ScalarEvolution.h revision e1beb8f59d076536b0022496d663344a792a8cab
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// catagorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include <set>
26
27namespace llvm {
28  class Instruction;
29  class Type;
30  class ConstantRange;
31  class Loop;
32  class LoopInfo;
33  class SCEVHandle;
34  class ScalarEvolutionRewriter;
35
36  /// SCEV - This class represent an analyzed expression in the program.  These
37  /// are reference counted opaque objects that the client is not allowed to
38  /// do much with directly.
39  ///
40  class SCEV {
41    const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
42    unsigned RefCount;
43
44    friend class SCEVHandle;
45    void addRef() { ++RefCount; }
46    void dropRef() {
47      if (--RefCount == 0)
48        delete this;
49    }
50
51    SCEV(const SCEV &);            // DO NOT IMPLEMENT
52    void operator=(const SCEV &);  // DO NOT IMPLEMENT
53  protected:
54    virtual ~SCEV();
55  public:
56    SCEV(unsigned SCEVTy) : SCEVType(SCEVTy), RefCount(0) {}
57
58    unsigned getSCEVType() const { return SCEVType; }
59
60    /// getValueRange - Return the tightest constant bounds that this value is
61    /// known to have.  This method is only valid on integer SCEV objects.
62    virtual ConstantRange getValueRange() const;
63
64    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
65    /// the specified loop.
66    virtual bool isLoopInvariant(const Loop *L) const = 0;
67
68    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
69    /// known way in the specified loop.  This property being true implies that
70    /// the value is variant in the loop AND that we can emit an expression to
71    /// compute the value of the expression at any particular loop iteration.
72    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
73
74    /// getType - Return the LLVM type of this SCEV expression.
75    ///
76    virtual const Type *getType() const = 0;
77
78    /// expandCodeFor - Given a rewriter object, expand this SCEV into a closed
79    /// form expression and return a Value corresponding to the expression in
80    /// question.
81    virtual Value *expandCodeFor(ScalarEvolutionRewriter &SER,
82                                 Instruction *InsertPt) = 0;
83
84
85    /// print - Print out the internal representation of this scalar to the
86    /// specified stream.  This should really only be used for debugging
87    /// purposes.
88    virtual void print(std::ostream &OS) const = 0;
89
90    /// dump - This method is used for debugging.
91    ///
92    void dump() const;
93  };
94
95  inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
96    S.print(OS);
97    return OS;
98  }
99
100  /// SCEVCouldNotCompute - An object of this class is returned by queries that
101  /// could not be answered.  For example, if you ask for the number of
102  /// iterations of a linked-list traversal loop, you will get one of these.
103  /// None of the standard SCEV operations are valid on this class, it is just a
104  /// marker.
105  struct SCEVCouldNotCompute : public SCEV {
106    SCEVCouldNotCompute();
107
108    // None of these methods are valid for this object.
109    virtual bool isLoopInvariant(const Loop *L) const;
110    virtual const Type *getType() const;
111    virtual bool hasComputableLoopEvolution(const Loop *L) const;
112    virtual Value *expandCodeFor(ScalarEvolutionRewriter &, Instruction *);
113    virtual void print(std::ostream &OS) const;
114
115
116    /// Methods for support type inquiry through isa, cast, and dyn_cast:
117    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
118    static bool classof(const SCEV *S);
119  };
120
121  /// SCEVHandle - This class is used to maintain the SCEV object's refcounts,
122  /// freeing the objects when the last reference is dropped.
123  class SCEVHandle {
124    SCEV *S;
125    SCEVHandle();  // DO NOT IMPLEMENT
126  public:
127    SCEVHandle(SCEV *s) : S(s) {
128      assert(S && "Cannot create a handle to a null SCEV!");
129      S->addRef();
130    }
131    SCEVHandle(const SCEVHandle &RHS) : S(RHS.S) {
132      S->addRef();
133    }
134    ~SCEVHandle() { S->dropRef(); }
135
136    operator SCEV*() const { return S; }
137
138    SCEV &operator*() const { return *S; }
139    SCEV *operator->() const { return S; }
140
141    bool operator==(SCEV *RHS) const { return S == RHS; }
142    bool operator!=(SCEV *RHS) const { return S != RHS; }
143
144    const SCEVHandle &operator=(SCEV *RHS) {
145      if (S != RHS) {
146        S->dropRef();
147        S = RHS;
148        S->addRef();
149      }
150      return *this;
151    }
152
153    const SCEVHandle &operator=(const SCEVHandle &RHS) {
154      if (S != RHS.S) {
155        S->dropRef();
156        S = RHS.S;
157        S->addRef();
158      }
159      return *this;
160    }
161  };
162
163  template<typename From> struct simplify_type;
164  template<> struct simplify_type<const SCEVHandle> {
165    typedef SCEV* SimpleType;
166    static SimpleType getSimplifiedValue(const SCEVHandle &Node) {
167      return Node;
168    }
169  };
170  template<> struct simplify_type<SCEVHandle>
171    : public simplify_type<const SCEVHandle> {};
172
173  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
174  /// client code (intentionally) can't do much with the SCEV objects directly,
175  /// they must ask this class for services.
176  ///
177  class ScalarEvolution : public FunctionPass {
178    void *Impl;    // ScalarEvolution uses the pimpl pattern
179  public:
180    ScalarEvolution() : Impl(0) {}
181
182    /// getSCEV - Return a SCEV expression handle for the full generality of the
183    /// specified expression.
184    SCEVHandle getSCEV(Value *V) const;
185
186    /// getSCEVAtScope - Return a SCEV expression handle for the specified value
187    /// at the specified scope in the program.  The L value specifies a loop
188    /// nest to evaluate the expression at, where null is the top-level or a
189    /// specified loop is immediately inside of the loop.
190    ///
191    /// This method can be used to compute the exit value for a variable defined
192    /// in a loop by querying what the value will hold in the parent loop.
193    ///
194    /// If this value is not computable at this scope, a SCEVCouldNotCompute
195    /// object is returned.
196    SCEVHandle getSCEVAtScope(Value *V, const Loop *L) const;
197
198    /// getIterationCount - If the specified loop has a predictable iteration
199    /// count, return it, otherwise return a SCEVCouldNotCompute object.
200    SCEVHandle getIterationCount(const Loop *L) const;
201
202    /// hasLoopInvariantIterationCount - Return true if the specified loop has
203    /// an analyzable loop-invariant iteration count.
204    bool hasLoopInvariantIterationCount(const Loop *L) const;
205
206    /// deleteInstructionFromRecords - This method should be called by the
207    /// client before it removes an instruction from the program, to make sure
208    /// that no dangling references are left around.
209    void deleteInstructionFromRecords(Instruction *I) const;
210
211    /// shouldSubstituteIndVar - Return true if we should perform induction
212    /// variable substitution for this variable.  This is a hack because we
213    /// don't have a strength reduction pass yet.  When we do we will promote
214    /// all vars, because we can strength reduce them later as desired.
215    bool shouldSubstituteIndVar(const SCEV *S) const;
216
217    virtual bool runOnFunction(Function &F);
218    virtual void releaseMemory();
219    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
220    virtual void print(std::ostream &OS) const;
221  };
222
223  /// ScalarEvolutionRewriter - This class uses information about analyze
224  /// scalars to rewrite expressions in canonical form.  This can be used for
225  /// induction variable substitution, strength reduction, or loop exit value
226  /// replacement.
227  ///
228  /// Clients should create an instance of this class when rewriting is needed,
229  /// and destroying it when finished to allow the release of the associated
230  /// memory.
231  class ScalarEvolutionRewriter {
232    ScalarEvolution &SE;
233    LoopInfo &LI;
234    std::map<SCEVHandle, Value*> InsertedExpressions;
235    std::set<Instruction*> InsertedInstructions;
236  public:
237    ScalarEvolutionRewriter(ScalarEvolution &se, LoopInfo &li)
238      : SE(se), LI(li) {}
239
240    /// isInsertedInstruction - Return true if the specified instruction was
241    /// inserted by the code rewriter.  If so, the client should not modify the
242    /// instruction.
243    bool isInsertedInstruction(Instruction *I) const {
244      return InsertedInstructions.count(I);
245    }
246
247    /// GetOrInsertCanonicalInductionVariable - This method returns the
248    /// canonical induction variable of the specified type for the specified
249    /// loop (inserts one if there is none).  A canonical induction variable
250    /// starts at zero and steps by one on each iteration.
251    Value *GetOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty);
252
253
254    /// addInsertedValue - Remember the specified instruction as being the
255    /// canonical form for the specified SCEV.
256    void addInsertedValue(Instruction *I, SCEV *S) {
257      InsertedExpressions[S] = I;
258      InsertedInstructions.insert(I);
259    }
260
261    /// ExpandCodeFor - Insert code to directly compute the specified SCEV
262    /// expression into the program.  The inserted code is inserted into the
263    /// specified block.
264    ///
265    /// If a particular value sign is required, a type may be specified for the
266    /// result.
267    Value *ExpandCodeFor(SCEVHandle SH, Instruction *InsertPt,
268                         const Type *Ty = 0);
269  };
270}
271
272#endif
273