1//===-- llvm/CodeGen/MachineCodeEmitter.h - Code emission -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an abstract interface that is used by the machine code
11// emission framework to output the code.  This allows machine code emission to
12// be separated from concerns such as resolution of call targets, and where the
13// machine code will be written (memory or disk, f.e.).
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CODEGEN_MACHINECODEEMITTER_H
18#define LLVM_CODEGEN_MACHINECODEEMITTER_H
19
20#include "llvm/IR/DebugLoc.h"
21#include "llvm/Support/DataTypes.h"
22#include <string>
23
24namespace llvm {
25
26class MachineBasicBlock;
27class MachineConstantPool;
28class MachineJumpTableInfo;
29class MachineFunction;
30class MachineModuleInfo;
31class MachineRelocation;
32class Value;
33class GlobalValue;
34class Function;
35class MCSymbol;
36
37/// MachineCodeEmitter - This class defines two sorts of methods: those for
38/// emitting the actual bytes of machine code, and those for emitting auxiliary
39/// structures, such as jump tables, relocations, etc.
40///
41/// Emission of machine code is complicated by the fact that we don't (in
42/// general) know the size of the machine code that we're about to emit before
43/// we emit it.  As such, we preallocate a certain amount of memory, and set the
44/// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
45/// emit machine instructions, we advance the CurBufferPtr to indicate the
46/// location of the next byte to emit.  In the case of a buffer overflow (we
47/// need to emit more machine code than we have allocated space for), the
48/// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
49/// function has been emitted, the overflow condition is checked, and if it has
50/// occurred, more memory is allocated, and we reemit the code into it.
51///
52class MachineCodeEmitter {
53  virtual void anchor();
54protected:
55  /// BufferBegin/BufferEnd - Pointers to the start and end of the memory
56  /// allocated for this code buffer.
57  uint8_t *BufferBegin, *BufferEnd;
58  /// CurBufferPtr - Pointer to the next byte of memory to fill when emitting
59  /// code.  This is guaranteed to be in the range [BufferBegin,BufferEnd].  If
60  /// this pointer is at BufferEnd, it will never move due to code emission, and
61  /// all code emission requests will be ignored (this is the buffer overflow
62  /// condition).
63  uint8_t *CurBufferPtr;
64
65public:
66  virtual ~MachineCodeEmitter() {}
67
68  /// startFunction - This callback is invoked when the specified function is
69  /// about to be code generated.  This initializes the BufferBegin/End/Ptr
70  /// fields.
71  ///
72  virtual void startFunction(MachineFunction &F) = 0;
73
74  /// finishFunction - This callback is invoked when the specified function has
75  /// finished code generation.  If a buffer overflow has occurred, this method
76  /// returns true (the callee is required to try again), otherwise it returns
77  /// false.
78  ///
79  virtual bool finishFunction(MachineFunction &F) = 0;
80
81  /// emitByte - This callback is invoked when a byte needs to be written to the
82  /// output stream.
83  ///
84  void emitByte(uint8_t B) {
85    if (CurBufferPtr != BufferEnd)
86      *CurBufferPtr++ = B;
87  }
88
89  /// emitWordLE - This callback is invoked when a 32-bit word needs to be
90  /// written to the output stream in little-endian format.
91  ///
92  void emitWordLE(uint32_t W) {
93    if (4 <= BufferEnd-CurBufferPtr) {
94      emitWordLEInto(CurBufferPtr, W);
95    } else {
96      CurBufferPtr = BufferEnd;
97    }
98  }
99
100  /// emitWordLEInto - This callback is invoked when a 32-bit word needs to be
101  /// written to an arbitrary buffer in little-endian format.  Buf must have at
102  /// least 4 bytes of available space.
103  ///
104  static void emitWordLEInto(uint8_t *&Buf, uint32_t W) {
105    *Buf++ = (uint8_t)(W >>  0);
106    *Buf++ = (uint8_t)(W >>  8);
107    *Buf++ = (uint8_t)(W >> 16);
108    *Buf++ = (uint8_t)(W >> 24);
109  }
110
111  /// emitWordBE - This callback is invoked when a 32-bit word needs to be
112  /// written to the output stream in big-endian format.
113  ///
114  void emitWordBE(uint32_t W) {
115    if (4 <= BufferEnd-CurBufferPtr) {
116      *CurBufferPtr++ = (uint8_t)(W >> 24);
117      *CurBufferPtr++ = (uint8_t)(W >> 16);
118      *CurBufferPtr++ = (uint8_t)(W >>  8);
119      *CurBufferPtr++ = (uint8_t)(W >>  0);
120    } else {
121      CurBufferPtr = BufferEnd;
122    }
123  }
124
125  /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
126  /// written to the output stream in little-endian format.
127  ///
128  void emitDWordLE(uint64_t W) {
129    if (8 <= BufferEnd-CurBufferPtr) {
130      *CurBufferPtr++ = (uint8_t)(W >>  0);
131      *CurBufferPtr++ = (uint8_t)(W >>  8);
132      *CurBufferPtr++ = (uint8_t)(W >> 16);
133      *CurBufferPtr++ = (uint8_t)(W >> 24);
134      *CurBufferPtr++ = (uint8_t)(W >> 32);
135      *CurBufferPtr++ = (uint8_t)(W >> 40);
136      *CurBufferPtr++ = (uint8_t)(W >> 48);
137      *CurBufferPtr++ = (uint8_t)(W >> 56);
138    } else {
139      CurBufferPtr = BufferEnd;
140    }
141  }
142
143  /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
144  /// written to the output stream in big-endian format.
145  ///
146  void emitDWordBE(uint64_t W) {
147    if (8 <= BufferEnd-CurBufferPtr) {
148      *CurBufferPtr++ = (uint8_t)(W >> 56);
149      *CurBufferPtr++ = (uint8_t)(W >> 48);
150      *CurBufferPtr++ = (uint8_t)(W >> 40);
151      *CurBufferPtr++ = (uint8_t)(W >> 32);
152      *CurBufferPtr++ = (uint8_t)(W >> 24);
153      *CurBufferPtr++ = (uint8_t)(W >> 16);
154      *CurBufferPtr++ = (uint8_t)(W >>  8);
155      *CurBufferPtr++ = (uint8_t)(W >>  0);
156    } else {
157      CurBufferPtr = BufferEnd;
158    }
159  }
160
161  /// emitAlignment - Move the CurBufferPtr pointer up to the specified
162  /// alignment (saturated to BufferEnd of course).
163  void emitAlignment(unsigned Alignment) {
164    if (Alignment == 0) Alignment = 1;
165
166    if(Alignment <= (uintptr_t)(BufferEnd-CurBufferPtr)) {
167      // Move the current buffer ptr up to the specified alignment.
168      CurBufferPtr =
169        (uint8_t*)(((uintptr_t)CurBufferPtr+Alignment-1) &
170                   ~(uintptr_t)(Alignment-1));
171    } else {
172      CurBufferPtr = BufferEnd;
173    }
174  }
175
176
177  /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
178  /// written to the output stream.
179  void emitULEB128Bytes(uint64_t Value) {
180    do {
181      uint8_t Byte = Value & 0x7f;
182      Value >>= 7;
183      if (Value) Byte |= 0x80;
184      emitByte(Byte);
185    } while (Value);
186  }
187
188  /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
189  /// written to the output stream.
190  void emitSLEB128Bytes(uint64_t Value) {
191    uint64_t Sign = Value >> (8 * sizeof(Value) - 1);
192    bool IsMore;
193
194    do {
195      uint8_t Byte = Value & 0x7f;
196      Value >>= 7;
197      IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
198      if (IsMore) Byte |= 0x80;
199      emitByte(Byte);
200    } while (IsMore);
201  }
202
203  /// emitString - This callback is invoked when a String needs to be
204  /// written to the output stream.
205  void emitString(const std::string &String) {
206    for (unsigned i = 0, N = static_cast<unsigned>(String.size());
207         i < N; ++i) {
208      uint8_t C = String[i];
209      emitByte(C);
210    }
211    emitByte(0);
212  }
213
214  /// emitInt32 - Emit a int32 directive.
215  void emitInt32(int32_t Value) {
216    if (4 <= BufferEnd-CurBufferPtr) {
217      *((uint32_t*)CurBufferPtr) = Value;
218      CurBufferPtr += 4;
219    } else {
220      CurBufferPtr = BufferEnd;
221    }
222  }
223
224  /// emitInt64 - Emit a int64 directive.
225  void emitInt64(uint64_t Value) {
226    if (8 <= BufferEnd-CurBufferPtr) {
227      *((uint64_t*)CurBufferPtr) = Value;
228      CurBufferPtr += 8;
229    } else {
230      CurBufferPtr = BufferEnd;
231    }
232  }
233
234  /// emitInt32At - Emit the Int32 Value in Addr.
235  void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
236    if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
237      (*(uint32_t*)Addr) = (uint32_t)Value;
238  }
239
240  /// emitInt64At - Emit the Int64 Value in Addr.
241  void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
242    if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
243      (*(uint64_t*)Addr) = (uint64_t)Value;
244  }
245
246  /// processDebugLoc - Records debug location information about a
247  /// MachineInstruction.  This is called before emitting any bytes associated
248  /// with the instruction.  Even if successive instructions have the same debug
249  /// location, this method will be called for each one.
250  virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {}
251
252  /// emitLabel - Emits a label
253  virtual void emitLabel(MCSymbol *Label) = 0;
254
255  /// allocateSpace - Allocate a block of space in the current output buffer,
256  /// returning null (and setting conditions to indicate buffer overflow) on
257  /// failure.  Alignment is the alignment in bytes of the buffer desired.
258  virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
259    emitAlignment(Alignment);
260    void *Result;
261
262    // Check for buffer overflow.
263    if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
264      CurBufferPtr = BufferEnd;
265      Result = nullptr;
266    } else {
267      // Allocate the space.
268      Result = CurBufferPtr;
269      CurBufferPtr += Size;
270    }
271
272    return Result;
273  }
274
275  /// StartMachineBasicBlock - This should be called by the target when a new
276  /// basic block is about to be emitted.  This way the MCE knows where the
277  /// start of the block is, and can implement getMachineBasicBlockAddress.
278  virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
279
280  /// getCurrentPCValue - This returns the address that the next emitted byte
281  /// will be output to.
282  ///
283  virtual uintptr_t getCurrentPCValue() const {
284    return (uintptr_t)CurBufferPtr;
285  }
286
287  /// getCurrentPCOffset - Return the offset from the start of the emitted
288  /// buffer that we are currently writing to.
289  virtual uintptr_t getCurrentPCOffset() const {
290    return CurBufferPtr-BufferBegin;
291  }
292
293  /// earlyResolveAddresses - True if the code emitter can use symbol addresses
294  /// during code emission time. The JIT is capable of doing this because it
295  /// creates jump tables or constant pools in memory on the fly while the
296  /// object code emitters rely on a linker to have real addresses and should
297  /// use relocations instead.
298  virtual bool earlyResolveAddresses() const = 0;
299
300  /// addRelocation - Whenever a relocatable address is needed, it should be
301  /// noted with this interface.
302  virtual void addRelocation(const MachineRelocation &MR) = 0;
303
304  /// FIXME: These should all be handled with relocations!
305
306  /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
307  /// the constant pool that was last emitted with the emitConstantPool method.
308  ///
309  virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
310
311  /// getJumpTableEntryAddress - Return the address of the jump table with index
312  /// 'Index' in the function that last called initJumpTableInfo.
313  ///
314  virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
315
316  /// getMachineBasicBlockAddress - Return the address of the specified
317  /// MachineBasicBlock, only usable after the label for the MBB has been
318  /// emitted.
319  ///
320  virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
321
322  /// getLabelAddress - Return the address of the specified Label, only usable
323  /// after the LabelID has been emitted.
324  ///
325  virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
326
327  /// Specifies the MachineModuleInfo object. This is used for exception handling
328  /// purposes.
329  virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
330};
331
332} // End llvm namespace
333
334#endif
335