MachineRegisterInfo.h revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/IndexedMap.h"
19#include "llvm/ADT/iterator_range.h"
20#include "llvm/CodeGen/MachineInstrBundle.h"
21#include "llvm/Target/TargetMachine.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include <vector>
24
25namespace llvm {
26class PSetIterator;
27
28/// MachineRegisterInfo - Keep track of information for virtual and physical
29/// registers, including vreg register classes, use/def chains for registers,
30/// etc.
31class MachineRegisterInfo {
32public:
33  class Delegate {
34    virtual void anchor();
35  public:
36    virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
37
38    virtual ~Delegate() {}
39  };
40
41private:
42  const TargetMachine &TM;
43  Delegate *TheDelegate;
44
45  /// IsSSA - True when the machine function is in SSA form and virtual
46  /// registers have a single def.
47  bool IsSSA;
48
49  /// TracksLiveness - True while register liveness is being tracked accurately.
50  /// Basic block live-in lists, kill flags, and implicit defs may not be
51  /// accurate when after this flag is cleared.
52  bool TracksLiveness;
53
54  /// VRegInfo - Information we keep for each virtual register.
55  ///
56  /// Each element in this list contains the register class of the vreg and the
57  /// start of the use/def list for the register.
58  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
59             VirtReg2IndexFunctor> VRegInfo;
60
61  /// RegAllocHints - This vector records register allocation hints for virtual
62  /// registers. For each virtual register, it keeps a register and hint type
63  /// pair making up the allocation hint. Hint type is target specific except
64  /// for the value 0 which means the second value of the pair is the preferred
65  /// register for allocation. For example, if the hint is <0, 1024>, it means
66  /// the allocator should prefer the physical register allocated to the virtual
67  /// register of the hint.
68  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
69
70  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
71  /// physical registers.
72  MachineOperand **PhysRegUseDefLists;
73
74  /// getRegUseDefListHead - Return the head pointer for the register use/def
75  /// list for the specified virtual or physical register.
76  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
77    if (TargetRegisterInfo::isVirtualRegister(RegNo))
78      return VRegInfo[RegNo].second;
79    return PhysRegUseDefLists[RegNo];
80  }
81
82  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
83    if (TargetRegisterInfo::isVirtualRegister(RegNo))
84      return VRegInfo[RegNo].second;
85    return PhysRegUseDefLists[RegNo];
86  }
87
88  /// Get the next element in the use-def chain.
89  static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
90    assert(MO && MO->isReg() && "This is not a register operand!");
91    return MO->Contents.Reg.Next;
92  }
93
94  /// UsedRegUnits - This is a bit vector that is computed and set by the
95  /// register allocator, and must be kept up to date by passes that run after
96  /// register allocation (though most don't modify this).  This is used
97  /// so that the code generator knows which callee save registers to save and
98  /// for other target specific uses.
99  /// This vector has bits set for register units that are modified in the
100  /// current function. It doesn't include registers clobbered by function
101  /// calls with register mask operands.
102  BitVector UsedRegUnits;
103
104  /// UsedPhysRegMask - Additional used physregs including aliases.
105  /// This bit vector represents all the registers clobbered by function calls.
106  /// It can model things that UsedRegUnits can't, such as function calls that
107  /// clobber ymm7 but preserve the low half in xmm7.
108  BitVector UsedPhysRegMask;
109
110  /// ReservedRegs - This is a bit vector of reserved registers.  The target
111  /// may change its mind about which registers should be reserved.  This
112  /// vector is the frozen set of reserved registers when register allocation
113  /// started.
114  BitVector ReservedRegs;
115
116  /// Keep track of the physical registers that are live in to the function.
117  /// Live in values are typically arguments in registers.  LiveIn values are
118  /// allowed to have virtual registers associated with them, stored in the
119  /// second element.
120  std::vector<std::pair<unsigned, unsigned> > LiveIns;
121
122  MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
123  void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
124public:
125  explicit MachineRegisterInfo(const TargetMachine &TM);
126  ~MachineRegisterInfo();
127
128  const TargetRegisterInfo *getTargetRegisterInfo() const {
129    return TM.getRegisterInfo();
130  }
131
132  void resetDelegate(Delegate *delegate) {
133    // Ensure another delegate does not take over unless the current
134    // delegate first unattaches itself. If we ever need to multicast
135    // notifications, we will need to change to using a list.
136    assert(TheDelegate == delegate &&
137           "Only the current delegate can perform reset!");
138    TheDelegate = 0;
139  }
140
141  void setDelegate(Delegate *delegate) {
142    assert(delegate && !TheDelegate &&
143           "Attempted to set delegate to null, or to change it without "
144           "first resetting it!");
145
146    TheDelegate = delegate;
147  }
148
149  //===--------------------------------------------------------------------===//
150  // Function State
151  //===--------------------------------------------------------------------===//
152
153  // isSSA - Returns true when the machine function is in SSA form. Early
154  // passes require the machine function to be in SSA form where every virtual
155  // register has a single defining instruction.
156  //
157  // The TwoAddressInstructionPass and PHIElimination passes take the machine
158  // function out of SSA form when they introduce multiple defs per virtual
159  // register.
160  bool isSSA() const { return IsSSA; }
161
162  // leaveSSA - Indicates that the machine function is no longer in SSA form.
163  void leaveSSA() { IsSSA = false; }
164
165  /// tracksLiveness - Returns true when tracking register liveness accurately.
166  ///
167  /// While this flag is true, register liveness information in basic block
168  /// live-in lists and machine instruction operands is accurate. This means it
169  /// can be used to change the code in ways that affect the values in
170  /// registers, for example by the register scavenger.
171  ///
172  /// When this flag is false, liveness is no longer reliable.
173  bool tracksLiveness() const { return TracksLiveness; }
174
175  /// invalidateLiveness - Indicates that register liveness is no longer being
176  /// tracked accurately.
177  ///
178  /// This should be called by late passes that invalidate the liveness
179  /// information.
180  void invalidateLiveness() { TracksLiveness = false; }
181
182  //===--------------------------------------------------------------------===//
183  // Register Info
184  //===--------------------------------------------------------------------===//
185
186  // Strictly for use by MachineInstr.cpp.
187  void addRegOperandToUseList(MachineOperand *MO);
188
189  // Strictly for use by MachineInstr.cpp.
190  void removeRegOperandFromUseList(MachineOperand *MO);
191
192  // Strictly for use by MachineInstr.cpp.
193  void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
194
195  /// Verify the sanity of the use list for Reg.
196  void verifyUseList(unsigned Reg) const;
197
198  /// Verify the use list of all registers.
199  void verifyUseLists() const;
200
201  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
202  /// and uses of a register within the MachineFunction that corresponds to this
203  /// MachineRegisterInfo object.
204  template<bool Uses, bool Defs, bool SkipDebug,
205           bool ByOperand, bool ByInstr, bool ByBundle>
206  class defusechain_iterator;
207  template<bool Uses, bool Defs, bool SkipDebug,
208           bool ByOperand, bool ByInstr, bool ByBundle>
209  class defusechain_instr_iterator;
210
211  // Make it a friend so it can access getNextOperandForReg().
212  template<bool, bool, bool, bool, bool, bool>
213    friend class defusechain_iterator;
214  template<bool, bool, bool, bool, bool, bool>
215    friend class defusechain_instr_iterator;
216
217
218
219  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
220  /// register.
221  typedef defusechain_iterator<true,true,false,true,false,false>
222          reg_iterator;
223  reg_iterator reg_begin(unsigned RegNo) const {
224    return reg_iterator(getRegUseDefListHead(RegNo));
225  }
226  static reg_iterator reg_end() { return reg_iterator(0); }
227
228  inline iterator_range<reg_iterator>  reg_operands(unsigned Reg) const {
229    return iterator_range<reg_iterator>(reg_begin(Reg), reg_end());
230  }
231
232  /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
233  /// of the specified register, stepping by MachineInstr.
234  typedef defusechain_instr_iterator<true,true,false,false,true,false>
235          reg_instr_iterator;
236  reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
237    return reg_instr_iterator(getRegUseDefListHead(RegNo));
238  }
239  static reg_instr_iterator reg_instr_end() { return reg_instr_iterator(0); }
240
241  inline iterator_range<reg_instr_iterator>
242  reg_instructions(unsigned Reg) const {
243    return iterator_range<reg_instr_iterator>(reg_instr_begin(Reg),
244                                              reg_instr_end());
245  }
246
247  /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
248  /// of the specified register, stepping by bundle.
249  typedef defusechain_instr_iterator<true,true,false,false,false,true>
250          reg_bundle_iterator;
251  reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
252    return reg_bundle_iterator(getRegUseDefListHead(RegNo));
253  }
254  static reg_bundle_iterator reg_bundle_end() { return reg_bundle_iterator(0); }
255
256  inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
257    return iterator_range<reg_bundle_iterator>(reg_bundle_begin(Reg),
258                                               reg_bundle_end());
259  }
260
261  /// reg_empty - Return true if there are no instructions using or defining the
262  /// specified register (it may be live-in).
263  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
264
265  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
266  /// of the specified register, skipping those marked as Debug.
267  typedef defusechain_iterator<true,true,true,true,false,false>
268          reg_nodbg_iterator;
269  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
270    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
271  }
272  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
273
274  inline iterator_range<reg_nodbg_iterator>
275  reg_nodbg_operands(unsigned Reg) const {
276    return iterator_range<reg_nodbg_iterator>(reg_nodbg_begin(Reg),
277                                              reg_nodbg_end());
278  }
279
280  /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
281  /// all defs and uses of the specified register, stepping by MachineInstr,
282  /// skipping those marked as Debug.
283  typedef defusechain_instr_iterator<true,true,true,false,true,false>
284          reg_instr_nodbg_iterator;
285  reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
286    return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
287  }
288  static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
289    return reg_instr_nodbg_iterator(0);
290  }
291
292  inline iterator_range<reg_instr_nodbg_iterator>
293  reg_nodbg_instructions(unsigned Reg) const {
294    return iterator_range<reg_instr_nodbg_iterator>(reg_instr_nodbg_begin(Reg),
295                                                    reg_instr_nodbg_end());
296  }
297
298  /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
299  /// all defs and uses of the specified register, stepping by bundle,
300  /// skipping those marked as Debug.
301  typedef defusechain_instr_iterator<true,true,true,false,false,true>
302          reg_bundle_nodbg_iterator;
303  reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
304    return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
305  }
306  static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
307    return reg_bundle_nodbg_iterator(0);
308  }
309
310  inline iterator_range<reg_bundle_nodbg_iterator>
311  reg_nodbg_bundles(unsigned Reg) const {
312    return iterator_range<reg_bundle_nodbg_iterator>(reg_bundle_nodbg_begin(Reg),
313                                                     reg_bundle_nodbg_end());
314  }
315
316  /// reg_nodbg_empty - Return true if the only instructions using or defining
317  /// Reg are Debug instructions.
318  bool reg_nodbg_empty(unsigned RegNo) const {
319    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
320  }
321
322  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
323  typedef defusechain_iterator<false,true,false,true,false,false>
324          def_iterator;
325  def_iterator def_begin(unsigned RegNo) const {
326    return def_iterator(getRegUseDefListHead(RegNo));
327  }
328  static def_iterator def_end() { return def_iterator(0); }
329
330  inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
331    return iterator_range<def_iterator>(def_begin(Reg), def_end());
332  }
333
334  /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
335  /// specified register, stepping by MachineInst.
336  typedef defusechain_instr_iterator<false,true,false,false,true,false>
337          def_instr_iterator;
338  def_instr_iterator def_instr_begin(unsigned RegNo) const {
339    return def_instr_iterator(getRegUseDefListHead(RegNo));
340  }
341  static def_instr_iterator def_instr_end() { return def_instr_iterator(0); }
342
343  inline iterator_range<def_instr_iterator>
344  def_instructions(unsigned Reg) const {
345    return iterator_range<def_instr_iterator>(def_instr_begin(Reg),
346                                              def_instr_end());
347  }
348
349  /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
350  /// specified register, stepping by bundle.
351  typedef defusechain_instr_iterator<false,true,false,false,false,true>
352          def_bundle_iterator;
353  def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
354    return def_bundle_iterator(getRegUseDefListHead(RegNo));
355  }
356  static def_bundle_iterator def_bundle_end() { return def_bundle_iterator(0); }
357
358  inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
359    return iterator_range<def_bundle_iterator>(def_bundle_begin(Reg),
360                                               def_bundle_end());
361  }
362
363  /// def_empty - Return true if there are no instructions defining the
364  /// specified register (it may be live-in).
365  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
366
367  /// hasOneDef - Return true if there is exactly one instruction defining the
368  /// specified register.
369  bool hasOneDef(unsigned RegNo) const {
370    def_iterator DI = def_begin(RegNo);
371    if (DI == def_end())
372      return false;
373    return ++DI == def_end();
374  }
375
376  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
377  typedef defusechain_iterator<true,false,false,true,false,false>
378          use_iterator;
379  use_iterator use_begin(unsigned RegNo) const {
380    return use_iterator(getRegUseDefListHead(RegNo));
381  }
382  static use_iterator use_end() { return use_iterator(0); }
383
384  inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
385    return iterator_range<use_iterator>(use_begin(Reg), use_end());
386  }
387
388  /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
389  /// specified register, stepping by MachineInstr.
390  typedef defusechain_instr_iterator<true,false,false,false,true,false>
391          use_instr_iterator;
392  use_instr_iterator use_instr_begin(unsigned RegNo) const {
393    return use_instr_iterator(getRegUseDefListHead(RegNo));
394  }
395  static use_instr_iterator use_instr_end() { return use_instr_iterator(0); }
396
397  inline iterator_range<use_instr_iterator>
398  use_instructions(unsigned Reg) const {
399    return iterator_range<use_instr_iterator>(use_instr_begin(Reg),
400                                              use_instr_end());
401  }
402
403  /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
404  /// specified register, stepping by bundle.
405  typedef defusechain_instr_iterator<true,false,false,false,false,true>
406          use_bundle_iterator;
407  use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
408    return use_bundle_iterator(getRegUseDefListHead(RegNo));
409  }
410  static use_bundle_iterator use_bundle_end() { return use_bundle_iterator(0); }
411
412  inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
413    return iterator_range<use_bundle_iterator>(use_bundle_begin(Reg),
414                                               use_bundle_end());
415  }
416
417  /// use_empty - Return true if there are no instructions using the specified
418  /// register.
419  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
420
421  /// hasOneUse - Return true if there is exactly one instruction using the
422  /// specified register.
423  bool hasOneUse(unsigned RegNo) const {
424    use_iterator UI = use_begin(RegNo);
425    if (UI == use_end())
426      return false;
427    return ++UI == use_end();
428  }
429
430  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
431  /// specified register, skipping those marked as Debug.
432  typedef defusechain_iterator<true,false,true,true,false,false>
433          use_nodbg_iterator;
434  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
435    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
436  }
437  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
438
439  inline iterator_range<use_nodbg_iterator>
440  use_nodbg_operands(unsigned Reg) const {
441    return iterator_range<use_nodbg_iterator>(use_nodbg_begin(Reg),
442                                              use_nodbg_end());
443  }
444
445  /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
446  /// all uses of the specified register, stepping by MachineInstr, skipping
447  /// those marked as Debug.
448  typedef defusechain_instr_iterator<true,false,true,false,true,false>
449          use_instr_nodbg_iterator;
450  use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
451    return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
452  }
453  static use_instr_nodbg_iterator use_instr_nodbg_end() {
454    return use_instr_nodbg_iterator(0);
455  }
456
457  inline iterator_range<use_instr_nodbg_iterator>
458  use_nodbg_instructions(unsigned Reg) const {
459    return iterator_range<use_instr_nodbg_iterator>(use_instr_nodbg_begin(Reg),
460                                                    use_instr_nodbg_end());
461  }
462
463  /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
464  /// all uses of the specified register, stepping by bundle, skipping
465  /// those marked as Debug.
466  typedef defusechain_instr_iterator<true,false,true,false,false,true>
467          use_bundle_nodbg_iterator;
468  use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
469    return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
470  }
471  static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
472    return use_bundle_nodbg_iterator(0);
473  }
474
475  inline iterator_range<use_bundle_nodbg_iterator>
476  use_nodbg_bundles(unsigned Reg) const {
477    return iterator_range<use_bundle_nodbg_iterator>(use_bundle_nodbg_begin(Reg),
478                                                     use_bundle_nodbg_end());
479  }
480
481  /// use_nodbg_empty - Return true if there are no non-Debug instructions
482  /// using the specified register.
483  bool use_nodbg_empty(unsigned RegNo) const {
484    return use_nodbg_begin(RegNo) == use_nodbg_end();
485  }
486
487  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
488  /// instruction using the specified register.
489  bool hasOneNonDBGUse(unsigned RegNo) const;
490
491  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
492  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
493  /// except that it also changes any definitions of the register as well.
494  ///
495  /// Note that it is usually necessary to first constrain ToReg's register
496  /// class to match the FromReg constraints using:
497  ///
498  ///   constrainRegClass(ToReg, getRegClass(FromReg))
499  ///
500  /// That function will return NULL if the virtual registers have incompatible
501  /// constraints.
502  void replaceRegWith(unsigned FromReg, unsigned ToReg);
503
504  /// getVRegDef - Return the machine instr that defines the specified virtual
505  /// register or null if none is found.  This assumes that the code is in SSA
506  /// form, so there should only be one definition.
507  MachineInstr *getVRegDef(unsigned Reg) const;
508
509  /// getUniqueVRegDef - Return the unique machine instr that defines the
510  /// specified virtual register or null if none is found.  If there are
511  /// multiple definitions or no definition, return null.
512  MachineInstr *getUniqueVRegDef(unsigned Reg) const;
513
514  /// clearKillFlags - Iterate over all the uses of the given register and
515  /// clear the kill flag from the MachineOperand. This function is used by
516  /// optimization passes which extend register lifetimes and need only
517  /// preserve conservative kill flag information.
518  void clearKillFlags(unsigned Reg) const;
519
520#ifndef NDEBUG
521  void dumpUses(unsigned RegNo) const;
522#endif
523
524  /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
525  /// throughout the function.  It is safe to move instructions that read such
526  /// a physreg.
527  bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
528
529  /// Get an iterator over the pressure sets affected by the given physical or
530  /// virtual register. If RegUnit is physical, it must be a register unit (from
531  /// MCRegUnitIterator).
532  PSetIterator getPressureSets(unsigned RegUnit) const;
533
534  //===--------------------------------------------------------------------===//
535  // Virtual Register Info
536  //===--------------------------------------------------------------------===//
537
538  /// getRegClass - Return the register class of the specified virtual register.
539  ///
540  const TargetRegisterClass *getRegClass(unsigned Reg) const {
541    return VRegInfo[Reg].first;
542  }
543
544  /// setRegClass - Set the register class of the specified virtual register.
545  ///
546  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
547
548  /// constrainRegClass - Constrain the register class of the specified virtual
549  /// register to be a common subclass of RC and the current register class,
550  /// but only if the new class has at least MinNumRegs registers.  Return the
551  /// new register class, or NULL if no such class exists.
552  /// This should only be used when the constraint is known to be trivial, like
553  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
554  ///
555  const TargetRegisterClass *constrainRegClass(unsigned Reg,
556                                               const TargetRegisterClass *RC,
557                                               unsigned MinNumRegs = 0);
558
559  /// recomputeRegClass - Try to find a legal super-class of Reg's register
560  /// class that still satisfies the constraints from the instructions using
561  /// Reg.  Returns true if Reg was upgraded.
562  ///
563  /// This method can be used after constraints have been removed from a
564  /// virtual register, for example after removing instructions or splitting
565  /// the live range.
566  ///
567  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
568
569  /// createVirtualRegister - Create and return a new virtual register in the
570  /// function with the specified register class.
571  ///
572  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
573
574  /// getNumVirtRegs - Return the number of virtual registers created.
575  ///
576  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
577
578  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
579  void clearVirtRegs();
580
581  /// setRegAllocationHint - Specify a register allocation hint for the
582  /// specified virtual register.
583  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
584    RegAllocHints[Reg].first  = Type;
585    RegAllocHints[Reg].second = PrefReg;
586  }
587
588  /// getRegAllocationHint - Return the register allocation hint for the
589  /// specified virtual register.
590  std::pair<unsigned, unsigned>
591  getRegAllocationHint(unsigned Reg) const {
592    return RegAllocHints[Reg];
593  }
594
595  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
596  /// standard simple hint (Type == 0) is not set.
597  unsigned getSimpleHint(unsigned Reg) const {
598    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
599    return Hint.first ? 0 : Hint.second;
600  }
601
602  /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
603  /// specified register as undefined which causes the DBG_VALUE to be
604  /// deleted during LiveDebugVariables analysis.
605  void markUsesInDebugValueAsUndef(unsigned Reg) const;
606
607  //===--------------------------------------------------------------------===//
608  // Physical Register Use Info
609  //===--------------------------------------------------------------------===//
610
611  /// isPhysRegUsed - Return true if the specified register is used in this
612  /// function. Also check for clobbered aliases and registers clobbered by
613  /// function calls with register mask operands.
614  ///
615  /// This only works after register allocation. It is primarily used by
616  /// PrologEpilogInserter to determine which callee-saved registers need
617  /// spilling.
618  bool isPhysRegUsed(unsigned Reg) const {
619    if (UsedPhysRegMask.test(Reg))
620      return true;
621    for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
622         Units.isValid(); ++Units)
623      if (UsedRegUnits.test(*Units))
624        return true;
625    return false;
626  }
627
628  /// Mark the specified register unit as used in this function.
629  /// This should only be called during and after register allocation.
630  void setRegUnitUsed(unsigned RegUnit) {
631    UsedRegUnits.set(RegUnit);
632  }
633
634  /// setPhysRegUsed - Mark the specified register used in this function.
635  /// This should only be called during and after register allocation.
636  void setPhysRegUsed(unsigned Reg) {
637    for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
638         Units.isValid(); ++Units)
639      UsedRegUnits.set(*Units);
640  }
641
642  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
643  /// This corresponds to the bit mask attached to register mask operands.
644  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
645    UsedPhysRegMask.setBitsNotInMask(RegMask);
646  }
647
648  /// setPhysRegUnused - Mark the specified register unused in this function.
649  /// This should only be called during and after register allocation.
650  void setPhysRegUnused(unsigned Reg) {
651    UsedPhysRegMask.reset(Reg);
652    for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
653         Units.isValid(); ++Units)
654      UsedRegUnits.reset(*Units);
655  }
656
657
658  //===--------------------------------------------------------------------===//
659  // Reserved Register Info
660  //===--------------------------------------------------------------------===//
661  //
662  // The set of reserved registers must be invariant during register
663  // allocation.  For example, the target cannot suddenly decide it needs a
664  // frame pointer when the register allocator has already used the frame
665  // pointer register for something else.
666  //
667  // These methods can be used by target hooks like hasFP() to avoid changing
668  // the reserved register set during register allocation.
669
670  /// freezeReservedRegs - Called by the register allocator to freeze the set
671  /// of reserved registers before allocation begins.
672  void freezeReservedRegs(const MachineFunction&);
673
674  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
675  /// to ensure the set of reserved registers stays constant.
676  bool reservedRegsFrozen() const {
677    return !ReservedRegs.empty();
678  }
679
680  /// canReserveReg - Returns true if PhysReg can be used as a reserved
681  /// register.  Any register can be reserved before freezeReservedRegs() is
682  /// called.
683  bool canReserveReg(unsigned PhysReg) const {
684    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
685  }
686
687  /// getReservedRegs - Returns a reference to the frozen set of reserved
688  /// registers. This method should always be preferred to calling
689  /// TRI::getReservedRegs() when possible.
690  const BitVector &getReservedRegs() const {
691    assert(reservedRegsFrozen() &&
692           "Reserved registers haven't been frozen yet. "
693           "Use TRI::getReservedRegs().");
694    return ReservedRegs;
695  }
696
697  /// isReserved - Returns true when PhysReg is a reserved register.
698  ///
699  /// Reserved registers may belong to an allocatable register class, but the
700  /// target has explicitly requested that they are not used.
701  ///
702  bool isReserved(unsigned PhysReg) const {
703    return getReservedRegs().test(PhysReg);
704  }
705
706  /// isAllocatable - Returns true when PhysReg belongs to an allocatable
707  /// register class and it hasn't been reserved.
708  ///
709  /// Allocatable registers may show up in the allocation order of some virtual
710  /// register, so a register allocator needs to track its liveness and
711  /// availability.
712  bool isAllocatable(unsigned PhysReg) const {
713    return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
714      !isReserved(PhysReg);
715  }
716
717  //===--------------------------------------------------------------------===//
718  // LiveIn Management
719  //===--------------------------------------------------------------------===//
720
721  /// addLiveIn - Add the specified register as a live-in.  Note that it
722  /// is an error to add the same register to the same set more than once.
723  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
724    LiveIns.push_back(std::make_pair(Reg, vreg));
725  }
726
727  // Iteration support for the live-ins set.  It's kept in sorted order
728  // by register number.
729  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
730  livein_iterator;
731  livein_iterator livein_begin() const { return LiveIns.begin(); }
732  livein_iterator livein_end()   const { return LiveIns.end(); }
733  bool            livein_empty() const { return LiveIns.empty(); }
734
735  bool isLiveIn(unsigned Reg) const;
736
737  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
738  /// corresponding live-in physical register.
739  unsigned getLiveInPhysReg(unsigned VReg) const;
740
741  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
742  /// corresponding live-in physical register.
743  unsigned getLiveInVirtReg(unsigned PReg) const;
744
745  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
746  /// into the given entry block.
747  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
748                        const TargetRegisterInfo &TRI,
749                        const TargetInstrInfo &TII);
750
751  /// defusechain_iterator - This class provides iterator support for machine
752  /// operands in the function that use or define a specific register.  If
753  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
754  /// returns defs.  If neither are true then you are silly and it always
755  /// returns end().  If SkipDebug is true it skips uses marked Debug
756  /// when incrementing.
757  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
758           bool ByOperand, bool ByInstr, bool ByBundle>
759  class defusechain_iterator
760    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
761    MachineOperand *Op;
762    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
763      // If the first node isn't one we're interested in, advance to one that
764      // we are interested in.
765      if (op) {
766        if ((!ReturnUses && op->isUse()) ||
767            (!ReturnDefs && op->isDef()) ||
768            (SkipDebug && op->isDebug()))
769          advance();
770      }
771    }
772    friend class MachineRegisterInfo;
773
774    void advance() {
775      assert(Op && "Cannot increment end iterator!");
776      Op = getNextOperandForReg(Op);
777
778      // All defs come before the uses, so stop def_iterator early.
779      if (!ReturnUses) {
780        if (Op) {
781          if (Op->isUse())
782            Op = 0;
783          else
784            assert(!Op->isDebug() && "Can't have debug defs");
785        }
786      } else {
787        // If this is an operand we don't care about, skip it.
788        while (Op && ((!ReturnDefs && Op->isDef()) ||
789                      (SkipDebug && Op->isDebug())))
790          Op = getNextOperandForReg(Op);
791      }
792    }
793  public:
794    typedef std::iterator<std::forward_iterator_tag,
795                          MachineInstr, ptrdiff_t>::reference reference;
796    typedef std::iterator<std::forward_iterator_tag,
797                          MachineInstr, ptrdiff_t>::pointer pointer;
798
799    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
800    defusechain_iterator() : Op(0) {}
801
802    bool operator==(const defusechain_iterator &x) const {
803      return Op == x.Op;
804    }
805    bool operator!=(const defusechain_iterator &x) const {
806      return !operator==(x);
807    }
808
809    /// atEnd - return true if this iterator is equal to reg_end() on the value.
810    bool atEnd() const { return Op == 0; }
811
812    // Iterator traversal: forward iteration only
813    defusechain_iterator &operator++() {          // Preincrement
814      assert(Op && "Cannot increment end iterator!");
815      if (ByOperand)
816        advance();
817      else if (ByInstr) {
818        MachineInstr *P = Op->getParent();
819        do {
820          advance();
821        } while (Op && Op->getParent() == P);
822      } else if (ByBundle) {
823        MachineInstr *P = getBundleStart(Op->getParent());
824        do {
825          advance();
826        } while (Op && getBundleStart(Op->getParent()) == P);
827      }
828
829      return *this;
830    }
831    defusechain_iterator operator++(int) {        // Postincrement
832      defusechain_iterator tmp = *this; ++*this; return tmp;
833    }
834
835    /// getOperandNo - Return the operand # of this MachineOperand in its
836    /// MachineInstr.
837    unsigned getOperandNo() const {
838      assert(Op && "Cannot dereference end iterator!");
839      return Op - &Op->getParent()->getOperand(0);
840    }
841
842    // Retrieve a reference to the current operand.
843    MachineOperand &operator*() const {
844      assert(Op && "Cannot dereference end iterator!");
845      return *Op;
846    }
847
848    MachineOperand *operator->() const {
849      assert(Op && "Cannot dereference end iterator!");
850      return Op;
851    }
852  };
853
854  /// defusechain_iterator - This class provides iterator support for machine
855  /// operands in the function that use or define a specific register.  If
856  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
857  /// returns defs.  If neither are true then you are silly and it always
858  /// returns end().  If SkipDebug is true it skips uses marked Debug
859  /// when incrementing.
860  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
861           bool ByOperand, bool ByInstr, bool ByBundle>
862  class defusechain_instr_iterator
863    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
864    MachineOperand *Op;
865    explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
866      // If the first node isn't one we're interested in, advance to one that
867      // we are interested in.
868      if (op) {
869        if ((!ReturnUses && op->isUse()) ||
870            (!ReturnDefs && op->isDef()) ||
871            (SkipDebug && op->isDebug()))
872          advance();
873      }
874    }
875    friend class MachineRegisterInfo;
876
877    void advance() {
878      assert(Op && "Cannot increment end iterator!");
879      Op = getNextOperandForReg(Op);
880
881      // All defs come before the uses, so stop def_iterator early.
882      if (!ReturnUses) {
883        if (Op) {
884          if (Op->isUse())
885            Op = 0;
886          else
887            assert(!Op->isDebug() && "Can't have debug defs");
888        }
889      } else {
890        // If this is an operand we don't care about, skip it.
891        while (Op && ((!ReturnDefs && Op->isDef()) ||
892                      (SkipDebug && Op->isDebug())))
893          Op = getNextOperandForReg(Op);
894      }
895    }
896  public:
897    typedef std::iterator<std::forward_iterator_tag,
898                          MachineInstr, ptrdiff_t>::reference reference;
899    typedef std::iterator<std::forward_iterator_tag,
900                          MachineInstr, ptrdiff_t>::pointer pointer;
901
902    defusechain_instr_iterator(const defusechain_instr_iterator &I) : Op(I.Op){}
903    defusechain_instr_iterator() : Op(0) {}
904
905    bool operator==(const defusechain_instr_iterator &x) const {
906      return Op == x.Op;
907    }
908    bool operator!=(const defusechain_instr_iterator &x) const {
909      return !operator==(x);
910    }
911
912    /// atEnd - return true if this iterator is equal to reg_end() on the value.
913    bool atEnd() const { return Op == 0; }
914
915    // Iterator traversal: forward iteration only
916    defusechain_instr_iterator &operator++() {          // Preincrement
917      assert(Op && "Cannot increment end iterator!");
918      if (ByOperand)
919        advance();
920      else if (ByInstr) {
921        MachineInstr *P = Op->getParent();
922        do {
923          advance();
924        } while (Op && Op->getParent() == P);
925      } else if (ByBundle) {
926        MachineInstr *P = getBundleStart(Op->getParent());
927        do {
928          advance();
929        } while (Op && getBundleStart(Op->getParent()) == P);
930      }
931
932      return *this;
933    }
934    defusechain_instr_iterator operator++(int) {        // Postincrement
935      defusechain_instr_iterator tmp = *this; ++*this; return tmp;
936    }
937
938    // Retrieve a reference to the current operand.
939    MachineInstr &operator*() const {
940      assert(Op && "Cannot dereference end iterator!");
941      if (ByBundle) return *(getBundleStart(Op->getParent()));
942      return *Op->getParent();
943    }
944
945    MachineInstr *operator->() const {
946      assert(Op && "Cannot dereference end iterator!");
947      if (ByBundle) return getBundleStart(Op->getParent());
948      return Op->getParent();
949    }
950  };
951};
952
953/// Iterate over the pressure sets affected by the given physical or virtual
954/// register. If Reg is physical, it must be a register unit (from
955/// MCRegUnitIterator).
956class PSetIterator {
957  const int *PSet;
958  unsigned Weight;
959public:
960  PSetIterator(): PSet(0), Weight(0) {}
961  PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
962    const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
963    if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
964      const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
965      PSet = TRI->getRegClassPressureSets(RC);
966      Weight = TRI->getRegClassWeight(RC).RegWeight;
967    }
968    else {
969      PSet = TRI->getRegUnitPressureSets(RegUnit);
970      Weight = TRI->getRegUnitWeight(RegUnit);
971    }
972    if (*PSet == -1)
973      PSet = 0;
974  }
975  bool isValid() const { return PSet; }
976
977  unsigned getWeight() const { return Weight; }
978
979  unsigned operator*() const { return *PSet; }
980
981  void operator++() {
982    assert(isValid() && "Invalid PSetIterator.");
983    ++PSet;
984    if (*PSet == -1)
985      PSet = 0;
986  }
987};
988
989inline PSetIterator MachineRegisterInfo::
990getPressureSets(unsigned RegUnit) const {
991  return PSetIterator(RegUnit, this);
992}
993
994} // End llvm namespace
995
996#endif
997