ScalarEvolution.h revision c050fd94c29e31414591e3a18aa20049e6b3a84f
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Support/DataTypes.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Allocator.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/DenseMap.h"
31#include <iosfwd>
32
33namespace llvm {
34  class APInt;
35  class ConstantInt;
36  class Type;
37  class ScalarEvolution;
38  class TargetData;
39  class LLVMContext;
40
41  /// SCEV - This class represents an analyzed expression in the program.  These
42  /// are opaque objects that the client is not allowed to do much with
43  /// directly.
44  ///
45  class SCEV : public FastFoldingSetNode {
46    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
47
48    SCEV(const SCEV &);            // DO NOT IMPLEMENT
49    void operator=(const SCEV &);  // DO NOT IMPLEMENT
50  protected:
51    virtual ~SCEV();
52  public:
53    explicit SCEV(const FoldingSetNodeID &ID, unsigned SCEVTy) :
54      FastFoldingSetNode(ID), SCEVType(SCEVTy) {}
55
56    unsigned getSCEVType() const { return SCEVType; }
57
58    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
59    /// the specified loop.
60    virtual bool isLoopInvariant(const Loop *L) const = 0;
61
62    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
63    /// known way in the specified loop.  This property being true implies that
64    /// the value is variant in the loop AND that we can emit an expression to
65    /// compute the value of the expression at any particular loop iteration.
66    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
67
68    /// getType - Return the LLVM type of this SCEV expression.
69    ///
70    virtual const Type *getType() const = 0;
71
72    /// isZero - Return true if the expression is a constant zero.
73    ///
74    bool isZero() const;
75
76    /// isOne - Return true if the expression is a constant one.
77    ///
78    bool isOne() const;
79
80    /// isAllOnesValue - Return true if the expression is a constant
81    /// all-ones value.
82    ///
83    bool isAllOnesValue() const;
84
85    /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
86    /// the symbolic value "Sym", construct and return a new SCEV that produces
87    /// the same value, but which uses the concrete value Conc instead of the
88    /// symbolic value.  If this SCEV does not use the symbolic value, it
89    /// returns itself.
90    virtual const SCEV *
91    replaceSymbolicValuesWithConcrete(const SCEV *Sym,
92                                      const SCEV *Conc,
93                                      ScalarEvolution &SE) const = 0;
94
95    /// dominates - Return true if elements that makes up this SCEV dominates
96    /// the specified basic block.
97    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
98
99    /// print - Print out the internal representation of this scalar to the
100    /// specified stream.  This should really only be used for debugging
101    /// purposes.
102    virtual void print(raw_ostream &OS) const = 0;
103    void print(std::ostream &OS) const;
104    void print(std::ostream *OS) const { if (OS) print(*OS); }
105
106    /// dump - This method is used for debugging.
107    ///
108    void dump() const;
109  };
110
111  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
112    S.print(OS);
113    return OS;
114  }
115
116  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
117    S.print(OS);
118    return OS;
119  }
120
121  /// SCEVCouldNotCompute - An object of this class is returned by queries that
122  /// could not be answered.  For example, if you ask for the number of
123  /// iterations of a linked-list traversal loop, you will get one of these.
124  /// None of the standard SCEV operations are valid on this class, it is just a
125  /// marker.
126  struct SCEVCouldNotCompute : public SCEV {
127    SCEVCouldNotCompute();
128
129    // None of these methods are valid for this object.
130    virtual bool isLoopInvariant(const Loop *L) const;
131    virtual const Type *getType() const;
132    virtual bool hasComputableLoopEvolution(const Loop *L) const;
133    virtual void print(raw_ostream &OS) const;
134    virtual const SCEV *
135    replaceSymbolicValuesWithConcrete(const SCEV *Sym,
136                                      const SCEV *Conc,
137                                      ScalarEvolution &SE) const;
138
139    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
140      return true;
141    }
142
143    /// Methods for support type inquiry through isa, cast, and dyn_cast:
144    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
145    static bool classof(const SCEV *S);
146  };
147
148  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
149  /// client code (intentionally) can't do much with the SCEV objects directly,
150  /// they must ask this class for services.
151  ///
152  class ScalarEvolution : public FunctionPass {
153    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
154    /// notified whenever a Value is deleted.
155    class SCEVCallbackVH : public CallbackVH {
156      ScalarEvolution *SE;
157      virtual void deleted();
158      virtual void allUsesReplacedWith(Value *New);
159    public:
160      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
161    };
162
163    friend class SCEVCallbackVH;
164    friend struct SCEVExpander;
165
166    /// F - The function we are analyzing.
167    ///
168    Function *F;
169
170    /// LI - The loop information for the function we are currently analyzing.
171    ///
172    LoopInfo *LI;
173
174    /// TD - The target data information for the target we are targetting.
175    ///
176    TargetData *TD;
177
178    /// CouldNotCompute - This SCEV is used to represent unknown trip
179    /// counts and things.
180    SCEVCouldNotCompute CouldNotCompute;
181
182    /// Scalars - This is a cache of the scalars we have analyzed so far.
183    ///
184    std::map<SCEVCallbackVH, const SCEV *> Scalars;
185
186    /// BackedgeTakenInfo - Information about the backedge-taken count
187    /// of a loop. This currently inclues an exact count and a maximum count.
188    ///
189    struct BackedgeTakenInfo {
190      /// Exact - An expression indicating the exact backedge-taken count of
191      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
192      const SCEV *Exact;
193
194      /// Max - An expression indicating the least maximum backedge-taken
195      /// count of the loop that is known, or a SCEVCouldNotCompute.
196      const SCEV *Max;
197
198      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
199        Exact(exact), Max(exact) {}
200
201      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
202        Exact(exact), Max(max) {}
203
204      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
205      /// computed information, or whether it's all SCEVCouldNotCompute
206      /// values.
207      bool hasAnyInfo() const {
208        return !isa<SCEVCouldNotCompute>(Exact) ||
209               !isa<SCEVCouldNotCompute>(Max);
210      }
211    };
212
213    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
214    /// this function as they are computed.
215    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
216
217    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
218    /// the PHI instructions that we attempt to compute constant evolutions for.
219    /// This allows us to avoid potentially expensive recomputation of these
220    /// properties.  An instruction maps to null if we are unable to compute its
221    /// exit value.
222    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
223
224    /// ValuesAtScopes - This map contains entries for all the instructions
225    /// that we attempt to compute getSCEVAtScope information for without
226    /// using SCEV techniques, which can be expensive.
227    std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
228
229    /// createSCEV - We know that there is no SCEV for the specified value.
230    /// Analyze the expression.
231    const SCEV *createSCEV(Value *V);
232
233    /// createNodeForPHI - Provide the special handling we need to analyze PHI
234    /// SCEVs.
235    const SCEV *createNodeForPHI(PHINode *PN);
236
237    /// createNodeForGEP - Provide the special handling we need to analyze GEP
238    /// SCEVs.
239    const SCEV *createNodeForGEP(User *GEP);
240
241    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
242    /// for the specified instruction and replaces any references to the
243    /// symbolic value SymName with the specified value.  This is used during
244    /// PHI resolution.
245    void ReplaceSymbolicValueWithConcrete(Instruction *I,
246                                          const SCEV *SymName,
247                                          const SCEV *NewVal);
248
249    /// getBECount - Subtract the end and start values and divide by the step,
250    /// rounding up, to get the number of times the backedge is executed. Return
251    /// CouldNotCompute if an intermediate computation overflows.
252    const SCEV *getBECount(const SCEV *Start,
253                          const SCEV *End,
254                          const SCEV *Step);
255
256    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
257    /// loop, lazily computing new values if the loop hasn't been analyzed
258    /// yet.
259    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
260
261    /// ComputeBackedgeTakenCount - Compute the number of times the specified
262    /// loop will iterate.
263    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
264
265    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
266    /// backedge of the specified loop will execute if it exits via the
267    /// specified block.
268    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
269                                                      BasicBlock *ExitingBlock);
270
271    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
272    /// backedge of the specified loop will execute if its exit condition
273    /// were a conditional branch of ExitCond, TBB, and FBB.
274    BackedgeTakenInfo
275      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
276                                            Value *ExitCond,
277                                            BasicBlock *TBB,
278                                            BasicBlock *FBB);
279
280    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
281    /// times the backedge of the specified loop will execute if its exit
282    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
283    /// and FBB.
284    BackedgeTakenInfo
285      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
286                                                ICmpInst *ExitCond,
287                                                BasicBlock *TBB,
288                                                BasicBlock *FBB);
289
290    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
291    /// of 'icmp op load X, cst', try to see if we can compute the trip count.
292    const SCEV *
293      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
294                                                   Constant *RHS,
295                                                   const Loop *L,
296                                                   ICmpInst::Predicate p);
297
298    /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
299    /// a constant number of times (the condition evolves only from constants),
300    /// try to evaluate a few iterations of the loop until we get the exit
301    /// condition gets a value of ExitWhen (true or false).  If we cannot
302    /// evaluate the trip count of the loop, return CouldNotCompute.
303    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
304                                                      Value *Cond,
305                                                      bool ExitWhen);
306
307    /// HowFarToZero - Return the number of times a backedge comparing the
308    /// specified value to zero will execute.  If not computable, return
309    /// CouldNotCompute.
310    const SCEV *HowFarToZero(const SCEV *V, const Loop *L);
311
312    /// HowFarToNonZero - Return the number of times a backedge checking the
313    /// specified value for nonzero will execute.  If not computable, return
314    /// CouldNotCompute.
315    const SCEV *HowFarToNonZero(const SCEV *V, const Loop *L);
316
317    /// HowManyLessThans - Return the number of times a backedge containing the
318    /// specified less-than comparison will execute.  If not computable, return
319    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
320    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
321                                       const Loop *L, bool isSigned);
322
323    /// getLoopPredecessor - If the given loop's header has exactly one unique
324    /// predecessor outside the loop, return it. Otherwise return null.
325    BasicBlock *getLoopPredecessor(const Loop *L);
326
327    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
328    /// (which may not be an immediate predecessor) which has exactly one
329    /// successor from which BB is reachable, or null if no such block is
330    /// found.
331    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
332
333    /// isNecessaryCond - Test whether the given CondValue value is a condition
334    /// which is at least as strict as the one described by Pred, LHS, and RHS.
335    bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
336                         const SCEV *LHS, const SCEV *RHS,
337                         bool Inverse);
338
339    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
340    /// in the header of its containing loop, we know the loop executes a
341    /// constant number of times, and the PHI node is just a recurrence
342    /// involving constants, fold it.
343    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
344                                                const Loop *L);
345
346  public:
347    static char ID; // Pass identification, replacement for typeid
348    ScalarEvolution();
349
350    LLVMContext *getContext() const { return Context; }
351
352    /// isSCEVable - Test if values of the given type are analyzable within
353    /// the SCEV framework. This primarily includes integer types, and it
354    /// can optionally include pointer types if the ScalarEvolution class
355    /// has access to target-specific information.
356    bool isSCEVable(const Type *Ty) const;
357
358    /// getTypeSizeInBits - Return the size in bits of the specified type,
359    /// for which isSCEVable must return true.
360    uint64_t getTypeSizeInBits(const Type *Ty) const;
361
362    /// getEffectiveSCEVType - Return a type with the same bitwidth as
363    /// the given type and which represents how SCEV will treat the given
364    /// type, for which isSCEVable must return true. For pointer types,
365    /// this is the pointer-sized integer type.
366    const Type *getEffectiveSCEVType(const Type *Ty) const;
367
368    /// getSCEV - Return a SCEV expression handle for the full generality of the
369    /// specified expression.
370    const SCEV *getSCEV(Value *V);
371
372    const SCEV *getConstant(ConstantInt *V);
373    const SCEV *getConstant(const APInt& Val);
374    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
375    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
376    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
377    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
378    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
379    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops);
380    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS) {
381      SmallVector<const SCEV *, 2> Ops;
382      Ops.push_back(LHS);
383      Ops.push_back(RHS);
384      return getAddExpr(Ops);
385    }
386    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
387                          const SCEV *Op2) {
388      SmallVector<const SCEV *, 3> Ops;
389      Ops.push_back(Op0);
390      Ops.push_back(Op1);
391      Ops.push_back(Op2);
392      return getAddExpr(Ops);
393    }
394    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops);
395    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS) {
396      SmallVector<const SCEV *, 2> Ops;
397      Ops.push_back(LHS);
398      Ops.push_back(RHS);
399      return getMulExpr(Ops);
400    }
401    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
402    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
403                             const Loop *L);
404    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
405                             const Loop *L);
406    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
407                             const Loop *L) {
408      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
409      return getAddRecExpr(NewOp, L);
410    }
411    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
412    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
413    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
414    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
415    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
416    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
417    const SCEV *getUnknown(Value *V);
418    const SCEV *getCouldNotCompute();
419
420    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
421    ///
422    const SCEV *getNegativeSCEV(const SCEV *V);
423
424    /// getNotSCEV - Return the SCEV object corresponding to ~V.
425    ///
426    const SCEV *getNotSCEV(const SCEV *V);
427
428    /// getMinusSCEV - Return LHS-RHS.
429    ///
430    const SCEV *getMinusSCEV(const SCEV *LHS,
431                            const SCEV *RHS);
432
433    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
434    /// of the input value to the specified type.  If the type must be
435    /// extended, it is zero extended.
436    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
437
438    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
439    /// of the input value to the specified type.  If the type must be
440    /// extended, it is sign extended.
441    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
442
443    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
444    /// the input value to the specified type.  If the type must be extended,
445    /// it is zero extended.  The conversion must not be narrowing.
446    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
447
448    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
449    /// the input value to the specified type.  If the type must be extended,
450    /// it is sign extended.  The conversion must not be narrowing.
451    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
452
453    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
454    /// the input value to the specified type. If the type must be extended,
455    /// it is extended with unspecified bits. The conversion must not be
456    /// narrowing.
457    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
458
459    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
460    /// input value to the specified type.  The conversion must not be
461    /// widening.
462    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
463
464    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
465    /// specified signed integer value and return a SCEV for the constant.
466    const SCEV *getIntegerSCEV(int Val, const Type *Ty);
467
468    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
469    /// the types using zero-extension, and then perform a umax operation
470    /// with them.
471    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
472                                          const SCEV *RHS);
473
474    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
475    /// the types using zero-extension, and then perform a umin operation
476    /// with them.
477    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
478                                           const SCEV *RHS);
479
480    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
481    /// at the specified scope in the program.  The L value specifies a loop
482    /// nest to evaluate the expression at, where null is the top-level or a
483    /// specified loop is immediately inside of the loop.
484    ///
485    /// This method can be used to compute the exit value for a variable defined
486    /// in a loop by querying what the value will hold in the parent loop.
487    ///
488    /// In the case that a relevant loop exit value cannot be computed, the
489    /// original value V is returned.
490    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
491
492    /// getSCEVAtScope - This is a convenience function which does
493    /// getSCEVAtScope(getSCEV(V), L).
494    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
495
496    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
497    /// a conditional between LHS and RHS.  This is used to help avoid max
498    /// expressions in loop trip counts.
499    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
500                             const SCEV *LHS, const SCEV *RHS);
501
502    /// getBackedgeTakenCount - If the specified loop has a predictable
503    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
504    /// object. The backedge-taken count is the number of times the loop header
505    /// will be branched to from within the loop. This is one less than the
506    /// trip count of the loop, since it doesn't count the first iteration,
507    /// when the header is branched to from outside the loop.
508    ///
509    /// Note that it is not valid to call this method on a loop without a
510    /// loop-invariant backedge-taken count (see
511    /// hasLoopInvariantBackedgeTakenCount).
512    ///
513    const SCEV *getBackedgeTakenCount(const Loop *L);
514
515    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
516    /// return the least SCEV value that is known never to be less than the
517    /// actual backedge taken count.
518    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
519
520    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
521    /// has an analyzable loop-invariant backedge-taken count.
522    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
523
524    /// forgetLoopBackedgeTakenCount - This method should be called by the
525    /// client when it has changed a loop in a way that may effect
526    /// ScalarEvolution's ability to compute a trip count, or if the loop
527    /// is deleted.
528    void forgetLoopBackedgeTakenCount(const Loop *L);
529
530    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
531    /// is guaranteed to end in (at every loop iteration).  It is, at the same
532    /// time, the minimum number of times S is divisible by 2.  For example,
533    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
534    /// bitwidth of S.
535    uint32_t GetMinTrailingZeros(const SCEV *S);
536
537    /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
538    /// guaranteed to begin with (at every loop iteration).
539    uint32_t GetMinLeadingZeros(const SCEV *S);
540
541    /// GetMinSignBits - Determine the minimum number of sign bits that S is
542    /// guaranteed to begin with.
543    uint32_t GetMinSignBits(const SCEV *S);
544
545    virtual bool runOnFunction(Function &F);
546    virtual void releaseMemory();
547    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
548    void print(raw_ostream &OS, const Module* = 0) const;
549    virtual void print(std::ostream &OS, const Module* = 0) const;
550    void print(std::ostream *OS, const Module* M = 0) const {
551      if (OS) print(*OS, M);
552    }
553
554  private:
555    FoldingSet<SCEV> UniqueSCEVs;
556    BumpPtrAllocator SCEVAllocator;
557  };
558}
559
560#endif
561