth as
407    /// the given type and which represents how SCEV will treat the given
408    /// type, for which isSCEVable must return true. For pointer types,
409    /// this is the pointer-sized integer type.
410    const Type *getEffectiveSCEVType(const Type *Ty) const;
411
412    /// getSCEV - Return a SCEV expression for the full generality of the
413    /// specified expression.
414    const SCEV *getSCEV(Value *V);
415
416    const SCEV *getConstant(ConstantInt *V);
417    const SCEV *getConstant(const APInt& Val);
418    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
419    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
420    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
421    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
422    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
423    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
424                           bool HasNUW = false, bool HasNSW = false);
425    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
426                           bool HasNUW = false, bool HasNSW = false) {
427      SmallVector<const SCEV *, 2> Ops;
428      Ops.push_back(LHS);
429      Ops.push_back(RHS);
430      return getAddExpr(Ops, HasNUW, HasNSW);
431    }
432    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
433                           const SCEV *Op2,
434                           bool HasNUW = false, bool HasNSW = false) {
435      SmallVector<const SCEV *, 3> Ops;
436      Ops.push_back(Op0);
437      Ops.push_back(Op1);
438      Ops.push_back(Op2);
439      return getAddExpr(Ops, HasNUW, HasNSW);
440    }
441    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
442                           bool HasNUW = false, bool HasNSW = false);
443    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
444                           bool HasNUW = false, bool HasNSW = false) {
445      SmallVector<const SCEV *, 2> Ops;
446      Ops.push_back(LHS);
447      Ops.push_back(RHS);
448      return getMulExpr(Ops, HasNUW, HasNSW);
449    }
450    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
451    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
452                              const Loop *L,
453                              bool HasNUW = false, bool HasNSW = false);
454    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
455                              const Loop *L,
456                              bool HasNUW = false, bool HasNSW = false);
457    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
458                              const Loop *L,
459                              bool HasNUW = false, bool HasNSW = false) {
460      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
461      return getAddRecExpr(NewOp, L, HasNUW, HasNSW);
462    }
463    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
464    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
465    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
466    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
467    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
468    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
469    const SCEV *getUnknown(Value *V);
470    const SCEV *getCouldNotCompute();
471
472    /// getSizeOfExpr - Return an expression for sizeof on the given type.
473    ///
474    const SCEV *getSizeOfExpr(const Type *AllocTy);
475
476    /// getAlignOfExpr - Return an expression for alignof on the given type.
477    ///
478    const SCEV *getAlignOfExpr(const Type *AllocTy);
479
480    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
481    ///
482    const SCEV *getOffsetOfExpr(const StructType *STy, unsigned FieldNo);
483
484    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
485    ///
486    const SCEV *getOffsetOfExpr(const Type *CTy, Constant *FieldNo);
487
488    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
489    ///
490    const SCEV *getNegativeSCEV(const SCEV *V);
491
492    /// getNotSCEV - Return the SCEV object corresponding to ~V.
493    ///
494    const SCEV *getNotSCEV(const SCEV *V);
495
496    /// getMinusSCEV - Return LHS-RHS.
497    ///
498    const SCEV *getMinusSCEV(const SCEV *LHS,
499                             const SCEV *RHS);
500
501    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
502    /// of the input value to the specified type.  If the type must be
503    /// extended, it is zero extended.
504    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
505
506    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
507    /// of the input value to the specified type.  If the type must be
508    /// extended, it is sign extended.
509    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
510
511    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
512    /// the input value to the specified type.  If the type must be extended,
513    /// it is zero extended.  The conversion must not be narrowing.
514    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
515
516    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
517    /// the input value to the specified type.  If the type must be extended,
518    /// it is sign extended.  The conversion must not be narrowing.
519    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
520
521    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
522    /// the input value to the specified type. If the type must be extended,
523    /// it is extended with unspecified bits. The conversion must not be
524    /// narrowing.
525    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
526
527    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
528    /// input value to the specified type.  The conversion must not be
529    /// widening.
530    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
531
532    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
533    /// the types using zero-extension, and then perform a umax operation
534    /// with them.
535    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
536                                           const SCEV *RHS);
537
538    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
539    /// the types using zero-extension, and then perform a umin operation
540    /// with them.
541    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
542                                           const SCEV *RHS);
543
544    /// getSCEVAtScope - Return a SCEV expression for the specified value
545    /// at the specified scope in the program.  The L value specifies a loop
546    /// nest to evaluate the expression at, where null is the top-level or a
547    /// specified loop is immediately inside of the loop.
548    ///
549    /// This method can be used to compute the exit value for a variable defined
550    /// in a loop by querying what the value will hold in the parent loop.
551    ///
552    /// In the case that a relevant loop exit value cannot be computed, the
553    /// original value V is returned.
554    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
555
556    /// getSCEVAtScope - This is a convenience function which does
557    /// getSCEVAtScope(getSCEV(V), L).
558    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
559
560    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
561    /// by a conditional between LHS and RHS.  This is used to help avoid max
562    /// expressions in loop trip counts, and to eliminate casts.
563    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
564                                  const SCEV *LHS, const SCEV *RHS);
565
566    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
567    /// protected by a conditional between LHS and RHS.  This is used to
568    /// to eliminate casts.
569    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
570                                     const SCEV *LHS, const SCEV *RHS);
571
572    /// getBackedgeTakenCount - If the specified loop has a predictable
573    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
574    /// object. The backedge-taken count is the number of times the loop header
575    /// will be branched to from within the loop. This is one less than the
576    /// trip count of the loop, since it doesn't count the first iteration,
577    /// when the header is branched to from outside the loop.
578    ///
579    /// Note that it is not valid to call this method on a loop without a
580    /// loop-invariant backedge-taken count (see
581    /// hasLoopInvariantBackedgeTakenCount).
582    ///
583    const SCEV *getBackedgeTakenCount(const Loop *L);
584
585    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
586    /// return the least SCEV value that is known never to be less than the
587    /// actual backedge taken count.
588    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
589
590    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
591    /// has an analyzable loop-invariant backedge-taken count.
592    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
593
594    /// forgetLoop - This method should be called by the client when it has
595    /// changed a loop in a way that may effect ScalarEvolution's ability to
596    /// compute a trip count, or if the loop is deleted.
597    void forgetLoop(const Loop *L);
598
599    /// forgetValue - This method should be called by the client when it has
600    /// changed a value in a way that may effect its value, or which may
601    /// disconnect it from a def-use chain linking it to a loop.
602    void forgetValue(Value *V);
603
604    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
605    /// is guaranteed to end in (at every loop iteration).  It is, at the same
606    /// time, the minimum number of times S is divisible by 2.  For example,
607    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
608    /// bitwidth of S.
609    uint32_t GetMinTrailingZeros(const SCEV *S);
610
611    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
612    ///
613    ConstantRange getUnsignedRange(const SCEV *S);
614
615    /// getSignedRange - Determine the signed range for a particular SCEV.
616    ///
617    ConstantRange getSignedRange(const SCEV *S);
618
619    /// isKnownNegative - Test if the given expression is known to be negative.
620    ///
621    bool isKnownNegative(const SCEV *S);
622
623    /// isKnownPositive - Test if the given expression is known to be positive.
624    ///
625    bool isKnownPositive(const SCEV *S);
626
627    /// isKnownNonNegative - Test if the given expression is known to be
628    /// non-negative.
629    ///
630    bool isKnownNonNegative(const SCEV *S);
631
632    /// isKnownNonPositive - Test if the given expression is known to be
633    /// non-positive.
634    ///
635    bool isKnownNonPositive(const SCEV *S);
636
637    /// isKnownNonZero - Test if the given expression is known to be
638    /// non-zero.
639    ///
640    bool isKnownNonZero(const SCEV *S);
641
642    /// isKnownPredicate - Test if the given expression is known to satisfy
643    /// the condition described by Pred, LHS, and RHS.
644    ///
645    bool isKnownPredicate(ICmpInst::Predicate Pred,
646                          const SCEV *LHS, const SCEV *RHS);
647
648    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
649    /// predicate Pred. Return true iff any changes were made. If the
650    /// operands are provably equal or inequal, LHS and RHS are set to
651    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
652    ///
653    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
654                              const SCEV *&LHS,
655                              const SCEV *&RHS);
656
657    virtual bool runOnFunction(Function &F);
658    virtual void releaseMemory();
659    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
660    virtual void print(raw_ostream &OS, const Module* = 0) const;
661
662  private:
663    FoldingSet<SCEV> UniqueSCEVs;
664    BumpPtrAllocator SCEVAllocator;
665
666    /// FirstUnknown - The head of a linked list of all SCEVUnknown
667    /// values that have been allocated. This is used by releaseMemory
668    /// to locate them all and call their destructors.
669    SCEVUnknown *FirstUnknown;
670  };
671}
672
673#endif
674