ScalarEvolution.h revision e97728ecf8a0ee69562cc0e7880cfaa65200c624
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/Pass.h"
25#include "llvm/Instructions.h"
26#include "llvm/Function.h"
27#include "llvm/Operator.h"
28#include "llvm/Support/DataTypes.h"
29#include "llvm/Support/ValueHandle.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/ConstantRange.h"
32#include "llvm/ADT/FoldingSet.h"
33#include "llvm/ADT/DenseMap.h"
34#include <map>
35
36namespace llvm {
37  class APInt;
38  class Constant;
39  class ConstantInt;
40  class DominatorTree;
41  class Type;
42  class ScalarEvolution;
43  class TargetData;
44  class LLVMContext;
45  class Loop;
46  class LoopInfo;
47  class Operator;
48  class SCEVUnknown;
49  class SCEV;
50  template<> struct FoldingSetTrait<SCEV>;
51
52  /// SCEV - This class represents an analyzed expression in the program.  These
53  /// are opaque objects that the client is not allowed to do much with
54  /// directly.
55  ///
56  class SCEV : public FoldingSetNode {
57    friend struct FoldingSetTrait<SCEV>;
58
59    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
60    /// The ScalarEvolution's BumpPtrAllocator holds the data.
61    FoldingSetNodeIDRef FastID;
62
63    // The SCEV baseclass this node corresponds to
64    const unsigned short SCEVType;
65
66  protected:
67    /// SubclassData - This field is initialized to zero and may be used in
68    /// subclasses to store miscellaneous information.
69    unsigned short SubclassData;
70
71  private:
72    SCEV(const SCEV &);            // DO NOT IMPLEMENT
73    void operator=(const SCEV &);  // DO NOT IMPLEMENT
74
75  public:
76    /// NoWrapFlags are bitfield indices into SubclassData.
77    ///
78    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
79    /// no-signed-wrap <NSW> properties, which are derived from the IR
80    /// operator. NSW is a misnomer that we use to mean no signed overflow or
81    /// underflow.
82    ///
83    /// AddRec expression may have a no-self-wraparound <NW> property if the
84    /// result can never reach the start value. This property is independent of
85    /// the actual start value and step direction. Self-wraparound is defined
86    /// purely in terms of the recurrence's loop, step size, and
87    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
88    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
89    ///
90    /// Note that NUW and NSW are also valid properties of a recurrence, and
91    /// either implies NW. For convenience, NW will be set for a recurrence
92    /// whenever either NUW or NSW are set.
93    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
94                       FlagNW      = (1 << 0),   // No self-wrap.
95                       FlagNUW     = (1 << 1),   // No unsigned wrap.
96                       FlagNSW     = (1 << 2),   // No signed wrap.
97                       NoWrapMask  = (1 << 3) -1 };
98
99    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
100      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
101
102    unsigned getSCEVType() const { return SCEVType; }
103
104    /// getType - Return the LLVM type of this SCEV expression.
105    ///
106    Type *getType() const;
107
108    /// isZero - Return true if the expression is a constant zero.
109    ///
110    bool isZero() const;
111
112    /// isOne - Return true if the expression is a constant one.
113    ///
114    bool isOne() const;
115
116    /// isAllOnesValue - Return true if the expression is a constant
117    /// all-ones value.
118    ///
119    bool isAllOnesValue() const;
120
121    /// print - Print out the internal representation of this scalar to the
122    /// specified stream.  This should really only be used for debugging
123    /// purposes.
124    void print(raw_ostream &OS) const;
125
126    /// dump - This method is used for debugging.
127    ///
128    void dump() const;
129  };
130
131  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
132  // temporary FoldingSetNodeID values.
133  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
134    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
135      ID = X.FastID;
136    }
137    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
138                       FoldingSetNodeID &TempID) {
139      return ID == X.FastID;
140    }
141    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
142      return X.FastID.ComputeHash();
143    }
144  };
145
146  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
147    S.print(OS);
148    return OS;
149  }
150
151  /// SCEVCouldNotCompute - An object of this class is returned by queries that
152  /// could not be answered.  For example, if you ask for the number of
153  /// iterations of a linked-list traversal loop, you will get one of these.
154  /// None of the standard SCEV operations are valid on this class, it is just a
155  /// marker.
156  struct SCEVCouldNotCompute : public SCEV {
157    SCEVCouldNotCompute();
158
159    /// Methods for support type inquiry through isa, cast, and dyn_cast:
160    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
161    static bool classof(const SCEV *S);
162  };
163
164  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
165  /// client code (intentionally) can't do much with the SCEV objects directly,
166  /// they must ask this class for services.
167  ///
168  class ScalarEvolution : public FunctionPass {
169  public:
170    /// LoopDisposition - An enum describing the relationship between a
171    /// SCEV and a loop.
172    enum LoopDisposition {
173      LoopVariant,    ///< The SCEV is loop-variant (unknown).
174      LoopInvariant,  ///< The SCEV is loop-invariant.
175      LoopComputable  ///< The SCEV varies predictably with the loop.
176    };
177
178    /// BlockDisposition - An enum describing the relationship between a
179    /// SCEV and a basic block.
180    enum BlockDisposition {
181      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
182      DominatesBlock,        ///< The SCEV dominates the block.
183      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
184    };
185
186    /// Convenient NoWrapFlags manipulation that hides enum casts and is
187    /// visible in the ScalarEvolution name space.
188    static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
189      return (SCEV::NoWrapFlags)(Flags & Mask);
190    }
191    static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
192                                      SCEV::NoWrapFlags OnFlags) {
193      return (SCEV::NoWrapFlags)(Flags | OnFlags);
194    }
195    static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
196                                        SCEV::NoWrapFlags OffFlags) {
197      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
198    }
199
200  private:
201    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
202    /// notified whenever a Value is deleted.
203    class SCEVCallbackVH : public CallbackVH {
204      ScalarEvolution *SE;
205      virtual void deleted();
206      virtual void allUsesReplacedWith(Value *New);
207    public:
208      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
209    };
210
211    friend class SCEVCallbackVH;
212    friend class SCEVExpander;
213    friend class SCEVUnknown;
214
215    /// F - The function we are analyzing.
216    ///
217    Function *F;
218
219    /// LI - The loop information for the function we are currently analyzing.
220    ///
221    LoopInfo *LI;
222
223    /// TD - The target data information for the target we are targeting.
224    ///
225    TargetData *TD;
226
227    /// DT - The dominator tree.
228    ///
229    DominatorTree *DT;
230
231    /// CouldNotCompute - This SCEV is used to represent unknown trip
232    /// counts and things.
233    SCEVCouldNotCompute CouldNotCompute;
234
235    /// ValueExprMapType - The typedef for ValueExprMap.
236    ///
237    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
238      ValueExprMapType;
239
240    /// ValueExprMap - This is a cache of the values we have analyzed so far.
241    ///
242    ValueExprMapType ValueExprMap;
243
244    /// ExitLimit - Information about the number of loop iterations for
245    /// which a loop exit's branch condition evaluates to the not-taken path.
246    /// This is a temporary pair of exact and max expressions that are
247    /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
248    struct ExitLimit {
249      const SCEV *Exact;
250      const SCEV *Max;
251
252      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
253
254      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
255
256      /// hasAnyInfo - Test whether this ExitLimit contains any computed
257      /// information, or whether it's all SCEVCouldNotCompute values.
258      bool hasAnyInfo() const {
259        return !isa<SCEVCouldNotCompute>(Exact) ||
260          !isa<SCEVCouldNotCompute>(Max);
261      }
262    };
263
264    /// ExitNotTakenInfo - Information about the number of times a particular
265    /// loop exit may be reached before exiting the loop.
266    struct ExitNotTakenInfo {
267      AssertingVH<BasicBlock> ExitingBlock;
268      const SCEV *ExactNotTaken;
269      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
270
271      ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
272
273      /// isCompleteList - Return true if all loop exits are computable.
274      bool isCompleteList() const {
275        return NextExit.getInt() == 0;
276      }
277
278      void setIncomplete() { NextExit.setInt(1); }
279
280      /// getNextExit - Return a pointer to the next exit's not-taken info.
281      ExitNotTakenInfo *getNextExit() const {
282        return NextExit.getPointer();
283      }
284
285      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
286    };
287
288    /// BackedgeTakenInfo - Information about the backedge-taken count
289    /// of a loop. This currently includes an exact count and a maximum count.
290    ///
291    class BackedgeTakenInfo {
292      /// ExitNotTaken - A list of computable exits and their not-taken counts.
293      /// Loops almost never have more than one computable exit.
294      ExitNotTakenInfo ExitNotTaken;
295
296      /// Max - An expression indicating the least maximum backedge-taken
297      /// count of the loop that is known, or a SCEVCouldNotCompute.
298      const SCEV *Max;
299
300    public:
301      BackedgeTakenInfo() : Max(0) {}
302
303      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
304      BackedgeTakenInfo(
305        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
306        bool Complete, const SCEV *MaxCount);
307
308      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
309      /// computed information, or whether it's all SCEVCouldNotCompute
310      /// values.
311      bool hasAnyInfo() const {
312        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
313      }
314
315      /// getExact - Return an expression indicating the exact backedge-taken
316      /// count of the loop if it is known, or SCEVCouldNotCompute
317      /// otherwise. This is the number of times the loop header can be
318      /// guaranteed to execute, minus one.
319      const SCEV *getExact(ScalarEvolution *SE) const;
320
321      /// getExact - Return the number of times this loop exit may fall through
322      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
323      /// to exit via this block before this number of iterations, but may exit
324      /// via another block.
325      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
326
327      /// getMax - Get the max backedge taken count for the loop.
328      const SCEV *getMax(ScalarEvolution *SE) const;
329
330      /// clear - Invalidate this result and free associated memory.
331      void clear();
332    };
333
334    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
335    /// this function as they are computed.
336    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
337
338    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
339    /// the PHI instructions that we attempt to compute constant evolutions for.
340    /// This allows us to avoid potentially expensive recomputation of these
341    /// properties.  An instruction maps to null if we are unable to compute its
342    /// exit value.
343    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
344
345    /// ValuesAtScopes - This map contains entries for all the expressions
346    /// that we attempt to compute getSCEVAtScope information for, which can
347    /// be expensive in extreme cases.
348    DenseMap<const SCEV *,
349             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
350
351    /// LoopDispositions - Memoized computeLoopDisposition results.
352    DenseMap<const SCEV *,
353             std::map<const Loop *, LoopDisposition> > LoopDispositions;
354
355    /// computeLoopDisposition - Compute a LoopDisposition value.
356    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
357
358    /// BlockDispositions - Memoized computeBlockDisposition results.
359    DenseMap<const SCEV *,
360             std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
361
362    /// computeBlockDisposition - Compute a BlockDisposition value.
363    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
364
365    /// UnsignedRanges - Memoized results from getUnsignedRange
366    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
367
368    /// SignedRanges - Memoized results from getSignedRange
369    DenseMap<const SCEV *, ConstantRange> SignedRanges;
370
371    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
372    const ConstantRange &setUnsignedRange(const SCEV *S,
373                                          const ConstantRange &CR) {
374      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
375        UnsignedRanges.insert(std::make_pair(S, CR));
376      if (!Pair.second)
377        Pair.first->second = CR;
378      return Pair.first->second;
379    }
380
381    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
382    const ConstantRange &setSignedRange(const SCEV *S,
383                                        const ConstantRange &CR) {
384      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
385        SignedRanges.insert(std::make_pair(S, CR));
386      if (!Pair.second)
387        Pair.first->second = CR;
388      return Pair.first->second;
389    }
390
391    /// createSCEV - We know that there is no SCEV for the specified value.
392    /// Analyze the expression.
393    const SCEV *createSCEV(Value *V);
394
395    /// createNodeForPHI - Provide the special handling we need to analyze PHI
396    /// SCEVs.
397    const SCEV *createNodeForPHI(PHINode *PN);
398
399    /// createNodeForGEP - Provide the special handling we need to analyze GEP
400    /// SCEVs.
401    const SCEV *createNodeForGEP(GEPOperator *GEP);
402
403    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
404    /// at most once for each SCEV+Loop pair.
405    ///
406    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
407
408    /// ForgetSymbolicValue - This looks up computed SCEV values for all
409    /// instructions that depend on the given instruction and removes them from
410    /// the ValueExprMap map if they reference SymName. This is used during PHI
411    /// resolution.
412    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
413
414    /// getBECount - Subtract the end and start values and divide by the step,
415    /// rounding up, to get the number of times the backedge is executed. Return
416    /// CouldNotCompute if an intermediate computation overflows.
417    const SCEV *getBECount(const SCEV *Start,
418                           const SCEV *End,
419                           const SCEV *Step,
420                           bool NoWrap);
421
422    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
423    /// loop, lazily computing new values if the loop hasn't been analyzed
424    /// yet.
425    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
426
427    /// ComputeBackedgeTakenCount - Compute the number of times the specified
428    /// loop will iterate.
429    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
430
431    /// ComputeExitLimit - Compute the number of times the backedge of the
432    /// specified loop will execute if it exits via the specified block.
433    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
434
435    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
436    /// the specified loop will execute if its exit condition were a conditional
437    /// branch of ExitCond, TBB, and FBB.
438    ExitLimit ComputeExitLimitFromCond(const Loop *L,
439                                       Value *ExitCond,
440                                       BasicBlock *TBB,
441                                       BasicBlock *FBB);
442
443    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
444    /// the specified loop will execute if its exit condition were a conditional
445    /// branch of the ICmpInst ExitCond, TBB, and FBB.
446    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
447                                       ICmpInst *ExitCond,
448                                       BasicBlock *TBB,
449                                       BasicBlock *FBB);
450
451    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
452    /// of 'icmp op load X, cst', try to see if we can compute the
453    /// backedge-taken count.
454    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
455                                                  Constant *RHS,
456                                                  const Loop *L,
457                                                  ICmpInst::Predicate p);
458
459    /// ComputeExitCountExhaustively - If the loop is known to execute a
460    /// constant number of times (the condition evolves only from constants),
461    /// try to evaluate a few iterations of the loop until we get the exit
462    /// condition gets a value of ExitWhen (true or false).  If we cannot
463    /// evaluate the exit count of the loop, return CouldNotCompute.
464    const SCEV *ComputeExitCountExhaustively(const Loop *L,
465                                             Value *Cond,
466                                             bool ExitWhen);
467
468    /// HowFarToZero - Return the number of times an exit condition comparing
469    /// the specified value to zero will execute.  If not computable, return
470    /// CouldNotCompute.
471    ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
472
473    /// HowFarToNonZero - Return the number of times an exit condition checking
474    /// the specified value for nonzero will execute.  If not computable, return
475    /// CouldNotCompute.
476    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
477
478    /// HowManyLessThans - Return the number of times an exit condition
479    /// containing the specified less-than comparison will execute.  If not
480    /// computable, return CouldNotCompute. isSigned specifies whether the
481    /// less-than is signed.
482    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
483                               const Loop *L, bool isSigned);
484
485    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
486    /// (which may not be an immediate predecessor) which has exactly one
487    /// successor from which BB is reachable, or null if no such block is
488    /// found.
489    std::pair<BasicBlock *, BasicBlock *>
490    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
491
492    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
493    /// RHS is true whenever the given FoundCondValue value evaluates to true.
494    bool isImpliedCond(ICmpInst::Predicate Pred,
495                       const SCEV *LHS, const SCEV *RHS,
496                       Value *FoundCondValue,
497                       bool Inverse);
498
499    /// isImpliedCondOperands - Test whether the condition described by Pred,
500    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
501    /// and FoundRHS is true.
502    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
503                               const SCEV *LHS, const SCEV *RHS,
504                               const SCEV *FoundLHS, const SCEV *FoundRHS);
505
506    /// isImpliedCondOperandsHelper - Test whether the condition described by
507    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
508    /// FoundLHS, and FoundRHS is true.
509    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
510                                     const SCEV *LHS, const SCEV *RHS,
511                                     const SCEV *FoundLHS,
512                                     const SCEV *FoundRHS);
513
514    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
515    /// in the header of its containing loop, we know the loop executes a
516    /// constant number of times, and the PHI node is just a recurrence
517    /// involving constants, fold it.
518    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
519                                                const Loop *L);
520
521    /// isKnownPredicateWithRanges - Test if the given expression is known to
522    /// satisfy the condition described by Pred and the known constant ranges
523    /// of LHS and RHS.
524    ///
525    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
526                                    const SCEV *LHS, const SCEV *RHS);
527
528    /// forgetMemoizedResults - Drop memoized information computed for S.
529    void forgetMemoizedResults(const SCEV *S);
530
531  public:
532    static char ID; // Pass identification, replacement for typeid
533    ScalarEvolution();
534
535    LLVMContext &getContext() const { return F->getContext(); }
536
537    /// isSCEVable - Test if values of the given type are analyzable within
538    /// the SCEV framework. This primarily includes integer types, and it
539    /// can optionally include pointer types if the ScalarEvolution class
540    /// has access to target-specific information.
541    bool isSCEVable(Type *Ty) const;
542
543    /// getTypeSizeInBits - Return the size in bits of the specified type,
544    /// for which isSCEVable must return true.
545    uint64_t getTypeSizeInBits(Type *Ty) const;
546
547    /// getEffectiveSCEVType - Return a type with the same bitwidth as
548    /// the given type and which represents how SCEV will treat the given
549    /// type, for which isSCEVable must return true. For pointer types,
550    /// this is the pointer-sized integer type.
551    Type *getEffectiveSCEVType(Type *Ty) const;
552
553    /// getSCEV - Return a SCEV expression for the full generality of the
554    /// specified expression.
555    const SCEV *getSCEV(Value *V);
556
557    const SCEV *getConstant(ConstantInt *V);
558    const SCEV *getConstant(const APInt& Val);
559    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
560    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
561    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
562    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
563    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
564    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
565                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
566    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
567                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
568      SmallVector<const SCEV *, 2> Ops;
569      Ops.push_back(LHS);
570      Ops.push_back(RHS);
571      return getAddExpr(Ops, Flags);
572    }
573    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
574                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
575      SmallVector<const SCEV *, 3> Ops;
576      Ops.push_back(Op0);
577      Ops.push_back(Op1);
578      Ops.push_back(Op2);
579      return getAddExpr(Ops, Flags);
580    }
581    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
582                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
583    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
584                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
585    {
586      SmallVector<const SCEV *, 2> Ops;
587      Ops.push_back(LHS);
588      Ops.push_back(RHS);
589      return getMulExpr(Ops, Flags);
590    }
591    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
592                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
593      SmallVector<const SCEV *, 3> Ops;
594      Ops.push_back(Op0);
595      Ops.push_back(Op1);
596      Ops.push_back(Op2);
597      return getMulExpr(Ops, Flags);
598    }
599    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
600    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
601                              const Loop *L, SCEV::NoWrapFlags Flags);
602    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
603                              const Loop *L, SCEV::NoWrapFlags Flags);
604    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
605                              const Loop *L, SCEV::NoWrapFlags Flags) {
606      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
607      return getAddRecExpr(NewOp, L, Flags);
608    }
609    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
610    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
611    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
612    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
613    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
614    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
615    const SCEV *getUnknown(Value *V);
616    const SCEV *getCouldNotCompute();
617
618    /// getSizeOfExpr - Return an expression for sizeof on the given type.
619    ///
620    const SCEV *getSizeOfExpr(Type *AllocTy);
621
622    /// getAlignOfExpr - Return an expression for alignof on the given type.
623    ///
624    const SCEV *getAlignOfExpr(Type *AllocTy);
625
626    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
627    ///
628    const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
629
630    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
631    ///
632    const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
633
634    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
635    ///
636    const SCEV *getNegativeSCEV(const SCEV *V);
637
638    /// getNotSCEV - Return the SCEV object corresponding to ~V.
639    ///
640    const SCEV *getNotSCEV(const SCEV *V);
641
642    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
643    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
644                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
645
646    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
647    /// of the input value to the specified type.  If the type must be
648    /// extended, it is zero extended.
649    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
650
651    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
652    /// of the input value to the specified type.  If the type must be
653    /// extended, it is sign extended.
654    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
655
656    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
657    /// the input value to the specified type.  If the type must be extended,
658    /// it is zero extended.  The conversion must not be narrowing.
659    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
660
661    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
662    /// the input value to the specified type.  If the type must be extended,
663    /// it is sign extended.  The conversion must not be narrowing.
664    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
665
666    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
667    /// the input value to the specified type. If the type must be extended,
668    /// it is extended with unspecified bits. The conversion must not be
669    /// narrowing.
670    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
671
672    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
673    /// input value to the specified type.  The conversion must not be
674    /// widening.
675    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
676
677    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
678    /// the types using zero-extension, and then perform a umax operation
679    /// with them.
680    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
681                                           const SCEV *RHS);
682
683    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
684    /// the types using zero-extension, and then perform a umin operation
685    /// with them.
686    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
687                                           const SCEV *RHS);
688
689    /// getPointerBase - Transitively follow the chain of pointer-type operands
690    /// until reaching a SCEV that does not have a single pointer operand. This
691    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
692    /// but corner cases do exist.
693    const SCEV *getPointerBase(const SCEV *V);
694
695    /// getSCEVAtScope - Return a SCEV expression for the specified value
696    /// at the specified scope in the program.  The L value specifies a loop
697    /// nest to evaluate the expression at, where null is the top-level or a
698    /// specified loop is immediately inside of the loop.
699    ///
700    /// This method can be used to compute the exit value for a variable defined
701    /// in a loop by querying what the value will hold in the parent loop.
702    ///
703    /// In the case that a relevant loop exit value cannot be computed, the
704    /// original value V is returned.
705    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
706
707    /// getSCEVAtScope - This is a convenience function which does
708    /// getSCEVAtScope(getSCEV(V), L).
709    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
710
711    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
712    /// by a conditional between LHS and RHS.  This is used to help avoid max
713    /// expressions in loop trip counts, and to eliminate casts.
714    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
715                                  const SCEV *LHS, const SCEV *RHS);
716
717    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
718    /// protected by a conditional between LHS and RHS.  This is used to
719    /// to eliminate casts.
720    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
721                                     const SCEV *LHS, const SCEV *RHS);
722
723    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
724    /// as a normal unsigned value, if possible. Returns 0 if the trip count is
725    /// unknown or not constant.
726    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitBlock);
727
728    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
729    /// the trip count of this loop as a normal unsigned value, if
730    /// possible. This means that the actual trip count is always a multiple of
731    /// the returned value (don't forget the trip count could very well be zero
732    /// as well!).
733    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitBlock);
734
735    // getExitCount - Get the expression for the number of loop iterations for
736    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
737    // return SCEVCouldNotCompute.
738    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
739
740    /// getBackedgeTakenCount - If the specified loop has a predictable
741    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
742    /// object. The backedge-taken count is the number of times the loop header
743    /// will be branched to from within the loop. This is one less than the
744    /// trip count of the loop, since it doesn't count the first iteration,
745    /// when the header is branched to from outside the loop.
746    ///
747    /// Note that it is not valid to call this method on a loop without a
748    /// loop-invariant backedge-taken count (see
749    /// hasLoopInvariantBackedgeTakenCount).
750    ///
751    const SCEV *getBackedgeTakenCount(const Loop *L);
752
753    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
754    /// return the least SCEV value that is known never to be less than the
755    /// actual backedge taken count.
756    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
757
758    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
759    /// has an analyzable loop-invariant backedge-taken count.
760    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
761
762    /// forgetLoop - This method should be called by the client when it has
763    /// changed a loop in a way that may effect ScalarEvolution's ability to
764    /// compute a trip count, or if the loop is deleted.
765    void forgetLoop(const Loop *L);
766
767    /// forgetValue - This method should be called by the client when it has
768    /// changed a value in a way that may effect its value, or which may
769    /// disconnect it from a def-use chain linking it to a loop.
770    void forgetValue(Value *V);
771
772    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
773    /// is guaranteed to end in (at every loop iteration).  It is, at the same
774    /// time, the minimum number of times S is divisible by 2.  For example,
775    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
776    /// bitwidth of S.
777    uint32_t GetMinTrailingZeros(const SCEV *S);
778
779    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
780    ///
781    ConstantRange getUnsignedRange(const SCEV *S);
782
783    /// getSignedRange - Determine the signed range for a particular SCEV.
784    ///
785    ConstantRange getSignedRange(const SCEV *S);
786
787    /// isKnownNegative - Test if the given expression is known to be negative.
788    ///
789    bool isKnownNegative(const SCEV *S);
790
791    /// isKnownPositive - Test if the given expression is known to be positive.
792    ///
793    bool isKnownPositive(const SCEV *S);
794
795    /// isKnownNonNegative - Test if the given expression is known to be
796    /// non-negative.
797    ///
798    bool isKnownNonNegative(const SCEV *S);
799
800    /// isKnownNonPositive - Test if the given expression is known to be
801    /// non-positive.
802    ///
803    bool isKnownNonPositive(const SCEV *S);
804
805    /// isKnownNonZero - Test if the given expression is known to be
806    /// non-zero.
807    ///
808    bool isKnownNonZero(const SCEV *S);
809
810    /// isKnownPredicate - Test if the given expression is known to satisfy
811    /// the condition described by Pred, LHS, and RHS.
812    ///
813    bool isKnownPredicate(ICmpInst::Predicate Pred,
814                          const SCEV *LHS, const SCEV *RHS);
815
816    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
817    /// predicate Pred. Return true iff any changes were made. If the
818    /// operands are provably equal or inequal, LHS and RHS are set to
819    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
820    ///
821    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
822                              const SCEV *&LHS,
823                              const SCEV *&RHS);
824
825    /// getLoopDisposition - Return the "disposition" of the given SCEV with
826    /// respect to the given loop.
827    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
828
829    /// isLoopInvariant - Return true if the value of the given SCEV is
830    /// unchanging in the specified loop.
831    bool isLoopInvariant(const SCEV *S, const Loop *L);
832
833    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
834    /// in a known way in the specified loop.  This property being true implies
835    /// that the value is variant in the loop AND that we can emit an expression
836    /// to compute the value of the expression at any particular loop iteration.
837    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
838
839    /// getLoopDisposition - Return the "disposition" of the given SCEV with
840    /// respect to the given block.
841    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
842
843    /// dominates - Return true if elements that makes up the given SCEV
844    /// dominate the specified basic block.
845    bool dominates(const SCEV *S, const BasicBlock *BB);
846
847    /// properlyDominates - Return true if elements that makes up the given SCEV
848    /// properly dominate the specified basic block.
849    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
850
851    /// hasOperand - Test whether the given SCEV has Op as a direct or
852    /// indirect operand.
853    bool hasOperand(const SCEV *S, const SCEV *Op) const;
854
855    virtual bool runOnFunction(Function &F);
856    virtual void releaseMemory();
857    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
858    virtual void print(raw_ostream &OS, const Module* = 0) const;
859
860  private:
861    FoldingSet<SCEV> UniqueSCEVs;
862    BumpPtrAllocator SCEVAllocator;
863
864    /// FirstUnknown - The head of a linked list of all SCEVUnknown
865    /// values that have been allocated. This is used by releaseMemory
866    /// to locate them all and call their destructors.
867    SCEVUnknown *FirstUnknown;
868  };
869}
870
871#endif
872